blob: ca95bb57822e6288234867193e56d6d3a164f56f [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_MIPS.
#if defined(TARGET_ARCH_MIPS)
#include "vm/intrinsifier.h"
#include "vm/assembler.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/regexp_assembler.h"
#include "vm/symbols.h"
#include "vm/timeline.h"
namespace dart {
// When entering intrinsics code:
// S4: Arguments descriptor
// RA: Return address
// The S4 register can be destroyed only if there is no slow-path, i.e.
// if the intrinsified method always executes a return.
// The FP register should not be modified, because it is used by the profiler.
// The PP and THR registers (see constants_mips.h) must be preserved.
#define __ assembler->
intptr_t Intrinsifier::ParameterSlotFromSp() {
return -1;
}
static bool IsABIPreservedRegister(Register reg) {
return ((1 << reg) & kAbiPreservedCpuRegs) != 0;
}
void Intrinsifier::IntrinsicCallPrologue(Assembler* assembler) {
ASSERT(IsABIPreservedRegister(CODE_REG));
ASSERT(IsABIPreservedRegister(ARGS_DESC_REG));
ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP));
ASSERT(CALLEE_SAVED_TEMP != CODE_REG);
ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG);
assembler->Comment("IntrinsicCallPrologue");
assembler->mov(CALLEE_SAVED_TEMP, LRREG);
}
void Intrinsifier::IntrinsicCallEpilogue(Assembler* assembler) {
assembler->Comment("IntrinsicCallEpilogue");
assembler->mov(LRREG, CALLEE_SAVED_TEMP);
}
// Intrinsify only for Smi value and index. Non-smi values need a store buffer
// update. Array length is always a Smi.
void Intrinsifier::ObjectArraySetIndexed(Assembler* assembler) {
if (Isolate::Current()->type_checks()) {
return;
}
Label fall_through;
__ lw(T1, Address(SP, 1 * kWordSize)); // Index.
__ andi(CMPRES1, T1, Immediate(kSmiTagMask));
// Index not Smi.
__ bne(CMPRES1, ZR, &fall_through);
__ lw(T0, Address(SP, 2 * kWordSize)); // Array.
// Range check.
__ lw(T3, FieldAddress(T0, Array::length_offset())); // Array length.
// Runtime throws exception.
__ BranchUnsignedGreaterEqual(T1, T3, &fall_through);
// Note that T1 is Smi, i.e, times 2.
ASSERT(kSmiTagShift == 1);
__ lw(T2, Address(SP, 0 * kWordSize)); // Value.
__ sll(T1, T1, 1); // T1 is Smi.
__ addu(T1, T0, T1);
__ StoreIntoObject(T0, FieldAddress(T1, Array::data_offset()), T2);
// Caller is responsible for preserving the value if necessary.
__ Ret();
__ Bind(&fall_through);
}
// Allocate a GrowableObjectArray using the backing array specified.
// On stack: type argument (+1), data (+0).
void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) {
// The newly allocated object is returned in V0.
const intptr_t kTypeArgumentsOffset = 1 * kWordSize;
const intptr_t kArrayOffset = 0 * kWordSize;
Label fall_through;
// Try allocating in new space.
const Class& cls = Class::Handle(
Isolate::Current()->object_store()->growable_object_array_class());
__ TryAllocate(cls, &fall_through, V0, T1);
// Store backing array object in growable array object.
__ lw(T1, Address(SP, kArrayOffset)); // Data argument.
// V0 is new, no barrier needed.
__ StoreIntoObjectNoBarrier(
V0, FieldAddress(V0, GrowableObjectArray::data_offset()), T1);
// V0: new growable array object start as a tagged pointer.
// Store the type argument field in the growable array object.
__ lw(T1, Address(SP, kTypeArgumentsOffset)); // Type argument.
__ StoreIntoObjectNoBarrier(
V0, FieldAddress(V0, GrowableObjectArray::type_arguments_offset()), T1);
// Set the length field in the growable array object to 0.
__ Ret(); // Returns the newly allocated object in V0.
__ delay_slot()->sw(ZR,
FieldAddress(V0, GrowableObjectArray::length_offset()));
__ Bind(&fall_through);
}
// Add an element to growable array if it doesn't need to grow, otherwise
// call into regular code.
// On stack: growable array (+1), value (+0).
void Intrinsifier::GrowableArray_add(Assembler* assembler) {
// In checked mode we need to type-check the incoming argument.
if (Isolate::Current()->type_checks()) return;
Label fall_through;
__ lw(T0, Address(SP, 1 * kWordSize)); // Array.
__ lw(T1, FieldAddress(T0, GrowableObjectArray::length_offset()));
// T1: length.
__ lw(T2, FieldAddress(T0, GrowableObjectArray::data_offset()));
// T2: data.
__ lw(T3, FieldAddress(T2, Array::length_offset()));
// Compare length with capacity.
// T3: capacity.
__ beq(T1, T3, &fall_through); // Must grow data.
const int32_t value_one = reinterpret_cast<int32_t>(Smi::New(1));
// len = len + 1;
__ addiu(T3, T1, Immediate(value_one));
__ sw(T3, FieldAddress(T0, GrowableObjectArray::length_offset()));
__ lw(T0, Address(SP, 0 * kWordSize)); // Value.
ASSERT(kSmiTagShift == 1);
__ sll(T1, T1, 1);
__ addu(T1, T2, T1);
__ StoreIntoObject(T2, FieldAddress(T1, Array::data_offset()), T0);
__ LoadObject(T7, Object::null_object());
__ Ret();
__ delay_slot()->mov(V0, T7);
__ Bind(&fall_through);
}
#define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \
Label fall_through; \
const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \
NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, T2, &fall_through)); \
__ lw(T2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
/* Check that length is a positive Smi. */ \
/* T2: requested array length argument. */ \
__ andi(CMPRES1, T2, Immediate(kSmiTagMask)); \
__ bne(CMPRES1, ZR, &fall_through); \
__ BranchSignedLess(T2, Immediate(0), &fall_through); \
__ SmiUntag(T2); \
/* Check for maximum allowed length. */ \
/* T2: untagged array length. */ \
__ BranchSignedGreater(T2, Immediate(max_len), &fall_through); \
__ sll(T2, T2, scale_shift); \
const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \
__ AddImmediate(T2, fixed_size); \
__ LoadImmediate(TMP, -kObjectAlignment); \
__ and_(T2, T2, TMP); \
Heap::Space space = Heap::kNew; \
__ lw(T3, Address(THR, Thread::heap_offset())); \
__ lw(V0, Address(T3, Heap::TopOffset(space))); \
\
/* T2: allocation size. */ \
__ addu(T1, V0, T2); \
/* Branch on unsigned overflow. */ \
__ BranchUnsignedLess(T1, V0, &fall_through); \
\
/* Check if the allocation fits into the remaining space. */ \
/* V0: potential new object start. */ \
/* T1: potential next object start. */ \
/* T2: allocation size. */ \
/* T3: heap. */ \
__ lw(T4, Address(T3, Heap::EndOffset(space))); \
__ BranchUnsignedGreaterEqual(T1, T4, &fall_through); \
\
/* Successfully allocated the object(s), now update top to point to */ \
/* next object start and initialize the object. */ \
__ sw(T1, Address(T3, Heap::TopOffset(space))); \
__ AddImmediate(V0, kHeapObjectTag); \
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T4, space)); \
/* Initialize the tags. */ \
/* V0: new object start as a tagged pointer. */ \
/* T1: new object end address. */ \
/* T2: allocation size. */ \
{ \
Label size_tag_overflow, done; \
__ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag), \
&size_tag_overflow); \
__ b(&done); \
__ delay_slot()->sll(T2, T2, \
RawObject::kSizeTagPos - kObjectAlignmentLog2); \
\
__ Bind(&size_tag_overflow); \
__ mov(T2, ZR); \
__ Bind(&done); \
\
/* Get the class index and insert it into the tags. */ \
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); \
__ or_(T2, T2, TMP); \
__ sw(T2, FieldAddress(V0, type_name::tags_offset())); /* Tags. */ \
} \
/* Set the length field. */ \
/* V0: new object start as a tagged pointer. */ \
/* T1: new object end address. */ \
__ lw(T2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
__ StoreIntoObjectNoBarrier( \
V0, FieldAddress(V0, type_name::length_offset()), T2); \
/* Initialize all array elements to 0. */ \
/* V0: new object start as a tagged pointer. */ \
/* T1: new object end address. */ \
/* T2: iterator which initially points to the start of the variable */ \
/* data area to be initialized. */ \
__ AddImmediate(T2, V0, sizeof(Raw##type_name) - 1); \
Label done, init_loop; \
__ Bind(&init_loop); \
__ BranchUnsignedGreaterEqual(T2, T1, &done); \
__ sw(ZR, Address(T2, 0)); \
__ b(&init_loop); \
__ delay_slot()->addiu(T2, T2, Immediate(kWordSize)); \
__ Bind(&done); \
\
__ Ret(); \
__ Bind(&fall_through);
static int GetScaleFactor(intptr_t size) {
switch (size) {
case 1:
return 0;
case 2:
return 1;
case 4:
return 2;
case 8:
return 3;
case 16:
return 4;
}
UNREACHABLE();
return -1;
}
#define TYPED_DATA_ALLOCATOR(clazz) \
void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \
intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
int shift = GetScaleFactor(size); \
TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
}
CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR)
#undef TYPED_DATA_ALLOCATOR
// Loads args from stack into T0 and T1
// Tests if they are smis, jumps to label not_smi if not.
static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(T1, Address(SP, 1 * kWordSize));
__ or_(CMPRES1, T0, T1);
__ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, not_smi);
return;
}
void Intrinsifier::Integer_addFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two Smis.
