| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_X64. |
| #if defined(TARGET_ARCH_X64) |
| |
| #include "vm/intermediate_language.h" |
| |
| #include "vm/compiler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/flow_graph_range_analysis.h" |
| #include "vm/instructions.h" |
| #include "vm/locations.h" |
| #include "vm/object_store.h" |
| #include "vm/parser.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| #include "vm/symbols.h" |
| |
| #define __ compiler->assembler()-> |
| #define Z (compiler->zone()) |
| |
| namespace dart { |
| |
| // Generic summary for call instructions that have all arguments pushed |
| // on the stack and return the result in a fixed register RAX. |
| LocationSummary* Instruction::MakeCallSummary(Zone* zone) { |
| LocationSummary* result = |
| new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall); |
| result->set_out(0, Location::RegisterLocation(RAX)); |
| return result; |
| } |
| |
| |
| LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::AnyOrConstant(value())); |
| return locs; |
| } |
| |
| |
| void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // In SSA mode, we need an explicit push. Nothing to do in non-SSA mode |
| // where PushArgument is handled by BindInstr::EmitNativeCode. |
| if (compiler->is_optimizing()) { |
| Location value = locs()->in(0); |
| if (value.IsRegister()) { |
| __ pushq(value.reg()); |
| } else if (value.IsConstant()) { |
| __ PushObject(value.constant()); |
| } else { |
| ASSERT(value.IsStackSlot()); |
| __ pushq(value.ToStackSlotAddress()); |
| } |
| } |
| } |
| |
| |
| LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| |
| // Attempt optimized compilation at return instruction instead of at the entry. |
| // The entry needs to be patchable, no inlined objects are allowed in the area |
| // that will be overwritten by the patch instruction: a jump). |
| void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register result = locs()->in(0).reg(); |
| ASSERT(result == RAX); |
| |
| if (compiler->intrinsic_mode()) { |
| // Intrinsics don't have a frame. |
| __ ret(); |
| return; |
| } |
| |
| #if defined(DEBUG) |
| __ Comment("Stack Check"); |
| Label done; |
| const intptr_t fp_sp_dist = |
| (kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize; |
| ASSERT(fp_sp_dist <= 0); |
| __ movq(RDI, RSP); |
| __ subq(RDI, RBP); |
| __ CompareImmediate(RDI, Immediate(fp_sp_dist)); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| __ int3(); |
| __ Bind(&done); |
| #endif |
| ASSERT(__ constant_pool_allowed()); |
| __ LeaveDartFrame(); // Disallows constant pool use. |
| __ ret(); |
| // This ReturnInstr may be emitted out of order by the optimizer. The next |
| // block may be a target expecting a properly set constant pool pointer. |
| __ set_constant_pool_allowed(true); |
| } |
| |
| |
| static Condition NegateCondition(Condition condition) { |
| switch (condition) { |
| case EQUAL: |
| return NOT_EQUAL; |
| case NOT_EQUAL: |
| return EQUAL; |
| case LESS: |
| return GREATER_EQUAL; |
| case LESS_EQUAL: |
| return GREATER; |
| case GREATER: |
| return LESS_EQUAL; |
| case GREATER_EQUAL: |
| return LESS; |
| case BELOW: |
| return ABOVE_EQUAL; |
| case BELOW_EQUAL: |
| return ABOVE; |
| case ABOVE: |
| return BELOW_EQUAL; |
| case ABOVE_EQUAL: |
| return BELOW; |
| case PARITY_EVEN: |
| return PARITY_ODD; |
| case PARITY_ODD: |
| return PARITY_EVEN; |
| default: |
| UNIMPLEMENTED(); |
| return EQUAL; |
| } |
| } |
| |
| |
| // Detect pattern when one value is zero and another is a power of 2. |
| static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) { |
| return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) || |
| (Utils::IsPowerOfTwo(v2) && (v1 == 0)); |
| } |
| |
| |
| LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| comparison()->InitializeLocationSummary(zone, opt); |
| // TODO(vegorov): support byte register constraints in the register allocator. |
| comparison()->locs()->set_out(0, Location::RegisterLocation(RDX)); |
| return comparison()->locs(); |
| } |
| |
| |
| void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(locs()->out(0).reg() == RDX); |
| |
| // Clear upper part of the out register. We are going to use setcc on it |
| // which is a byte move. |
| __ xorq(RDX, RDX); |
| |
| // Emit comparison code. This must not overwrite the result register. |
| BranchLabels labels = {NULL, NULL, NULL}; |
| Condition true_condition = comparison()->EmitComparisonCode(compiler, labels); |
| |
| const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_); |
| |
| intptr_t true_value = if_true_; |
| intptr_t false_value = if_false_; |
| |
| if (is_power_of_two_kind) { |
| if (true_value == 0) { |
| // We need to have zero in RDX on true_condition. |
| true_condition = NegateCondition(true_condition); |
| } |
| } else { |
| if (true_value == 0) { |
| // Swap values so that false_value is zero. |
| intptr_t temp = true_value; |
| true_value = false_value; |
| false_value = temp; |
| } else { |
| true_condition = NegateCondition(true_condition); |
| } |
| } |
| |
| __ setcc(true_condition, DL); |
| |
| if (is_power_of_two_kind) { |
| const intptr_t shift = |
| Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value)); |
| __ shlq(RDX, Immediate(shift + kSmiTagSize)); |
| } else { |
| __ decq(RDX); |
| __ AndImmediate( |
| RDX, Immediate(Smi::RawValue(true_value) - Smi::RawValue(false_value))); |
| if (false_value != 0) { |
| __ AddImmediate(RDX, Immediate(Smi::RawValue(false_value))); |
| } |
| } |
| } |
| |
| |
| LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t stack_index = (local().index() < 0) |
| ? kFirstLocalSlotFromFp - local().index() |
| : kParamEndSlotFromFp - local().index(); |
| return LocationSummary::Make(zone, kNumInputs, |
| Location::StackSlot(stack_index), |
| LocationSummary::kNoCall); |
| } |
| |
| |
| void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(!compiler->is_optimizing()); |
| // Nothing to do. |
| } |
| |
| |
| LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(), |
| LocationSummary::kNoCall); |
| } |
| |
| |
| void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register value = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| ASSERT(result == value); // Assert that register assignment is correct. |
| __ movq(Address(RBP, local().index() * kWordSize), value); |
| } |
| |
| |
| LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| return LocationSummary::Make(zone, kNumInputs, |
| Assembler::IsSafe(value()) |
| ? Location::Constant(this) |
| : Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| |
| void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The register allocator drops constant definitions that have no uses. |
| Location out = locs()->out(0); |
| ASSERT(out.IsRegister() || out.IsConstant() || out.IsInvalid()); |
| if (out.IsRegister()) { |
| Register result = out.reg(); |
| __ LoadObject(result, value()); |
| } |
| } |
| |
| |
| LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| switch (representation()) { |
| case kUnboxedDouble: |
| locs->set_out(0, Location::RequiresFpuRegister()); |
| break; |
| case kUnboxedInt32: |
| locs->set_out(0, Location::RequiresRegister()); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| return locs; |
| } |
| |
| |
| void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The register allocator drops constant definitions that have no uses. |
| if (!locs()->out(0).IsInvalid()) { |
| switch (representation()) { |
| case kUnboxedDouble: { |
| XmmRegister result = locs()->out(0).fpu_reg(); |
| if (Utils::DoublesBitEqual(Double::Cast(value()).value(), 0.0)) { |
| __ xorps(result, result); |
| } else { |
| __ LoadObject(TMP, value()); |
| __ movsd(result, FieldAddress(TMP, Double::value_offset())); |
| } |
| break; |
| } |
| case kUnboxedInt32: |
| __ movl(locs()->out(0).reg(), |
| Immediate(static_cast<int32_t>(Smi::Cast(value()).Value()))); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| |
| LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(RAX)); // Value. |
| summary->set_in(1, Location::RegisterLocation(RDX)); // Type arguments. |
| summary->set_out(0, Location::RegisterLocation(RAX)); |
| return summary; |
| } |
| |
| |
| LocationSummary* AssertBooleanInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| |
| static void EmitAssertBoolean(Register reg, |
| TokenPosition token_pos, |
| intptr_t deopt_id, |
| LocationSummary* locs, |
| FlowGraphCompiler* compiler) { |
| // Check that the type of the value is allowed in conditional context. |
| // Call the runtime if the object is not bool::true or bool::false. |
| ASSERT(locs->always_calls()); |
| Label done; |
| |
| if (Isolate::Current()->type_checks()) { |
| __ CompareObject(reg, Bool::True()); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| __ CompareObject(reg, Bool::False()); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| } else { |