__ AdduDetectOverflow(V0, T0, T1, CMPRES1); // Add.
__ bltz(CMPRES1, &fall_through); // Fall through on overflow.
__ Ret(); // Nothing in branch delay slot.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_add(Assembler* assembler) {
Integer_addFromInteger(assembler);
}
void Intrinsifier::Integer_subFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ SubuDetectOverflow(V0, T0, T1, CMPRES1); // Subtract.
__ bltz(CMPRES1, &fall_through); // Fall through on overflow.
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_sub(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ SubuDetectOverflow(V0, T1, T0, CMPRES1); // Subtract.
__ bltz(CMPRES1, &fall_through); // Fall through on overflow.
__ Ret(); // Nothing in branch delay slot.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
__ SmiUntag(T0); // untags T0. only want result shifted by one
__ mult(T0, T1); // HI:LO <- T0 * T1.
__ mflo(V0); // V0 <- LO.
__ mfhi(T2); // T2 <- HI.
__ sra(T3, V0, 31); // T3 <- V0 >> 31.
__ bne(T2, T3, &fall_through); // Fall through on overflow.
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_mul(Assembler* assembler) {
Integer_mulFromInteger(assembler);
}
// Optimizations:
// - result is 0 if:
// - left is 0
// - left equals right
// - result is left if
// - left > 0 && left < right
// T1: Tagged left (dividend).
// T0: Tagged right (divisor).
// Returns:
// V0: Untagged fallthrough result (remainder to be adjusted), or
// V0: Tagged return result (remainder).
static void EmitRemainderOperation(Assembler* assembler) {
Label return_zero, modulo;
const Register left = T1;
const Register right = T0;
const Register result = V0;
__ beq(left, ZR, &return_zero);
__ beq(left, right, &return_zero);
__ bltz(left, &modulo);
// left is positive.
__ BranchSignedGreaterEqual(left, right, &modulo);
// left is less than right. return left.
__ Ret();
__ delay_slot()->mov(result, left);
__ Bind(&return_zero);
__ Ret();
__ delay_slot()->mov(result, ZR);
__ Bind(&modulo);
__ SmiUntag(right);
__ SmiUntag(left);
__ div(left, right); // Divide, remainder goes in HI.
__ mfhi(result); // result <- HI.
return;
}
// Implementation:
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) {
Label fall_through, subtract;
// Test arguments for smi.
__ lw(T1, Address(SP, 0 * kWordSize));
__ lw(T0, Address(SP, 1 * kWordSize));
__ or_(CMPRES1, T0, T1);
__ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &fall_through);
// T1: Tagged left (dividend).
// T0: Tagged right (divisor).
// Check if modulo by zero -> exception thrown in main function.
__ beq(T0, ZR, &fall_through);
EmitRemainderOperation(assembler);
// Untagged right in T0. Untagged remainder result in V0.
Label done;
__ bgez(V0, &done);
__ bltz(T0, &subtract);
__ addu(V0, V0, T0);
__ Ret();
__ delay_slot()->SmiTag(V0);
__ Bind(&subtract);
__ subu(V0, V0, T0);
__ Ret();
__ delay_slot()->SmiTag(V0);
__ Bind(&done);
__ Ret();
__ delay_slot()->SmiTag(V0);
__ Bind(&fall_through);
}
void Intrinsifier::Integer_truncDivide(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ beq(T0, ZR, &fall_through); // If b is 0, fall through.
__ SmiUntag(T0);
__ SmiUntag(T1);
__ div(T1, T0); // LO <- T1 / T0
__ mflo(V0); // V0 <- LO
// Check the corner case of dividing the 'MIN_SMI' with -1, in which case we
// cannot tag the result.
__ BranchEqual(V0, Immediate(0x40000000), &fall_through);
__ Ret();
__ delay_slot()->SmiTag(V0);
__ Bind(&fall_through);
}
void Intrinsifier::Integer_negate(Assembler* assembler) {
Label fall_through;
__ lw(T0, Address(SP, +0 * kWordSize)); // Grabs first argument.
__ andi(CMPRES1, T0, Immediate(kSmiTagMask)); // Test for Smi.
__ bne(CMPRES1, ZR, &fall_through); // Fall through if not a Smi.
__ SubuDetectOverflow(V0, ZR, T0, CMPRES1);
__ bltz(CMPRES1, &fall_through); // There was overflow.
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ Ret();
__ delay_slot()->and_(V0, T0, T1);
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitAnd(Assembler* assembler) {
Integer_bitAndFromInteger(assembler);
}
void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ Ret();
__ delay_slot()->or_(V0, T0, T1);
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitOr(Assembler* assembler) {
Integer_bitOrFromInteger(assembler);
}
void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ Ret();
__ delay_slot()->xor_(V0, T0, T1);
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitXor(Assembler* assembler) {
Integer_bitXorFromInteger(assembler);
}
void Intrinsifier::Integer_shl(Assembler* assembler) {
ASSERT(kSmiTagShift == 1);
ASSERT(kSmiTag == 0);
Label fall_through, overflow;
TestBothArgumentsSmis(assembler, &fall_through);
__ BranchUnsignedGreater(T0, Immediate(Smi::RawValue(Smi::kBits)),
&fall_through);
__ SmiUntag(T0);
// Check for overflow by shifting left and shifting back arithmetically.
// If the result is different from the original, there was overflow.
__ sllv(TMP, T1, T0);
__ srav(CMPRES1, TMP, T0);
__ bne(CMPRES1, T1, &overflow);
// No overflow, result in V0.
__ Ret();
__ delay_slot()->sllv(V0, T1, T0);
__ Bind(&overflow);
// Arguments are Smi but the shift produced an overflow to Mint.
__ bltz(T1, &fall_through);
__ SmiUntag(T1);
// Pull off high bits that will be shifted off of T1 by making a mask
// ((1 << T0) - 1), shifting it to the right, masking T1, then shifting back.
// high bits = (((1 << T0) - 1) << (32 - T0)) & T1) >> (32 - T0)
// lo bits = T1 << T0
__ LoadImmediate(T3, 1);
__ sllv(T3, T3, T0); // T3 <- T3 << T0
__ addiu(T3, T3, Immediate(-1)); // T3 <- T3 - 1
__ subu(T4, ZR, T0); // T4 <- -T0
__ addiu(T4, T4, Immediate(32)); // T4 <- 32 - T0
__ sllv(T3, T3, T4); // T3 <- T3 << T4
__ and_(T3, T3, T1); // T3 <- T3 & T1
__ srlv(T3, T3, T4); // T3 <- T3 >> T4
// Now T3 has the bits that fall off of T1 on a left shift.
__ sllv(T0, T1, T0); // T0 gets low bits.
const Class& mint_class =
Class::Handle(Isolate::Current()->object_store()->mint_class());
__ TryAllocate(mint_class, &fall_through, V0, T1);
__ sw(T0, FieldAddress(V0, Mint::value_offset()));
__ Ret();
__ delay_slot()->sw(T3, FieldAddress(V0, Mint::value_offset() + kWordSize));
__ Bind(&fall_through);
}
static void Get64SmiOrMint(Assembler* assembler,
Register res_hi,
Register res_lo,
Register reg,
Label* not_smi_or_mint) {
Label not_smi, done;
__ andi(CMPRES1, reg, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &not_smi);
__ SmiUntag(reg);
// Sign extend to 64 bit
__ mov(res_lo, reg);
__ b(&done);
__ delay_slot()->sra(res_hi, reg, 31);
__ Bind(&not_smi);
__ LoadClassId(CMPRES1, reg);
__ BranchNotEqual(CMPRES1, Immediate(kMintCid), not_smi_or_mint);
// Mint.
__ lw(res_lo, FieldAddress(reg, Mint::value_offset()));
__ lw(res_hi, FieldAddress(reg, Mint::value_offset() + kWordSize));
__ Bind(&done);
return;
}
static void CompareIntegers(Assembler* assembler, RelationOperator rel_op) {
Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through;
TestBothArgumentsSmis(assembler, &try_mint_smi);
// T0 contains the right argument. T1 contains left argument
switch (rel_op) {
case LT:
__ BranchSignedLess(T1, T0, &is_true);
break;
case LE:
__ BranchSignedLessEqual(T1, T0, &is_true);
break;
case GT:
__ BranchSignedGreater(T1, T0, &is_true);
break;
case GE:
__ BranchSignedGreaterEqual(T1, T0, &is_true);
break;
default:
UNREACHABLE();
break;
}
__ Bind(&is_false);
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&is_true);
__ LoadObject(V0, Bool::True());
__ Ret();
__ Bind(&try_mint_smi);
// Get left as 64 bit integer.
Get64SmiOrMint(assembler, T3, T2, T1, &fall_through);
// Get right as 64 bit integer.
Get64SmiOrMint(assembler, T5, T4, T0, &fall_through);
// T3: left high.
// T2: left low.
// T5: right high.
// T4: right low.
// 64-bit comparison
switch (rel_op) {
case LT:
case LE: {
// Compare left hi, right high.
__ BranchSignedGreater(T3, T5, &is_false);
__ BranchSignedLess(T3, T5, &is_true);
// Compare left lo, right lo.
if (rel_op == LT) {
__ BranchUnsignedGreaterEqual(T2, T4, &is_false);
} else {
__ BranchUnsignedGreater(T2, T4, &is_false);
}
break;
}
case GT:
case GE: {
// Compare left hi, right high.
__ BranchSignedLess(T3, T5, &is_false);
__ BranchSignedGreater(T3, T5, &is_true);
// Compare left lo, right lo.
if (rel_op == GT) {
__ BranchUnsignedLessEqual(T2, T4, &is_false);
} else {
__ BranchUnsignedLess(T2, T4, &is_false);
}
break;
}
default:
UNREACHABLE();
break;
}
// Else is true.