| ASSERT(Isolate::Current()->asserts()); |
| __ CompareObject(reg, Object::null_instance()); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| } |
| |
| __ pushq(reg); // Push the source object. |
| compiler->GenerateRuntimeCall(token_pos, deopt_id, |
| kNonBoolTypeErrorRuntimeEntry, 1, locs); |
| // We should never return here. |
| __ int3(); |
| __ Bind(&done); |
| } |
| |
| |
| void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register obj = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| |
| EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler); |
| ASSERT(obj == result); |
| } |
| |
| |
| static Condition TokenKindToIntCondition(Token::Kind kind) { |
| switch (kind) { |
| case Token::kEQ: |
| return EQUAL; |
| case Token::kNE: |
| return NOT_EQUAL; |
| case Token::kLT: |
| return LESS; |
| case Token::kGT: |
| return GREATER; |
| case Token::kLTE: |
| return LESS_EQUAL; |
| case Token::kGTE: |
| return GREATER_EQUAL; |
| default: |
| UNREACHABLE(); |
| return OVERFLOW; |
| } |
| } |
| |
| |
| LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| if (operation_cid() == kMintCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| locs->set_in(1, Location::RequiresRegister()); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| if (operation_cid() == kDoubleCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresFpuRegister()); |
| locs->set_in(1, Location::RequiresFpuRegister()); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| if (operation_cid() == kSmiCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RegisterOrConstant(left())); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| // Only right can be a stack slot. |
| locs->set_in(1, locs->in(0).IsConstant() |
| ? Location::RequiresRegister() |
| : Location::RegisterOrConstant(right())); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| static void LoadValueCid(FlowGraphCompiler* compiler, |
| Register value_cid_reg, |
| Register value_reg, |
| Label* value_is_smi = NULL) { |
| Label done; |
| if (value_is_smi == NULL) { |
| __ LoadImmediate(value_cid_reg, Immediate(kSmiCid)); |
| } |
| __ testq(value_reg, Immediate(kSmiTagMask)); |
| if (value_is_smi == NULL) { |
| __ j(ZERO, &done, Assembler::kNearJump); |
| } else { |
| __ j(ZERO, value_is_smi); |
| } |
| __ LoadClassId(value_cid_reg, value_reg); |
| __ Bind(&done); |
| } |
| |
| |
| static Condition FlipCondition(Condition condition) { |
| switch (condition) { |
| case EQUAL: |
| return EQUAL; |
| case NOT_EQUAL: |
| return NOT_EQUAL; |
| case LESS: |
| return GREATER; |
| case LESS_EQUAL: |
| return GREATER_EQUAL; |
| case GREATER: |
| return LESS; |
| case GREATER_EQUAL: |
| return LESS_EQUAL; |
| case BELOW: |
| return ABOVE; |
| case BELOW_EQUAL: |
| return ABOVE_EQUAL; |
| case ABOVE: |
| return BELOW; |
| case ABOVE_EQUAL: |
| return BELOW_EQUAL; |
| default: |
| UNIMPLEMENTED(); |
| return EQUAL; |
| } |
| } |
| |
| |
| static void EmitBranchOnCondition(FlowGraphCompiler* compiler, |
| Condition true_condition, |
| BranchLabels labels) { |
| if (labels.fall_through == labels.false_label) { |
| // If the next block is the false successor, fall through to it. |
| __ j(true_condition, labels.true_label); |
| } else { |
| // If the next block is not the false successor, branch to it. |
| Condition false_condition = NegateCondition(true_condition); |
| __ j(false_condition, labels.false_label); |
| |
| // Fall through or jump to the true successor. |
| if (labels.fall_through != labels.true_label) { |
| __ jmp(labels.true_label); |
| } |
| } |
| } |
| |
| |
| static Condition EmitInt64ComparisonOp(FlowGraphCompiler* compiler, |
| const LocationSummary& locs, |
| Token::Kind kind) { |
| Location left = locs.in(0); |
| Location right = locs.in(1); |
| ASSERT(!left.IsConstant() || !right.IsConstant()); |
| |
| Condition true_condition = TokenKindToIntCondition(kind); |
| |
| if (left.IsConstant()) { |
| __ CompareObject(right.reg(), left.constant()); |
| true_condition = FlipCondition(true_condition); |
| } else if (right.IsConstant()) { |
| __ CompareObject(left.reg(), right.constant()); |
| } else if (right.IsStackSlot()) { |
| __ cmpq(left.reg(), right.ToStackSlotAddress()); |
| } else { |
| __ cmpq(left.reg(), right.reg()); |
| } |
| return true_condition; |
| } |
| |
| |
| static Condition TokenKindToDoubleCondition(Token::Kind kind) { |
| switch (kind) { |
| case Token::kEQ: |
| return EQUAL; |
| case Token::kNE: |
| return NOT_EQUAL; |
| case Token::kLT: |
| return BELOW; |
| case Token::kGT: |
| return ABOVE; |
| case Token::kLTE: |
| return BELOW_EQUAL; |
| case Token::kGTE: |
| return ABOVE_EQUAL; |
| default: |
| UNREACHABLE(); |
| return OVERFLOW; |
| } |
| } |
| |
| |
| static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler, |
| const LocationSummary& locs, |
| Token::Kind kind, |
| BranchLabels labels) { |
| XmmRegister left = locs.in(0).fpu_reg(); |
| XmmRegister right = locs.in(1).fpu_reg(); |
| |
| __ comisd(left, right); |
| |
| Condition true_condition = TokenKindToDoubleCondition(kind); |
| Label* nan_result = |
| (true_condition == NOT_EQUAL) ? labels.true_label : labels.false_label; |
| __ j(PARITY_EVEN, nan_result); |
| return true_condition; |
| } |
| |
| |
| Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| if ((operation_cid() == kSmiCid) || (operation_cid() == kMintCid)) { |
| return EmitInt64ComparisonOp(compiler, *locs(), kind()); |
| } else { |
| ASSERT(operation_cid() == kDoubleCid); |
| return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); |
| } |
| } |
| |
| |
| void EqualityCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT((kind() == Token::kEQ) || (kind() == Token::kNE)); |
| |
| Label is_true, is_false; |
| BranchLabels labels = {&is_true, &is_false, &is_false}; |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| |
| Register result = locs()->out(0).reg(); |
| Label done; |
| __ Bind(&is_false); |
| __ LoadObject(result, Bool::False()); |
| __ jmp(&done); |
| __ Bind(&is_true); |
| __ LoadObject(result, Bool::True()); |
| __ Bind(&done); |
| } |
| |
| |
| void EqualityCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler, |
| BranchInstr* branch) { |
| ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ)); |
| |
| BranchLabels labels = compiler->CreateBranchLabels(branch); |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| } |
| |
| |
| LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| locs->set_in(1, Location::RegisterOrConstant(right())); |
| return locs; |
| } |
| |
| |
| Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| Register left_reg = locs()->in(0).reg(); |
| Location right = locs()->in(1); |
| if (right.IsConstant()) { |
| ASSERT(right.constant().IsSmi()); |
| const int64_t imm = reinterpret_cast<int64_t>(right.constant().raw()); |
| __ TestImmediate(left_reg, Immediate(imm)); |
| } else { |
| __ testq(left_reg, right.reg()); |
| } |
| Condition true_condition = (kind() == Token::kNE) ? NOT_ZERO : ZERO; |
| return true_condition; |
| } |
| |
| |
| void TestSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // Never emitted outside of the BranchInstr. |
| UNREACHABLE(); |
| } |
| |
| |
| void TestSmiInstr::EmitBranchCode(FlowGraphCompiler* compiler, |
| BranchInstr* branch) { |
| BranchLabels labels = compiler->CreateBranchLabels(branch); |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| } |
| |
| |
| LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| locs->set_temp(0, Location::RequiresRegister()); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| |
| Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT)); |
| Register val_reg = locs()->in(0).reg(); |
| Register cid_reg = locs()->temp(0).reg(); |
| |
| Label* deopt = |
| CanDeoptimize() |
| ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptTestCids, |
| licm_hoisted_ ? ICData::kHoisted : 0) |
| : NULL; |
| |
| const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0; |
| const ZoneGrowableArray<intptr_t>& data = cid_results(); |
| ASSERT(data[0] == kSmiCid); |
| bool result = data[1] == true_result; |
| __ testq(val_reg, Immediate(kSmiTagMask)); |
| __ j(ZERO, result ? labels.true_label : labels.false_label); |
| __ LoadClassId(cid_reg, val_reg); |
| for (intptr_t i = 2; i < data.length(); i += 2) { |
| const intptr_t test_cid = data[i]; |
| ASSERT(test_cid != kSmiCid); |
| result = data[i + 1] == true_result; |
| __ cmpq(cid_reg, Immediate(test_cid)); |
| __ j(EQUAL, result ? labels.true_label : labels.false_label); |
| } |
| // No match found, deoptimize or false. |
| if (deopt == NULL) { |
| Label* target = result ? labels.false_label : labels.true_label; |
| if (target != labels.fall_through) { |
| __ jmp(target); |
| } |
| } else { |