__ b(&is_true);
__ Bind(&fall_through);
}
void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) {
CompareIntegers(assembler, LT);
}
void Intrinsifier::Integer_lessThan(Assembler* assembler) {
CompareIntegers(assembler, LT);
}
void Intrinsifier::Integer_greaterThan(Assembler* assembler) {
CompareIntegers(assembler, GT);
}
void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) {
CompareIntegers(assembler, LE);
}
void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) {
CompareIntegers(assembler, GE);
}
// This is called for Smi, Mint and Bigint receivers. The right argument
// can be Smi, Mint, Bigint or double.
void Intrinsifier::Integer_equalToInteger(Assembler* assembler) {
Label fall_through, true_label, check_for_mint;
// For integer receiver '===' check first.
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(T1, Address(SP, 1 * kWordSize));
__ beq(T0, T1, &true_label);
__ or_(T2, T0, T1);
__ andi(CMPRES1, T2, Immediate(kSmiTagMask));
// If T0 or T1 is not a smi do Mint checks.
__ bne(CMPRES1, ZR, &check_for_mint);
// Both arguments are smi, '===' is good enough.
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&true_label);
__ LoadObject(V0, Bool::True());
__ Ret();
// At least one of the arguments was not Smi.
Label receiver_not_smi;
__ Bind(&check_for_mint);
__ andi(CMPRES1, T1, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &receiver_not_smi); // Check receiver.
// Left (receiver) is Smi, return false if right is not Double.
// Note that an instance of Mint or Bigint never contains a value that can be
// represented by Smi.
__ LoadClassId(CMPRES1, T0);
__ BranchEqual(CMPRES1, Immediate(kDoubleCid), &fall_through);
__ LoadObject(V0, Bool::False()); // Smi == Mint -> false.
__ Ret();
__ Bind(&receiver_not_smi);
// T1:: receiver.
__ LoadClassId(CMPRES1, T1);
__ BranchNotEqual(CMPRES1, Immediate(kMintCid), &fall_through);
// Receiver is Mint, return false if right is Smi.
__ andi(CMPRES1, T0, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &fall_through);
__ LoadObject(V0, Bool::False());
__ Ret();
// TODO(srdjan): Implement Mint == Mint comparison.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_equal(Assembler* assembler) {
Integer_equalToInteger(assembler);
}
void Intrinsifier::Integer_sar(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
// Shift amount in T0. Value to shift in T1.
__ SmiUntag(T0);
__ bltz(T0, &fall_through);
__ LoadImmediate(T2, 0x1F);
__ slt(CMPRES1, T2, T0); // CMPRES1 <- 0x1F < T0 ? 1 : 0
__ movn(T0, T2, CMPRES1); // T0 <- 0x1F < T0 ? 0x1F : T0
__ SmiUntag(T1);
__ srav(V0, T1, T0);
__ Ret();
__ delay_slot()->SmiTag(V0);
__ Bind(&fall_through);
}
void Intrinsifier::Smi_bitNegate(Assembler* assembler) {
__ lw(T0, Address(SP, 0 * kWordSize));
__ nor(V0, T0, ZR);
__ Ret();
__ delay_slot()->addiu(V0, V0, Immediate(-1)); // Remove inverted smi-tag.
}
void Intrinsifier::Smi_bitLength(Assembler* assembler) {
__ lw(V0, Address(SP, 0 * kWordSize));
__ SmiUntag(V0);
// XOR with sign bit to complement bits if value is negative.
__ sra(T0, V0, 31);
__ xor_(V0, V0, T0);
__ clz(V0, V0);
__ LoadImmediate(T0, 32);
__ subu(V0, T0, V0);
__ Ret();
__ delay_slot()->SmiTag(V0);
}
void Intrinsifier::Smi_bitAndFromSmi(Assembler* assembler) {
Integer_bitAndFromInteger(assembler);
}
void Intrinsifier::Bigint_lsh(Assembler* assembler) {
// static void _lsh(Uint32List x_digits, int x_used, int n,
// Uint32List r_digits)
// T2 = x_used, T3 = x_digits, x_used > 0, x_used is Smi.
__ lw(T2, Address(SP, 2 * kWordSize));
__ lw(T3, Address(SP, 3 * kWordSize));
// T4 = r_digits, T5 = n, n is Smi, n % _DIGIT_BITS != 0.
__ lw(T4, Address(SP, 0 * kWordSize));
__ lw(T5, Address(SP, 1 * kWordSize));
__ SmiUntag(T5);
// T0 = n ~/ _DIGIT_BITS
__ sra(T0, T5, 5);
// T6 = &x_digits[0]
__ addiu(T6, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
// V0 = &x_digits[x_used]
__ sll(T2, T2, 1);
__ addu(V0, T6, T2);
// V1 = &r_digits[1]
__ addiu(V1, T4, Immediate(TypedData::data_offset() - kHeapObjectTag +
Bigint::kBytesPerDigit));
// V1 = &r_digits[x_used + n ~/ _DIGIT_BITS + 1]
__ addu(V1, V1, T2);
__ sll(T1, T0, 2);
__ addu(V1, V1, T1);
// T3 = n % _DIGIT_BITS
__ andi(T3, T5, Immediate(31));
// T2 = 32 - T3
__ subu(T2, ZR, T3);
__ addiu(T2, T2, Immediate(32));
__ mov(T1, ZR);
Label loop;
__ Bind(&loop);
__ addiu(V0, V0, Immediate(-Bigint::kBytesPerDigit));
__ lw(T0, Address(V0, 0));
__ srlv(AT, T0, T2);
__ or_(T1, T1, AT);
__ addiu(V1, V1, Immediate(-Bigint::kBytesPerDigit));
__ sw(T1, Address(V1, 0));
__ bne(V0, T6, &loop);
__ delay_slot()->sllv(T1, T0, T3);
__ sw(T1, Address(V1, -Bigint::kBytesPerDigit));
// Returning Object::null() is not required, since this method is private.
__ Ret();
}
void Intrinsifier::Bigint_rsh(Assembler* assembler) {
// static void _lsh(Uint32List x_digits, int x_used, int n,
// Uint32List r_digits)
// T2 = x_used, T3 = x_digits, x_used > 0, x_used is Smi.
__ lw(T2, Address(SP, 2 * kWordSize));
__ lw(T3, Address(SP, 3 * kWordSize));
// T4 = r_digits, T5 = n, n is Smi, n % _DIGIT_BITS != 0.
__ lw(T4, Address(SP, 0 * kWordSize));
__ lw(T5, Address(SP, 1 * kWordSize));
__ SmiUntag(T5);
// T0 = n ~/ _DIGIT_BITS
__ sra(T0, T5, 5);
// V1 = &r_digits[0]
__ addiu(V1, T4, Immediate(TypedData::data_offset() - kHeapObjectTag));
// V0 = &x_digits[n ~/ _DIGIT_BITS]
__ addiu(V0, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
__ sll(T1, T0, 2);
__ addu(V0, V0, T1);
// T6 = &r_digits[x_used - n ~/ _DIGIT_BITS - 1]
__ sll(T2, T2, 1);
__ addu(T6, V1, T2);
__ subu(T6, T6, T1);
__ addiu(T6, T6, Immediate(-4));
// T3 = n % _DIGIT_BITS
__ andi(T3, T5, Immediate(31));
// T2 = 32 - T3
__ subu(T2, ZR, T3);
__ addiu(T2, T2, Immediate(32));
// T1 = x_digits[n ~/ _DIGIT_BITS] >> (n % _DIGIT_BITS)
__ lw(T1, Address(V0, 0));
__ addiu(V0, V0, Immediate(Bigint::kBytesPerDigit));
Label loop_exit;
__ beq(V1, T6, &loop_exit);
__ delay_slot()->srlv(T1, T1, T3);
Label loop;
__ Bind(&loop);
__ lw(T0, Address(V0, 0));
__ addiu(V0, V0, Immediate(Bigint::kBytesPerDigit));
__ sllv(AT, T0, T2);
__ or_(T1, T1, AT);
__ sw(T1, Address(V1, 0));
__ addiu(V1, V1, Immediate(Bigint::kBytesPerDigit));
__ bne(V1, T6, &loop);
__ delay_slot()->srlv(T1, T0, T3);
__ Bind(&loop_exit);
__ sw(T1, Address(V1, 0));
// Returning Object::null() is not required, since this method is private.
__ Ret();
}
void Intrinsifier::Bigint_absAdd(Assembler* assembler) {
// static void _absAdd(Uint32List digits, int used,
// Uint32List a_digits, int a_used,
// Uint32List r_digits)
// T2 = used, T3 = digits
__ lw(T2, Address(SP, 3 * kWordSize));
__ lw(T3, Address(SP, 4 * kWordSize));
// T3 = &digits[0]
__ addiu(T3, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
// T4 = a_used, T5 = a_digits
__ lw(T4, Address(SP, 1 * kWordSize));
__ lw(T5, Address(SP, 2 * kWordSize));
// T5 = &a_digits[0]
__ addiu(T5, T5, Immediate(TypedData::data_offset() - kHeapObjectTag));
// T6 = r_digits
__ lw(T6, Address(SP, 0 * kWordSize));
// T6 = &r_digits[0]
__ addiu(T6, T6, Immediate(TypedData::data_offset() - kHeapObjectTag));
// V0 = &digits[a_used >> 1], a_used is Smi.
__ sll(V0, T4, 1);
__ addu(V0, V0, T3);
// V1 = &digits[used >> 1], used is Smi.
__ sll(V1, T2, 1);
__ addu(V1, V1, T3);
// T2 = carry in = 0.
__ mov(T2, ZR);
Label add_loop;
__ Bind(&add_loop);
// Loop a_used times, a_used > 0.
__ lw(T0, Address(T3, 0)); // T0 = x.
__ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
__ lw(T1, Address(T5, 0)); // T1 = y.
__ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
__ addu(T1, T0, T1); // T1 = x + y.
__ sltu(T4, T1, T0); // T4 = carry out of x + y.
__ addu(T0, T1, T2); // T0 = x + y + carry in.
__ sltu(T2, T0, T1); // T2 = carry out of (x + y) + carry in.
__ or_(T2, T2, T4); // T2 = carry out of x + y + carry in.
__ sw(T0, Address(T6, 0));
__ bne(T3, V0, &add_loop);
__ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
Label last_carry;
__ beq(T3, V1, &last_carry);
Label carry_loop;
__ Bind(&carry_loop);
// Loop used - a_used times, used - a_used > 0.