| __ jmp(deopt); |
| } |
| // Dummy result as the last instruction is a jump, any conditional |
| // branch using the result will therefore be skipped. |
| return ZERO; |
| } |
| |
| |
| void TestCidsInstr::EmitBranchCode(FlowGraphCompiler* compiler, |
| BranchInstr* branch) { |
| BranchLabels labels = compiler->CreateBranchLabels(branch); |
| EmitComparisonCode(compiler, labels); |
| } |
| |
| |
| void TestCidsInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register result_reg = locs()->out(0).reg(); |
| Label is_true, is_false, done; |
| BranchLabels labels = {&is_true, &is_false, &is_false}; |
| EmitComparisonCode(compiler, labels); |
| __ Bind(&is_false); |
| __ LoadObject(result_reg, Bool::False()); |
| __ jmp(&done, Assembler::kNearJump); |
| __ Bind(&is_true); |
| __ LoadObject(result_reg, Bool::True()); |
| __ Bind(&done); |
| } |
| |
| |
| LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| if (operation_cid() == kDoubleCid) { |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresFpuRegister()); |
| summary->set_in(1, Location::RequiresFpuRegister()); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } else if (operation_cid() == kMintCid) { |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| summary->set_in(1, Location::RequiresRegister()); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| ASSERT(operation_cid() == kSmiCid); |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RegisterOrConstant(left())); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| summary->set_in(1, summary->in(0).IsConstant() |
| ? Location::RequiresRegister() |
| : Location::RegisterOrConstant(right())); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| |
| |
| Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| if ((operation_cid() == kSmiCid) || (operation_cid() == kMintCid)) { |
| return EmitInt64ComparisonOp(compiler, *locs(), kind()); |
| } else { |
| ASSERT(operation_cid() == kDoubleCid); |
| return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); |
| } |
| } |
| |
| |
| void RelationalOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Label is_true, is_false; |
| BranchLabels labels = {&is_true, &is_false, &is_false}; |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| |
| Register result = locs()->out(0).reg(); |
| Label done; |
| __ Bind(&is_false); |
| __ LoadObject(result, Bool::False()); |
| __ jmp(&done); |
| __ Bind(&is_true); |
| __ LoadObject(result, Bool::True()); |
| __ Bind(&done); |
| } |
| |
| |
| void RelationalOpInstr::EmitBranchCode(FlowGraphCompiler* compiler, |
| BranchInstr* branch) { |
| BranchLabels labels = compiler->CreateBranchLabels(branch); |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| } |
| |
| |
| LocationSummary* NativeCallInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| return MakeCallSummary(zone); |
| } |
| |
| |
| void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| SetupNative(); |
| Register result = locs()->out(0).reg(); |
| const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function()); |
| |
| // Push the result place holder initialized to NULL. |
| __ PushObject(Object::null_object()); |
| // Pass a pointer to the first argument in RAX. |
| if (!function().HasOptionalParameters()) { |
| __ leaq(RAX, |
| Address(RBP, (kParamEndSlotFromFp + function().NumParameters()) * |
| kWordSize)); |
| } else { |
| __ leaq(RAX, Address(RBP, kFirstLocalSlotFromFp * kWordSize)); |
| } |
| __ LoadImmediate(R10, Immediate(argc_tag)); |
| const StubEntry* stub_entry; |
| if (link_lazily()) { |
| stub_entry = StubCode::CallBootstrapCFunction_entry(); |
| ExternalLabel label(NativeEntry::LinkNativeCallEntry()); |
| __ LoadNativeEntry(RBX, &label, kPatchable); |
| compiler->GeneratePatchableCall(token_pos(), *stub_entry, |
| RawPcDescriptors::kOther, locs()); |
| } else { |
| stub_entry = (is_bootstrap_native()) |
| ? StubCode::CallBootstrapCFunction_entry() |
| : StubCode::CallNativeCFunction_entry(); |
| const ExternalLabel label(reinterpret_cast<uword>(native_c_function())); |
| __ LoadNativeEntry(RBX, &label, kNotPatchable); |
| compiler->GenerateCall(token_pos(), *stub_entry, RawPcDescriptors::kOther, |
| locs()); |
| } |
| __ popq(result); |
| } |
| |
| |
| static bool CanBeImmediateIndex(Value* index, intptr_t cid) { |
| if (!index->definition()->IsConstant()) return false; |
| const Object& constant = index->definition()->AsConstant()->value(); |
| if (!constant.IsSmi()) return false; |
| const Smi& smi_const = Smi::Cast(constant); |
| const intptr_t scale = Instance::ElementSizeFor(cid); |
| const intptr_t data_offset = Instance::DataOffsetFor(cid); |
| const int64_t disp = smi_const.AsInt64Value() * scale + data_offset; |
| return Utils::IsInt(32, disp); |
| } |
| |
| |
| LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary( |
| Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| // TODO(fschneider): Allow immediate operands for the char code. |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| |
| void OneByteStringFromCharCodeInstr::EmitNativeCode( |
| FlowGraphCompiler* compiler) { |
| ASSERT(compiler->is_optimizing()); |
| Register char_code = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| |
| __ movq(result, Address(THR, Thread::predefined_symbols_address_offset())); |
| __ movq(result, Address(result, char_code, |
| TIMES_HALF_WORD_SIZE, // Char code is a smi. |
| Symbols::kNullCharCodeSymbolOffset * kWordSize)); |
| } |
| |
| |
| LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| |
| void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(cid_ == kOneByteStringCid); |
| Register str = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| Label is_one, done; |
| __ movq(result, FieldAddress(str, String::length_offset())); |
| __ cmpq(result, Immediate(Smi::RawValue(1))); |
| __ j(EQUAL, &is_one, Assembler::kNearJump); |
| __ movq(result, Immediate(Smi::RawValue(-1))); |
| __ jmp(&done); |
| __ Bind(&is_one); |
| __ movzxb(result, FieldAddress(str, OneByteString::data_offset())); |
| __ SmiTag(result); |
| __ Bind(&done); |
| } |
| |
| |
| LocationSummary* StringInterpolateInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(RAX)); |
| summary->set_out(0, Location::RegisterLocation(RAX)); |
| return summary; |
| } |
| |
| |
| void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register array = locs()->in(0).reg(); |
| __ pushq(array); |
| const int kNumberOfArguments = 1; |
| const Array& kNoArgumentNames = Object::null_array(); |
| compiler->GenerateStaticCall(deopt_id(), token_pos(), CallFunction(), |
| kNumberOfArguments, kNoArgumentNames, locs(), |
| ICData::Handle()); |
| ASSERT(locs()->out(0).reg() == RAX); |
| } |
| |
| |
| LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| |
| void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register obj = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| if (object()->definition()->representation() == kUntagged) { |
| __ movq(result, Address(obj, offset())); |
| } else { |
| ASSERT(object()->definition()->representation() == kTagged); |
| __ movq(result, FieldAddress(obj, offset())); |
| } |
| } |
| |
| |
| LocationSummary* LoadClassIdInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| |
| void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| const Register object = locs()->in(0).reg(); |
| const Register result = locs()->out(0).reg(); |
| const AbstractType& value_type = *this->object()->Type()->ToAbstractType(); |
| if (CompileType::Smi().IsAssignableTo(value_type) || |
| value_type.IsTypeParameter()) { |
| // We don't use Assembler::LoadTaggedClassIdMayBeSmi() here---which uses |
| // a conditional move instead---because it is slower, probably due to |
| // branch prediction usually working just fine in this case. |
| Label load, done; |
| __ testq(object, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &load, Assembler::kNearJump); |
| __ LoadImmediate(result, Immediate(Smi::RawValue(kSmiCid))); |
| __ jmp(&done); |
| __ Bind(&load); |
| __ LoadClassId(result, object); |
| __ SmiTag(result); |
| __ Bind(&done); |
| } else { |
| __ LoadClassId(result, object); |
| __ SmiTag(result); |
| } |
| } |
| |
| |
| CompileType LoadIndexedInstr::ComputeType() const { |
| switch (class_id_) { |
| case kArrayCid: |
| case kImmutableArrayCid: |
| return CompileType::Dynamic(); |
| |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return CompileType::FromCid(kDoubleCid); |
| case kTypedDataFloat32x4ArrayCid: |
| return CompileType::FromCid(kFloat32x4Cid); |
| case kTypedDataInt32x4ArrayCid: |
| return CompileType::FromCid(kInt32x4Cid); |
| case kTypedDataFloat64x2ArrayCid: |
| return CompileType::FromCid(kFloat64x2Cid); |
| |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| case kOneByteStringCid: |
| case kTwoByteStringCid: |