__ lw(T0, Address(T3, 0)); // T0 = x.
__ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
__ addu(T1, T0, T2); // T1 = x + carry in.
__ sltu(T2, T1, T0); // T2 = carry out of x + carry in.
__ sw(T1, Address(T6, 0));
__ bne(T3, V1, &carry_loop);
__ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
__ Bind(&last_carry);
__ sw(T2, Address(T6, 0));
// Returning Object::null() is not required, since this method is private.
__ Ret();
}
void Intrinsifier::Bigint_absSub(Assembler* assembler) {
// static void _absSub(Uint32List digits, int used,
// Uint32List a_digits, int a_used,
// Uint32List r_digits)
// T2 = used, T3 = digits
__ lw(T2, Address(SP, 3 * kWordSize));
__ lw(T3, Address(SP, 4 * kWordSize));
// T3 = &digits[0]
__ addiu(T3, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
// T4 = a_used, T5 = a_digits
__ lw(T4, Address(SP, 1 * kWordSize));
__ lw(T5, Address(SP, 2 * kWordSize));
// T5 = &a_digits[0]
__ addiu(T5, T5, Immediate(TypedData::data_offset() - kHeapObjectTag));
// T6 = r_digits
__ lw(T6, Address(SP, 0 * kWordSize));
// T6 = &r_digits[0]
__ addiu(T6, T6, Immediate(TypedData::data_offset() - kHeapObjectTag));
// V0 = &digits[a_used >> 1], a_used is Smi.
__ sll(V0, T4, 1);
__ addu(V0, V0, T3);
// V1 = &digits[used >> 1], used is Smi.
__ sll(V1, T2, 1);
__ addu(V1, V1, T3);
// T2 = borrow in = 0.
__ mov(T2, ZR);
Label sub_loop;
__ Bind(&sub_loop);
// Loop a_used times, a_used > 0.
__ lw(T0, Address(T3, 0)); // T0 = x.
__ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
__ lw(T1, Address(T5, 0)); // T1 = y.
__ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
__ subu(T1, T0, T1); // T1 = x - y.
__ sltu(T4, T0, T1); // T4 = borrow out of x - y.
__ subu(T0, T1, T2); // T0 = x - y - borrow in.
__ sltu(T2, T1, T0); // T2 = borrow out of (x - y) - borrow in.
__ or_(T2, T2, T4); // T2 = borrow out of x - y - borrow in.
__ sw(T0, Address(T6, 0));
__ bne(T3, V0, &sub_loop);
__ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
Label done;
__ beq(T3, V1, &done);
Label borrow_loop;
__ Bind(&borrow_loop);
// Loop used - a_used times, used - a_used > 0.
__ lw(T0, Address(T3, 0)); // T0 = x.
__ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
__ subu(T1, T0, T2); // T1 = x - borrow in.
__ sltu(T2, T0, T1); // T2 = borrow out of x - borrow in.
__ sw(T1, Address(T6, 0));
__ bne(T3, V1, &borrow_loop);
__ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
__ Bind(&done);
// Returning Object::null() is not required, since this method is private.
__ Ret();
}
void Intrinsifier::Bigint_mulAdd(Assembler* assembler) {
// Pseudo code:
// static int _mulAdd(Uint32List x_digits, int xi,
// Uint32List m_digits, int i,
// Uint32List a_digits, int j, int n) {
// uint32_t x = x_digits[xi >> 1]; // xi is Smi.
// if (x == 0 || n == 0) {
// return 1;
// }
// uint32_t* mip = &m_digits[i >> 1]; // i is Smi.
// uint32_t* ajp = &a_digits[j >> 1]; // j is Smi.
// uint32_t c = 0;
// SmiUntag(n);
// do {
// uint32_t mi = *mip++;
// uint32_t aj = *ajp;
// uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit.
// *ajp++ = low32(t);
// c = high32(t);
// } while (--n > 0);
// while (c != 0) {
// uint64_t t = *ajp + c;
// *ajp++ = low32(t);
// c = high32(t); // c == 0 or 1.
// }
// return 1;
// }
Label done;
// T3 = x, no_op if x == 0
__ lw(T0, Address(SP, 5 * kWordSize)); // T0 = xi as Smi.
__ lw(T1, Address(SP, 6 * kWordSize)); // T1 = x_digits.
__ sll(T0, T0, 1);
__ addu(T1, T0, T1);
__ lw(T3, FieldAddress(T1, TypedData::data_offset()));
__ beq(T3, ZR, &done);
// T6 = SmiUntag(n), no_op if n == 0
__ lw(T6, Address(SP, 0 * kWordSize));
__ SmiUntag(T6);
__ beq(T6, ZR, &done);
__ delay_slot()->addiu(T6, T6, Immediate(-1)); // ... while (n-- > 0).
// T4 = mip = &m_digits[i >> 1]
__ lw(T0, Address(SP, 3 * kWordSize)); // T0 = i as Smi.
__ lw(T1, Address(SP, 4 * kWordSize)); // T1 = m_digits.
__ sll(T0, T0, 1);
__ addu(T1, T0, T1);
__ addiu(T4, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
// T5 = ajp = &a_digits[j >> 1]
__ lw(T0, Address(SP, 1 * kWordSize)); // T0 = j as Smi.
__ lw(T1, Address(SP, 2 * kWordSize)); // T1 = a_digits.
__ sll(T0, T0, 1);
__ addu(T1, T0, T1);
__ addiu(T5, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
// T1 = c = 0
__ mov(T1, ZR);
Label muladd_loop;
__ Bind(&muladd_loop);
// x: T3
// mip: T4
// ajp: T5
// c: T1
// n-1: T6
// uint32_t mi = *mip++
__ lw(T2, Address(T4, 0));
// uint32_t aj = *ajp
__ lw(T0, Address(T5, 0));
// uint64_t t = x*mi + aj + c
__ multu(T2, T3); // HI:LO = x*mi.
__ addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
__ mflo(V0);
__ mfhi(V1);
__ addu(V0, V0, T0); // V0 = low32(x*mi) + aj.
__ sltu(T7, V0, T0); // T7 = carry out of low32(x*mi) + aj.
__ addu(V1, V1, T7); // V1:V0 = x*mi + aj.
__ addu(T0, V0, T1); // T0 = low32(x*mi + aj) + c.
__ sltu(T7, T0, T1); // T7 = carry out of low32(x*mi + aj) + c.
__ addu(T1, V1, T7); // T1 = c = high32(x*mi + aj + c).
// *ajp++ = low32(t) = T0
__ sw(T0, Address(T5, 0));
__ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
// while (n-- > 0)
__ bgtz(T6, &muladd_loop);
__ delay_slot()->addiu(T6, T6, Immediate(-1)); // --n
__ beq(T1, ZR, &done);
// *ajp++ += c
__ lw(T0, Address(T5, 0));
__ addu(T0, T0, T1);
__ sltu(T1, T0, T1);
__ sw(T0, Address(T5, 0));
__ beq(T1, ZR, &done);
__ delay_slot()->addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
Label propagate_carry_loop;
__ Bind(&propagate_carry_loop);
__ lw(T0, Address(T5, 0));
__ addiu(T0, T0, Immediate(1));
__ sw(T0, Address(T5, 0));
__ beq(T0, ZR, &propagate_carry_loop);
__ delay_slot()->addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
__ Bind(&done);
__ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
__ Ret();
}
void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) {
// Pseudo code:
// static int _sqrAdd(Uint32List x_digits, int i,
// Uint32List a_digits, int used) {
// uint32_t* xip = &x_digits[i >> 1]; // i is Smi.
// uint32_t x = *xip++;
// if (x == 0) return 1;
// uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi.
// uint32_t aj = *ajp;
// uint64_t t = x*x + aj;
// *ajp++ = low32(t);
// uint64_t c = high32(t);
// int n = ((used - i) >> 1) - 1; // used and i are Smi.
// while (--n >= 0) {
// uint32_t xi = *xip++;
// uint32_t aj = *ajp;
// uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit.
// *ajp++ = low32(t);
// c = high64(t); // 33-bit.
// }
// uint32_t aj = *ajp;
// uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit.
// *ajp++ = low32(t);
// *ajp = high32(t);
// return 1;
// }
// T4 = xip = &x_digits[i >> 1]
__ lw(T2, Address(SP, 2 * kWordSize)); // T2 = i as Smi.
__ lw(T3, Address(SP, 3 * kWordSize)); // T3 = x_digits.
__ sll(T0, T2, 1);
__ addu(T3, T0, T3);
__ addiu(T4, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
// T3 = x = *xip++, return if x == 0
Label x_zero;
__ lw(T3, Address(T4, 0));
__ beq(T3, ZR, &x_zero);
__ delay_slot()->addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
// T5 = ajp = &a_digits[i]
__ lw(T1, Address(SP, 1 * kWordSize)); // a_digits
__ sll(T0, T2, 2); // j == 2*i, i is Smi.
__ addu(T1, T0, T1);
__ addiu(T5, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
// T6:T0 = t = x*x + *ajp
__ lw(T0, Address(T5, 0)); // *ajp.
__ mthi(ZR);
__ mtlo(T0);
__ maddu(T3, T3); // HI:LO = T3*T3 + *ajp.
__ mfhi(T6);
__ mflo(T0);
// *ajp++ = low32(t) = R0
__ sw(T0, Address(T5, 0));
__ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
// T6 = low32(c) = high32(t)
// T7 = high32(c) = 0
__ mov(T7, ZR);
// int n = used - i - 1; while (--n >= 0) ...