| case kExternalOneByteStringCid: |
| case kExternalTwoByteStringCid: |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: |
| return CompileType::FromCid(kSmiCid); |
| |
| case kTypedDataInt64ArrayCid: |
| return CompileType::Int(); |
| |
| default: |
| UNIMPLEMENTED(); |
| return CompileType::Dynamic(); |
| } |
| } |
| |
| |
| Representation LoadIndexedInstr::representation() const { |
| switch (class_id_) { |
| case kArrayCid: |
| case kImmutableArrayCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| case kOneByteStringCid: |
| case kTwoByteStringCid: |
| case kExternalOneByteStringCid: |
| case kExternalTwoByteStringCid: |
| return kTagged; |
| case kTypedDataInt32ArrayCid: |
| return kUnboxedInt32; |
| case kTypedDataUint32ArrayCid: |
| return kUnboxedUint32; |
| case kTypedDataInt64ArrayCid: |
| return kUnboxedMint; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return kUnboxedDouble; |
| case kTypedDataInt32x4ArrayCid: |
| return kUnboxedInt32x4; |
| case kTypedDataFloat32x4ArrayCid: |
| return kUnboxedFloat32x4; |
| case kTypedDataFloat64x2ArrayCid: |
| return kUnboxedFloat64x2; |
| default: |
| UNIMPLEMENTED(); |
| return kTagged; |
| } |
| } |
| |
| |
| LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| // The smi index is either untagged (element size == 1), or it is left smi |
| // tagged (for all element sizes > 1). |
| if (index_scale() == 1) { |
| locs->set_in(1, |
| CanBeImmediateIndex(index(), class_id()) |
| ? Location::Constant(index()->definition()->AsConstant()) |
| : Location::WritableRegister()); |
| } else { |
| locs->set_in(1, |
| CanBeImmediateIndex(index(), class_id()) |
| ? Location::Constant(index()->definition()->AsConstant()) |
| : Location::RequiresRegister()); |
| } |
| if ((representation() == kUnboxedDouble) || |
| (representation() == kUnboxedFloat32x4) || |
| (representation() == kUnboxedInt32x4) || |
| (representation() == kUnboxedFloat64x2)) { |
| locs->set_out(0, Location::RequiresFpuRegister()); |
| } else { |
| locs->set_out(0, Location::RequiresRegister()); |
| } |
| return locs; |
| } |
| |
| |
| void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The array register points to the backing store for external arrays. |
| const Register array = locs()->in(0).reg(); |
| const Location index = locs()->in(1); |
| |
| Address element_address = |
| index.IsRegister() |
| ? Assembler::ElementAddressForRegIndex( |
| IsExternal(), class_id(), index_scale(), array, index.reg()) |
| : Assembler::ElementAddressForIntIndex( |
| IsExternal(), class_id(), index_scale(), array, |
| Smi::Cast(index.constant()).Value()); |
| |
| if ((representation() == kUnboxedDouble) || |
| (representation() == kUnboxedFloat32x4) || |
| (representation() == kUnboxedInt32x4) || |
| (representation() == kUnboxedFloat64x2)) { |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| |
| XmmRegister result = locs()->out(0).fpu_reg(); |
| if (class_id() == kTypedDataFloat32ArrayCid) { |
| // Load single precision float. |
| __ movss(result, element_address); |
| } else if (class_id() == kTypedDataFloat64ArrayCid) { |
| __ movsd(result, element_address); |
| } else { |
| ASSERT((class_id() == kTypedDataInt32x4ArrayCid) || |
| (class_id() == kTypedDataFloat32x4ArrayCid) || |
| (class_id() == kTypedDataFloat64x2ArrayCid)); |
| __ movups(result, element_address); |
| } |
| return; |
| } |
| |
| if ((representation() == kUnboxedUint32) || |
| (representation() == kUnboxedInt32)) { |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| Register result = locs()->out(0).reg(); |
| switch (class_id()) { |
| case kTypedDataInt32ArrayCid: |
| ASSERT(representation() == kUnboxedInt32); |
| __ movsxd(result, element_address); |
| break; |
| case kTypedDataUint32ArrayCid: |
| ASSERT(representation() == kUnboxedUint32); |
| __ movl(result, element_address); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| if (representation() == kUnboxedMint) { |
| ASSERT(class_id() == kTypedDataInt64ArrayCid); |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| Register result = locs()->out(0).reg(); |
| __ movq(result, element_address); |
| return; |
| } |
| |
| ASSERT(representation() == kTagged); |
| |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| Register result = locs()->out(0).reg(); |
| switch (class_id()) { |
| case kTypedDataInt8ArrayCid: |
| __ movsxb(result, element_address); |
| __ SmiTag(result); |