__ lw(T0, Address(SP, 0 * kWordSize)); // used is Smi
__ subu(V0, T0, T2);
__ SmiUntag(V0); // V0 = used - i
// int n = used - i - 2; if (n >= 0) ... while (n-- > 0)
__ addiu(V0, V0, Immediate(-2));
Label loop, done;
__ bltz(V0, &done);
__ Bind(&loop);
// x: T3
// xip: T4
// ajp: T5
// c: T7:T6
// t: A2:A1:A0 (not live at loop entry)
// n: V0
// uint32_t xi = *xip++
__ lw(T2, Address(T4, 0));
__ addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
// uint32_t aj = *ajp
__ lw(T0, Address(T5, 0));
// uint96_t t = T7:T6:T0 = 2*x*xi + aj + c
__ multu(T2, T3);
__ mfhi(A1);
__ mflo(A0); // A1:A0 = x*xi.
__ srl(A2, A1, 31);
__ sll(A1, A1, 1);
__ srl(T1, A0, 31);
__ or_(A1, A1, T1);
__ sll(A0, A0, 1); // A2:A1:A0 = 2*x*xi.
__ addu(A0, A0, T0);
__ sltu(T1, A0, T0);
__ addu(A1, A1, T1); // No carry out possible; A2:A1:A0 = 2*x*xi + aj.
__ addu(T0, A0, T6);
__ sltu(T1, T0, T6);
__ addu(T6, A1, T1); // No carry out; A2:T6:T0 = 2*x*xi + aj + low32(c).
__ addu(T6, T6, T7); // No carry out; A2:T6:T0 = 2*x*xi + aj + c.
__ mov(T7, A2); // T7:T6:T0 = 2*x*xi + aj + c.
// *ajp++ = low32(t) = T0
__ sw(T0, Address(T5, 0));
__ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
// while (n-- > 0)
__ bgtz(V0, &loop);
__ delay_slot()->addiu(V0, V0, Immediate(-1)); // --n
__ Bind(&done);
// uint32_t aj = *ajp
__ lw(T0, Address(T5, 0));
// uint64_t t = aj + c
__ addu(T6, T6, T0);
__ sltu(T1, T6, T0);
__ addu(T7, T7, T1);
// *ajp = low32(t) = T6
// *(ajp + 1) = high32(t) = T7
__ sw(T6, Address(T5, 0));
__ sw(T7, Address(T5, Bigint::kBytesPerDigit));
__ Bind(&x_zero);
__ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
__ Ret();
}
void Intrinsifier::Bigint_estQuotientDigit(Assembler* assembler) {
// No unsigned 64-bit / 32-bit divide instruction.
}
void Intrinsifier::Montgomery_mulMod(Assembler* assembler) {
// Pseudo code:
// static int _mulMod(Uint32List args, Uint32List digits, int i) {
// uint32_t rho = args[_RHO]; // _RHO == 2.
// uint32_t d = digits[i >> 1]; // i is Smi.
// uint64_t t = rho*d;
// args[_MU] = t mod DIGIT_BASE; // _MU == 4.
// return 1;
// }
// T4 = args
__ lw(T4, Address(SP, 2 * kWordSize)); // args
// T3 = rho = args[2]
__ lw(T3, FieldAddress(
T4, TypedData::data_offset() + 2 * Bigint::kBytesPerDigit));
// T2 = d = digits[i >> 1]
__ lw(T0, Address(SP, 0 * kWordSize)); // T0 = i as Smi.
__ lw(T1, Address(SP, 1 * kWordSize)); // T1 = digits.
__ sll(T0, T0, 1);
__ addu(T1, T0, T1);
__ lw(T2, FieldAddress(T1, TypedData::data_offset()));
// HI:LO = t = rho*d
__ multu(T2, T3);
// args[4] = t mod DIGIT_BASE = low32(t)
__ mflo(T0);
__ sw(T0, FieldAddress(
T4, TypedData::data_offset() + 4 * Bigint::kBytesPerDigit));
__ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
__ Ret();
}
// Check if the last argument is a double, jump to label 'is_smi' if smi
// (easy to convert to double), otherwise jump to label 'not_double_smi',
// Returns the last argument in T0.
static void TestLastArgumentIsDouble(Assembler* assembler,
Label* is_smi,
Label* not_double_smi) {
__ lw(T0, Address(SP, 0 * kWordSize));
__ andi(CMPRES1, T0, Immediate(kSmiTagMask));
__ beq(CMPRES1, ZR, is_smi);
__ LoadClassId(CMPRES1, T0);
__ BranchNotEqual(CMPRES1, Immediate(kDoubleCid), not_double_smi);
// Fall through with Double in T0.
}
// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown
// type. Return true or false object in the register V0. Any NaN argument
// returns false. Any non-double arg1 causes control flow to fall through to the
// slow case (compiled method body).
static void CompareDoubles(Assembler* assembler, RelationOperator rel_op) {
Label is_smi, double_op, no_NaN, fall_through;
__ Comment("CompareDoubles Intrinsic");
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Both arguments are double, right operand is in T0.
__ LoadDFromOffset(D1, T0, Double::value_offset() - kHeapObjectTag);
__ Bind(&double_op);
__ lw(T0, Address(SP, 1 * kWordSize)); // Left argument.
__ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
// Now, left is in D0, right is in D1.
__ cund(D0, D1); // Check for NaN.
__ bc1f(&no_NaN);
__ LoadObject(V0, Bool::False()); // Return false if either is NaN.
__ Ret();
__ Bind(&no_NaN);
switch (rel_op) {
case EQ:
__ ceqd(D0, D1);
break;
case LT:
__ coltd(D0, D1);
break;
case LE:
__ coled(D0, D1);
break;
case GT:
__ coltd(D1, D0);
break;
case GE:
__ coled(D1, D0);
break;
default: {
// Only passing the above conditions to this function.
UNREACHABLE();
break;
}
}
Label is_true;
__ bc1t(&is_true);
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&is_true);
__ LoadObject(V0, Bool::True());
__ Ret();
__ Bind(&is_smi);
__ SmiUntag(T0);
__ mtc1(T0, STMP1);
__ b(&double_op);
__ delay_slot()->cvtdw(D1, STMP1);
__ Bind(&fall_through);
}
void Intrinsifier::Double_greaterThan(Assembler* assembler) {
CompareDoubles(assembler, GT);
}
void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) {
CompareDoubles(assembler, GE);
}
void Intrinsifier::Double_lessThan(Assembler* assembler) {
CompareDoubles(assembler, LT);
}
void Intrinsifier::Double_equal(Assembler* assembler) {
CompareDoubles(assembler, EQ);
}
void Intrinsifier::Double_lessEqualThan(Assembler* assembler) {
CompareDoubles(assembler, LE);
}
// Expects left argument to be double (receiver). Right argument is unknown.
// Both arguments are on stack.
static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) {
Label fall_through, is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Both arguments are double, right operand is in T0.
__ lwc1(F2, FieldAddress(T0, Double::value_offset()));
__ lwc1(F3, FieldAddress(T0, Double::value_offset() + kWordSize));
__ Bind(&double_op);
__ lw(T0, Address(SP, 1 * kWordSize)); // Left argument.
__ lwc1(F0, FieldAddress(T0, Double::value_offset()));
__ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
switch (kind) {
case Token::kADD:
__ addd(D0, D0, D1);
break;
case Token::kSUB:
__ subd(D0, D0, D1);
break;
case Token::kMUL:
__ muld(D0, D0, D1);
break;
case Token::kDIV:
__ divd(D0, D0, D1);
break;
default:
UNREACHABLE();
}
const Class& double_class =
Class::Handle(Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
__ swc1(F0, FieldAddress(V0, Double::value_offset()));
__ Ret();
__ delay_slot()->swc1(F1,
FieldAddress(V0, Double::value_offset() + kWordSize));
__ Bind(&is_smi);
__ SmiUntag(T0);
__ mtc1(T0, STMP1);
__ b(&double_op);
__ delay_slot()->cvtdw(D1, STMP1);
__ Bind(&fall_through);
}
void Intrinsifier::Double_add(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kADD);
}
void Intrinsifier::Double_mul(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kMUL);
}
void Intrinsifier::Double_sub(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kSUB);
}
void Intrinsifier::Double_div(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kDIV);
}
// Left is double right is integer (Bigint, Mint or Smi)
void Intrinsifier::Double_mulFromInteger(Assembler* assembler) {
Label fall_through;
// Only smis allowed.
__ lw(T0, Address(SP, 0 * kWordSize));
__ andi(CMPRES1, T0, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &fall_through);
// Is Smi.
__ SmiUntag(T0);
__ mtc1(T0, F4);
__ cvtdw(D1, F4);
__ lw(T0, Address(SP, 1 * kWordSize));
__ lwc1(F0, FieldAddress(T0, Double::value_offset()));
__ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
__ muld(D0, D0, D1);
const Class& double_class =
Class::Handle(Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
__ swc1(F0, FieldAddress(V0, Double::value_offset()));
__ Ret();
__ delay_slot()->swc1(F1,
FieldAddress(V0, Double::value_offset() + kWordSize));
__ Bind(&fall_through);
}
void Intrinsifier::DoubleFromInteger(Assembler* assembler) {
Label fall_through;
__ lw(T0, Address(SP, 0 * kWordSize));
__ andi(CMPRES1, T0, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &fall_through);
// Is Smi.
__ SmiUntag(T0);
__ mtc1(T0, F4);
__ cvtdw(D0, F4);
const Class& double_class =
Class::Handle(Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
__ swc1(F0, FieldAddress(V0, Double::value_offset()));
__ Ret();
__ delay_slot()->swc1(F1,
FieldAddress(V0, Double::value_offset() + kWordSize));
__ Bind(&fall_through);
}
void Intrinsifier::Double_getIsNaN(Assembler* assembler) {
Label is_true;
__ lw(T0, Address(SP, 0 * kWordSize));
__ lwc1(F0, FieldAddress(T0, Double::value_offset()));
__ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
__ cund(D0, D0); // Check for NaN.
__ bc1t(&is_true);
__ LoadObject(V0, Bool::False()); // Return false if either is NaN.
__ Ret();
__ Bind(&is_true);
__ LoadObject(V0, Bool::True());
__ Ret();
}
void Intrinsifier::Double_getIsInfinite(Assembler* assembler) {
Label not_inf;
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(T1, FieldAddress(T0, Double::value_offset()));
__ lw(T2, FieldAddress(T0, Double::value_offset() + kWordSize));
// If the low word isn't zero, then it isn't infinity.
__ bne(T1, ZR, &not_inf);
// Mask off the sign bit.
__ AndImmediate(T2, T2, 0x7FFFFFFF);
// Compare with +infinity.
__ BranchNotEqual(T2, Immediate(0x7FF00000), &not_inf);
__ LoadObject(V0, Bool::True());
__ Ret();
__ Bind(&not_inf);
__ LoadObject(V0, Bool::False());
__ Ret();
}
void Intrinsifier::Double_getIsNegative(Assembler* assembler) {
Label is_false, is_true, is_zero;
__ lw(T0, Address(SP, 0 * kWordSize));
__ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
__ cund(D0, D0);
__ bc1t(&is_false); // NaN -> false.
__ LoadImmediate(D1, 0.0);
__ ceqd(D0, D1);
__ bc1t(&is_zero); // Check for negative zero.
__ coled(D1, D0);
__ bc1t(&is_false); // >= 0 -> false.
__ Bind(&is_true);
__ LoadObject(V0, Bool::True());
__ Ret();
__ Bind(&is_false);
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&is_zero);
// Check for negative zero by looking at the sign bit.
__ mfc1(T0, F1); // Moves bits 32...63 of D0 to T0.
__ srl(T0, T0, 31); // Get the sign bit down to bit 0 of T0.
__ andi(CMPRES1, T0, Immediate(1)); // Check if the bit is set.
__ bne(T0, ZR, &is_true); // Sign bit set. True.
__ b(&is_false);
}
void Intrinsifier::DoubleToInteger(Assembler* assembler) {
__ lw(T0, Address(SP, 0 * kWordSize));
__ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
__ truncwd(F2, D0);
__ mfc1(V0, F2);
// Overflow is signaled with minint.
Label fall_through;
// Check for overflow and that it fits into Smi.
__ LoadImmediate(TMP, 0xC0000000);
__ subu(CMPRES1, V0, TMP);
__ bltz(CMPRES1, &fall_through);
__ Ret();
__ delay_slot()->SmiTag(V0);
__ Bind(&fall_through);
}
void Intrinsifier::MathSqrt(Assembler* assembler) {
Label fall_through, is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Argument is double and is in T0.
__ LoadDFromOffset(D1, T0, Double::value_offset() - kHeapObjectTag);
__ Bind(&double_op);
__ sqrtd(D0, D1);
const Class& double_class =
Class::Handle(Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
__ swc1(F0, FieldAddress(V0, Double::value_offset()));
__ Ret();
__ delay_slot()->swc1(F1,
FieldAddress(V0, Double::value_offset() + kWordSize));
__ Bind(&is_smi);
__ SmiUntag(T0);
__ mtc1(T0, F2);
__ b(&double_op);
__ delay_slot()->cvtdw(D1, F2);
__ Bind(&fall_through);
}
// var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64;
// _state[kSTATE_LO] = state & _MASK_32;
// _state[kSTATE_HI] = state >> 32;
void Intrinsifier::Random_nextState(Assembler* assembler) {
const Library& math_lib = Library::Handle(Library::MathLibrary());
ASSERT(!math_lib.IsNull());
const Class& random_class =
Class::Handle(math_lib.LookupClassAllowPrivate(Symbols::_Random()));
ASSERT(!random_class.IsNull());
const Field& state_field = Field::ZoneHandle(
random_class.LookupInstanceFieldAllowPrivate(Symbols::_state()));
ASSERT(!state_field.IsNull());
const Field& random_A_field = Field::ZoneHandle(
random_class.LookupStaticFieldAllowPrivate(Symbols::_A()));
ASSERT(!random_A_field.IsNull());
ASSERT(random_A_field.is_const());
Instance& a_value = Instance::Handle(random_A_field.StaticValue());
if (a_value.raw() == Object::sentinel().raw() ||
a_value.raw() == Object::transition_sentinel().raw()) {
random_A_field.EvaluateInitializer();
a_value = random_A_field.StaticValue();
}
const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value();
// 'a_int_value' is a mask.
ASSERT(Utils::IsUint(32, a_int_value));
int32_t a_int32_value = static_cast<int32_t>(a_int_value);
// Receiver.
__ lw(T0, Address(SP, 0 * kWordSize));
// Field '_state'.
__ lw(T1, FieldAddress(T0, state_field.Offset()));
// Addresses of _state[0] and _state[1].
const intptr_t scale = Instance::ElementSizeFor(kTypedDataUint32ArrayCid);
const intptr_t offset = Instance::DataOffsetFor(kTypedDataUint32ArrayCid);
const Address& addr_0 = FieldAddress(T1, 0 * scale + offset);
const Address& addr_1 = FieldAddress(T1, 1 * scale + offset);
__ LoadImmediate(T0, a_int32_value);
__ lw(T2, addr_0);
__ lw(T3, addr_1);
__ mtlo(T3);
__ mthi(ZR); // HI:LO <- ZR:T3 Zero extend T3 into HI.
// 64-bit multiply and accumulate into T6:T3.
__ maddu(T0, T2); // HI:LO <- HI:LO + T0 * T2.
__ mflo(T3);
__ mfhi(T6);
__ sw(T3, addr_0);
__ sw(T6, addr_1);
__ Ret();
}
void Intrinsifier::ObjectEquals(Assembler* assembler) {
Label is_true;
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(T1, Address(SP, 1 * kWordSize));
__ beq(T0, T1, &is_true);
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&is_true);
__ LoadObject(V0, Bool::True());
__ Ret();
}
enum RangeCheckCondition { kIfNotInRange, kIfInRange };
static void RangeCheck(Assembler* assembler,
Register val,
Register tmp,
intptr_t low,
intptr_t high,
RangeCheckCondition cc,
Label* target) {
__ AddImmediate(tmp, val, -low);
if (cc == kIfInRange) {
__ BranchUnsignedLessEqual(tmp, Immediate(high - low), target);
} else {
ASSERT(cc == kIfNotInRange);
__ BranchUnsignedGreater(tmp, Immediate(high - low), target);
}
}
static void JumpIfInteger(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kSmiCid, kBigintCid, kIfInRange, target);
}
static void JumpIfNotInteger(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kSmiCid, kBigintCid, kIfNotInRange, target);
}
static void JumpIfString(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
kIfInRange, target);
}
static void JumpIfNotString(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
kIfNotInRange, target);
}
// Return type quickly for simple types (not parameterized and not signature).
void Intrinsifier::ObjectRuntimeType(Assembler* assembler) {
Label fall_through, use_canonical_type, not_integer, not_double;
__ lw(T0, Address(SP, 0 * kWordSize));
__ LoadClassIdMayBeSmi(T1, T0);
// Closures are handled in the runtime.
__ BranchEqual(T1, Immediate(kClosureCid), &fall_through);
__ BranchUnsignedGreaterEqual(T1, Immediate(kNumPredefinedCids),
&use_canonical_type);
__ BranchNotEqual(T1, Immediate(kDoubleCid), &not_double);
// Object is a double.
__ LoadIsolate(T1);
__ LoadFromOffset(T1, T1, Isolate::object_store_offset());
__ LoadFromOffset(V0, T1, ObjectStore::double_type_offset());
__ Ret();
__ Bind(&not_double);
JumpIfNotInteger(assembler, T1, T2, &not_integer);
// Object is an integer.
__ LoadIsolate(T1);
__ LoadFromOffset(T1, T1, Isolate::object_store_offset());
__ LoadFromOffset(V0, T1, ObjectStore::int_type_offset());
__ Ret();
__ Bind(&not_integer);
JumpIfNotString(assembler, T1, T2, &use_canonical_type);
// Object is a string.
__ LoadIsolate(T1);
__ LoadFromOffset(T1, T1, Isolate::object_store_offset());
__ LoadFromOffset(V0, T1, ObjectStore::string_type_offset());
__ Ret();
__ Bind(&use_canonical_type);
__ LoadClassById(T2, T1);
__ lhu(T1, FieldAddress(T2, Class::num_type_arguments_offset()));
__ BranchNotEqual(T1, Immediate(0), &fall_through);
__ lw(V0, FieldAddress(T2, Class::canonical_type_offset()));
__ BranchEqual(V0, Object::null_object(), &fall_through);
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler) {
Label fall_through, different_cids, equal, not_equal, not_integer;
__ lw(T0, Address(SP, 0 * kWordSize));
__ LoadClassIdMayBeSmi(T1, T0);
// Closures are handled in the runtime.
__ BranchEqual(T1, Immediate(kClosureCid), &fall_through);
__ lw(T0, Address(SP, 1 * kWordSize));
__ LoadClassIdMayBeSmi(T2, T0);
// Check whether class ids match. If class ids don't match objects can still
// have the same runtime type (e.g. multiple string implementation classes
// map to a single String type).
__ BranchNotEqual(T1, T2, &different_cids);
// Objects have the same class and neither is a closure.
// Check if there are no type arguments. In this case we can return true.
// Otherwise fall through into the runtime to handle comparison.
__ LoadClassById(T2, T1);
__ lhu(T1, FieldAddress(T2, Class::num_type_arguments_offset()));
__ BranchNotEqual(T1, Immediate(0), &fall_through);
__ Bind(&equal);
__ LoadObject(V0, Bool::True());
__ Ret();
// Class ids are different. Check if we are comparing runtime types of
// two strings (with different representations) or two integers.
__ Bind(&different_cids);
__ BranchUnsignedGreaterEqual(T1, Immediate(kNumPredefinedCids), &not_equal);
// Check if both are integers.
JumpIfNotInteger(assembler, T1, T0, &not_integer);
JumpIfInteger(assembler, T2, T0, &equal);
__ b(&not_equal);
__ Bind(&not_integer);
// Check if both are strings.
JumpIfNotString(assembler, T1, T0, &not_equal);
JumpIfString(assembler, T2, T0, &equal);
// Neither strings nor integers and have different class ids.
__ Bind(&not_equal);
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::String_getHashCode(Assembler* assembler) {
Label fall_through;
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(V0, FieldAddress(T0, String::hash_offset()));
__ beq(V0, ZR, &fall_through);
__ Ret();
__ Bind(&fall_through); // Hash not yet computed.
}
void GenerateSubstringMatchesSpecialization(Assembler* assembler,
intptr_t receiver_cid,
intptr_t other_cid,
Label* return_true,
Label* return_false) {
__ SmiUntag(A1);
__ lw(T1, FieldAddress(A0, String::length_offset())); // this.length
__ SmiUntag(T1);
__ lw(T2, FieldAddress(A2, String::length_offset())); // other.length
__ SmiUntag(T2);
// if (other.length == 0) return true;
__ beq(T2, ZR, return_true);
// if (start < 0) return false;
__ bltz(A1, return_false);
// if (start + other.length > this.length) return false;
__ addu(T0, A1, T2);
__ BranchSignedGreater(T0, T1, return_false);
if (receiver_cid == kOneByteStringCid) {
__ AddImmediate(A0, A0, OneByteString::data_offset() - kHeapObjectTag);
__ addu(A0, A0, A1);
} else {
ASSERT(receiver_cid == kTwoByteStringCid);
__ AddImmediate(A0, A0, TwoByteString::data_offset() - kHeapObjectTag);
__ addu(A0, A0, A1);
__ addu(A0, A0, A1);
}
if (other_cid == kOneByteStringCid) {
__ AddImmediate(A2, A2, OneByteString::data_offset() - kHeapObjectTag);
} else {
ASSERT(other_cid == kTwoByteStringCid);
__ AddImmediate(A2, A2, TwoByteString::data_offset() - kHeapObjectTag);
}
// i = 0
__ LoadImmediate(T0, 0);
// do
Label loop;
__ Bind(&loop);
if (receiver_cid == kOneByteStringCid) {
__ lbu(T3, Address(A0, 0)); // this.codeUnitAt(i + start)
} else {
__ lhu(T3, Address(A0, 0)); // this.codeUnitAt(i + start)
}
if (other_cid == kOneByteStringCid) {
__ lbu(T4, Address(A2, 0)); // other.codeUnitAt(i)
} else {
__ lhu(T4, Address(A2, 0)); // other.codeUnitAt(i)
}
__ bne(T3, T4, return_false);
// i++, while (i < len)
__ AddImmediate(T0, T0, 1);
__ AddImmediate(A0, A0, receiver_cid == kOneByteStringCid ? 1 : 2);
__ AddImmediate(A2, A2, other_cid == kOneByteStringCid ? 1 : 2);
__ BranchSignedLess(T0, T2, &loop);
__ b(return_true);
}
// bool _substringMatches(int start, String other)
// This intrinsic handles a OneByteString or TwoByteString receiver with a
// OneByteString other.
void Intrinsifier::StringBaseSubstringMatches(Assembler* assembler) {
Label fall_through, return_true, return_false, try_two_byte;
__ lw(A0, Address(SP, 2 * kWordSize)); // this
__ lw(A1, Address(SP, 1 * kWordSize)); // start
__ lw(A2, Address(SP, 0 * kWordSize)); // other
__ andi(CMPRES1, A1, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &fall_through); // 'start' is not a Smi.
__ LoadClassId(CMPRES1, A2);
__ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid), &fall_through);
__ LoadClassId(CMPRES1, A0);
__ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid), &try_two_byte);
GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid,
kOneByteStringCid, &return_true,
&return_false);
__ Bind(&try_two_byte);
__ LoadClassId(CMPRES1, A0);
__ BranchNotEqual(CMPRES1, Immediate(kTwoByteStringCid), &fall_through);
GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid,
kOneByteStringCid, &return_true,
&return_false);
__ Bind(&return_true);
__ LoadObject(V0, Bool::True());
__ Ret();
__ Bind(&return_false);
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::StringBaseCharAt(Assembler* assembler) {
Label fall_through, try_two_byte_string;
__ lw(T1, Address(SP, 0 * kWordSize)); // Index.
__ lw(T0, Address(SP, 1 * kWordSize)); // String.
// Checks.
__ andi(CMPRES1, T1, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &fall_through); // Index is not a Smi.
__ lw(T2, FieldAddress(T0, String::length_offset())); // Range check.
// Runtime throws exception.
__ BranchUnsignedGreaterEqual(T1, T2, &fall_through);
__ LoadClassId(CMPRES1, T0); // Class ID check.
__ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid),
&try_two_byte_string);
// Grab byte and return.
__ SmiUntag(T1);
__ addu(T2, T0, T1);
__ lbu(T2, FieldAddress(T2, OneByteString::data_offset()));
__ BranchUnsignedGreaterEqual(
T2, Immediate(Symbols::kNumberOfOneCharCodeSymbols), &fall_through);
__ lw(V0, Address(THR, Thread::predefined_symbols_address_offset()));
__ AddImmediate(V0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ sll(T2, T2, 2);
__ addu(T2, T2, V0);
__ Ret();
__ delay_slot()->lw(V0, Address(T2));
__ Bind(&try_two_byte_string);
__ BranchNotEqual(CMPRES1, Immediate(kTwoByteStringCid), &fall_through);
ASSERT(kSmiTagShift == 1);
__ addu(T2, T0, T1);
__ lhu(T2, FieldAddress(T2, TwoByteString::data_offset()));
__ BranchUnsignedGreaterEqual(
T2, Immediate(Symbols::kNumberOfOneCharCodeSymbols), &fall_through);
__ lw(V0, Address(THR, Thread::predefined_symbols_address_offset()));
__ AddImmediate(V0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ sll(T2, T2, 2);
__ addu(T2, T2, V0);
__ Ret();
__ delay_slot()->lw(V0, Address(T2));
__ Bind(&fall_through);
}
void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) {
Label is_true;
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(T0, FieldAddress(T0, String::length_offset()));
__ beq(T0, ZR, &is_true);
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&is_true);
__ LoadObject(V0, Bool::True());
__ Ret();
}
void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) {
Label no_hash;
__ lw(T1, Address(SP, 0 * kWordSize));
__ lw(V0, FieldAddress(T1, String::hash_offset()));
__ beq(V0, ZR, &no_hash);
__ Ret(); // Return if already computed.
__ Bind(&no_hash);
__ lw(T2, FieldAddress(T1, String::length_offset()));
Label done;
// If the string is empty, set the hash to 1, and return.
__ BranchEqual(T2, Immediate(Smi::RawValue(0)), &done);
__ delay_slot()->mov(V0, ZR);
__ SmiUntag(T2);
__ AddImmediate(T3, T1, OneByteString::data_offset() - kHeapObjectTag);
__ addu(T4, T3, T2);
// V0: Hash code, untagged integer.
// T1: Instance of OneByteString.
// T2: String length, untagged integer.
// T3: String data start.
// T4: String data end.
Label loop;
// Add to hash code: (hash_ is uint32)
// hash_ += ch;
// hash_ += hash_ << 10;
// hash_ ^= hash_ >> 6;
// Get one characters (ch).
__ Bind(&loop);
__ lbu(T5, Address(T3));
// T5: ch.
__ addiu(T3, T3, Immediate(1));
__ addu(V0, V0, T5);
__ sll(T6, V0, 10);
__ addu(V0, V0, T6);
__ srl(T6, V0, 6);
__ bne(T3, T4, &loop);
__ delay_slot()->xor_(V0, V0, T6);
// Finalize.
// hash_ += hash_ << 3;
// hash_ ^= hash_ >> 11;
// hash_ += hash_ << 15;
__ sll(T6, V0, 3);
__ addu(V0, V0, T6);
__ srl(T6, V0, 11);
__ xor_(V0, V0, T6);
__ sll(T6, V0, 15);
__ addu(V0, V0, T6);
// hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1);
__ LoadImmediate(T6, (static_cast<intptr_t>(1) << String::kHashBits) - 1);
__ and_(V0, V0, T6);
__ Bind(&done);
__ LoadImmediate(T2, 1);
__ movz(V0, T2, V0); // If V0 is 0, set to 1.
__ SmiTag(V0);
__ Ret();
__ delay_slot()->sw(V0, FieldAddress(T1, String::hash_offset()));
}
// Allocates one-byte string of length 'end - start'. The content is not
// initialized.
// 'length-reg' (T2) contains tagged length.
// Returns new string as tagged pointer in V0.
static void TryAllocateOnebyteString(Assembler* assembler,
Label* ok,
Label* failure) {
const Register length_reg = T2;
NOT_IN_PRODUCT(__ MaybeTraceAllocation(kOneByteStringCid, V0, failure));
__ mov(T6, length_reg); // Save the length register.
// TODO(koda): Protect against negative length and overflow here.
__ SmiUntag(length_reg);
const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1;
__ AddImmediate(length_reg, fixed_size);
__ LoadImmediate(TMP, ~(kObjectAlignment - 1));
__ and_(length_reg, length_reg, TMP);
const intptr_t cid = kOneByteStringCid;
Heap::Space space = Heap::kNew;
__ lw(T3, Address(THR, Thread::heap_offset()));
__ lw(V0, Address(T3, Heap::TopOffset(space)));
// length_reg: allocation size.
__ addu(T1, V0, length_reg);
__ BranchUnsignedLess(T1, V0, failure); // Fail on unsigned overflow.
// Check if the allocation fits into the remaining space.
// V0: potential new object start.
// T1: potential next object start.
// T2: allocation size.
// T3: heap.
__ lw(T4, Address(T3, Heap::EndOffset(space)));
__ BranchUnsignedGreaterEqual(T1, T4, failure);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ sw(T1, Address(T3, Heap::TopOffset(space)));
__ AddImmediate(V0, kHeapObjectTag);
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T3, space));
// Initialize the tags.
// V0: new object start as a tagged pointer.
// T1: new object end address.
// T2: allocation size.
{
Label overflow, done;
const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
__ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag),
&overflow);
__ b(&done);
__ delay_slot()->sll(T2, T2, shift);
__ Bind(&overflow);
__ mov(T2, ZR);
__ Bind(&done);
// Get the class index and insert it into the tags.
// T2: size and bit tags.
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid));
__ or_(T2, T2, TMP);
__ sw(T2, FieldAddress(V0, String::tags_offset())); // Store tags.
}
// Set the length field using the saved length (T6).
__ StoreIntoObjectNoBarrier(V0, FieldAddress(V0, String::length_offset()),
T6);
// Clear hash.
__ b(ok);
__ delay_slot()->sw(ZR, FieldAddress(V0, String::hash_offset()));
}
// Arg0: OneByteString (receiver).
// Arg1: Start index as Smi.
// Arg2: End index as Smi.
// The indexes must be valid.
void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) {
const intptr_t kStringOffset = 2 * kWordSize;
const intptr_t kStartIndexOffset = 1 * kWordSize;
const intptr_t kEndIndexOffset = 0 * kWordSize;
Label fall_through, ok;
__ lw(T2, Address(SP, kEndIndexOffset));
__ lw(TMP, Address(SP, kStartIndexOffset));
__ or_(CMPRES1, T2, TMP);
__ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &fall_through); // 'start', 'end' not Smi.
__ subu(T2, T2, TMP);
TryAllocateOnebyteString(assembler, &ok, &fall_through);
__ Bind(&ok);
// V0: new string as tagged pointer.
// Copy string.
__ lw(T3, Address(SP, kStringOffset));
__ lw(T1, Address(SP, kStartIndexOffset));
__ SmiUntag(T1);
__ addu(T3, T3, T1);
__ AddImmediate(T3, OneByteString::data_offset() - 1);
// T3: Start address to copy from (untagged).
// T1: Untagged start index.
__ lw(T2, Address(SP, kEndIndexOffset));
__ SmiUntag(T2);
__ subu(T2, T2, T1);
// T3: Start address to copy from (untagged).
// T2: Untagged number of bytes to copy.
// V0: Tagged result string.
// T6: Pointer into T3.
// T7: Pointer into T0.
// T1: Scratch register.
Label loop, done;
__ beq(T2, ZR, &done);
__ mov(T6, T3);
__ mov(T7, V0);
__ Bind(&loop);
__ lbu(T1, Address(T6, 0));
__ AddImmediate(T6, 1);
__ addiu(T2, T2, Immediate(-1));
__ sb(T1, FieldAddress(T7, OneByteString::data_offset()));
__ bgtz(T2, &loop);
__ delay_slot()->addiu(T7, T7, Immediate(1));
__ Bind(&done);
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::OneByteStringSetAt(Assembler* assembler) {
__ lw(T2, Address(SP, 0 * kWordSize)); // Value.
__ lw(T1, Address(SP, 1 * kWordSize)); // Index.
__ lw(T0, Address(SP, 2 * kWordSize)); // OneByteString.
__ SmiUntag(T1);
__ SmiUntag(T2);
__ addu(T3, T0, T1);
__ Ret();
__ delay_slot()->sb(T2, FieldAddress(T3, OneByteString::data_offset()));
}
void Intrinsifier::OneByteString_allocate(Assembler* assembler) {
Label fall_through, ok;
__ lw(T2, Address(SP, 0 * kWordSize)); // Length.
TryAllocateOnebyteString(assembler, &ok, &fall_through);
__ Bind(&ok);
__ Ret();
__ Bind(&fall_through);
}
// TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
static void StringEquality(Assembler* assembler, intptr_t string_cid) {
Label fall_through, is_true, is_false, loop;
__ lw(T0, Address(SP, 1 * kWordSize)); // This.
__ lw(T1, Address(SP, 0 * kWordSize)); // Other.
// Are identical?
__ beq(T0, T1, &is_true);
// Is other OneByteString?
__ andi(CMPRES1, T1, Immediate(kSmiTagMask));
__ beq(CMPRES1, ZR, &fall_through); // Other is Smi.
__ LoadClassId(CMPRES1, T1); // Class ID check.
__ BranchNotEqual(CMPRES1, Immediate(string_cid), &fall_through);
// Have same length?
__ lw(T2, FieldAddress(T0, String::length_offset()));
__ lw(T3, FieldAddress(T1, String::length_offset()));
__ bne(T2, T3, &is_false);
// Check contents, no fall-through possible.
ASSERT((string_cid == kOneByteStringCid) ||
(string_cid == kTwoByteStringCid));
__ SmiUntag(T2);
__ Bind(&loop);
__ AddImmediate(T2, -1);
__ BranchSignedLess(T2, Immediate(0), &is_true);
if (string_cid == kOneByteStringCid) {
__ lbu(V0, FieldAddress(T0, OneByteString::data_offset()));
__ lbu(V1, FieldAddress(T1, OneByteString::data_offset()));
__ AddImmediate(T0, 1);
__ AddImmediate(T1, 1);
} else if (string_cid == kTwoByteStringCid) {
__ lhu(V0, FieldAddress(T0, OneByteString::data_offset()));
__ lhu(V1, FieldAddress(T1, OneByteString::data_offset()));
__ AddImmediate(T0, 2);
__ AddImmediate(T1, 2);
} else {
UNIMPLEMENTED();
}
__ bne(V0, V1, &is_false);
__ b(&loop);
__ Bind(&is_false);
__ LoadObject(V0, Bool::False());
__ Ret();
__ Bind(&is_true);
__ LoadObject(V0, Bool::True());
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::OneByteString_equality(Assembler* assembler) {
StringEquality(assembler, kOneByteStringCid);
}
void Intrinsifier::TwoByteString_equality(Assembler* assembler) {
StringEquality(assembler, kTwoByteStringCid);
}
void Intrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler,
bool sticky) {
if (FLAG_interpret_irregexp) return;
static const intptr_t kRegExpParamOffset = 2 * kWordSize;
static const intptr_t kStringParamOffset = 1 * kWordSize;
// start_index smi is located at 0.
// Incoming registers:
// T0: Function. (Will be reloaded with the specialized matcher function.)
// S4: Arguments descriptor. (Will be preserved.)
// S5: Unknown. (Must be GC safe on tail call.)
// Load the specialized function pointer into T0. Leverage the fact the
// string CIDs as well as stored function pointers are in sequence.
__ lw(T1, Address(SP, kRegExpParamOffset));
__ lw(T3, Address(SP, kStringParamOffset));
__ LoadClassId(T2, T3);
__ AddImmediate(T2, -kOneByteStringCid);
__ sll(T2, T2, kWordSizeLog2);
__ addu(T2, T2, T1);
__ lw(T0,
FieldAddress(T2, RegExp::function_offset(kOneByteStringCid, sticky)));
// Registers are now set up for the lazy compile stub. It expects the function
// in T0, the argument descriptor in S4, and IC-Data in S5.
__ mov(S5, ZR);
// Tail-call the function.
__ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
__ lw(T3, FieldAddress(T0, Function::entry_point_offset()));
__ jr(T3);
}
// On stack: user tag (+0).
void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) {
// T1: Isolate.
__ LoadIsolate(T1);
// V0: Current user tag.
__ lw(V0, Address(T1, Isolate::current_tag_offset()));
// T2: UserTag.
__ lw(T2, Address(SP, +0 * kWordSize));
// Set Isolate::current_tag_.
__ sw(T2, Address(T1, Isolate::current_tag_offset()));
// T2: UserTag's tag.
__ lw(T2, FieldAddress(T2, UserTag::tag_offset()));
// Set Isolate::user_tag_.
__ sw(T2, Address(T1, Isolate::user_tag_offset()));
__ Ret();
__ delay_slot()->sw(T2, Address(T1, Isolate::user_tag_offset()));
}
void Intrinsifier::UserTag_defaultTag(Assembler* assembler) {
__ LoadIsolate(V0);
__ Ret();
__ delay_slot()->lw(V0, Address(V0, Isolate::default_tag_offset()));
}
void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) {
__ LoadIsolate(V0);
__ Ret();
__ delay_slot()->lw(V0, Address(V0, Isolate::current_tag_offset()));
}
void Intrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler) {
if (!FLAG_support_timeline) {
__ LoadObject(V0, Bool::False());
__ Ret();
return;
}
// Load TimelineStream*.
__ lw(V0, Address(THR, Thread::dart_stream_offset()));
// Load uintptr_t from TimelineStream*.
__ lw(T0, Address(V0, TimelineStream::enabled_offset()));
__ LoadObject(V0, Bool::True());
__ LoadObject(V1, Bool::False());
__ Ret();
__ delay_slot()->movz(V0, V1, T0); // V0 = (T0 == 0) ? V1 : V0.
}
void Intrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler) {
__ LoadObject(V0, Object::null_object());
__ sw(V0, Address(THR, Thread::async_stack_trace_offset()));
__ Ret();
}
void Intrinsifier::SetAsyncThreadStackTrace(Assembler* assembler) {
__ lw(V0, Address(THR, Thread::async_stack_trace_offset()));
__ LoadObject(V0, Object::null_object());
__ Ret();
}
} // namespace dart
#endif // defined TARGET_ARCH_MIPS