| break; |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kOneByteStringCid: |
| case kExternalOneByteStringCid: |
| __ movzxb(result, element_address); |
| __ SmiTag(result); |
| break; |
| case kTypedDataInt16ArrayCid: |
| __ movsxw(result, element_address); |
| __ SmiTag(result); |
| break; |
| case kTypedDataUint16ArrayCid: |
| case kTwoByteStringCid: |
| case kExternalTwoByteStringCid: |
| __ movzxw(result, element_address); |
| __ SmiTag(result); |
| break; |
| default: |
| ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid)); |
| __ movq(result, element_address); |
| break; |
| } |
| } |
| |
| |
| LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| // The smi index is either untagged (element size == 1), or it is left smi |
| // tagged (for all element sizes > 1). |
| summary->set_in(1, index_scale() == 1 ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| |
| |
| void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The string register points to the backing store for external strings. |
| const Register str = locs()->in(0).reg(); |
| const Location index = locs()->in(1); |
| |
| Address element_address = Assembler::ElementAddressForRegIndex( |
| IsExternal(), class_id(), index_scale(), str, index.reg()); |
| |
| if ((index_scale() == 1)) { |
| __ SmiUntag(index.reg()); |
| } |
| Register result = locs()->out(0).reg(); |
| switch (class_id()) { |
| case kOneByteStringCid: |
| case kExternalOneByteStringCid: |
| switch (element_count()) { |
| case 1: |
| __ movzxb(result, element_address); |
| break; |
| case 2: |
| __ movzxw(result, element_address); |
| break; |
| case 4: |
| __ movl(result, element_address); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ SmiTag(result); |
| break; |
| case kTwoByteStringCid: |
| case kExternalTwoByteStringCid: |
| switch (element_count()) { |
| case 1: |
| __ movzxw(result, element_address); |
| break; |
| case 2: |
| __ movl(result, element_address); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ SmiTag(result); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| Representation StoreIndexedInstr::RequiredInputRepresentation( |
| intptr_t idx) const { |
| if (idx == 0) return kNoRepresentation; |
| if (idx == 1) return kTagged; |
| ASSERT(idx == 2); |
| switch (class_id_) { |
| case kArrayCid: |
| case kOneByteStringCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| return kTagged; |
| case kTypedDataInt32ArrayCid: |
| return kUnboxedInt32; |
| case kTypedDataUint32ArrayCid: |
| return kUnboxedUint32; |
| case kTypedDataInt64ArrayCid: |
| return kUnboxedMint; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return kUnboxedDouble; |
| case kTypedDataFloat32x4ArrayCid: |
| return kUnboxedFloat32x4; |
| case kTypedDataInt32x4ArrayCid: |
| return kUnboxedInt32x4; |
| case kTypedDataFloat64x2ArrayCid: |
| return kUnboxedFloat64x2; |
| default: |
| UNIMPLEMENTED(); |
| return kTagged; |
| } |
| } |
| |
| |
| LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 3; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| // The smi index is either untagged (element size == 1), or it is left smi |
| // tagged (for all element sizes > 1). |
| if (index_scale() == 1) { |
| locs->set_in(1, |
| CanBeImmediateIndex(index(), class_id()) |
| ? Location::Constant(index()->definition()->AsConstant()) |
| : Location::WritableRegister()); |
| } else { |
| locs->set_in(1, |
| CanBeImmediateIndex(index(), class_id()) |
| ? Location::Constant(index()->definition()->AsConstant()) |
| : Location::RequiresRegister()); |
| } |
| switch (class_id()) { |
| case kArrayCid: |
| locs->set_in(2, ShouldEmitStoreBarrier() |
| ? Location::WritableRegister() |
| : Location::RegisterOrConstant(value())); |
| break; |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kOneByteStringCid: |
| // TODO(fschneider): Add location constraint for byte registers (RAX, |
| // RBX, RCX, RDX) instead of using a fixed register. |
| locs->set_in(2, Location::FixedRegisterOrSmiConstant(value(), RAX)); |
| break; |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| // Writable register because the value must be untagged before storing. |
| locs->set_in(2, Location::WritableRegister()); |
| break; |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: |
| case kTypedDataInt64ArrayCid: |
| locs->set_in(2, Location::RequiresRegister()); |
| break; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| // TODO(srdjan): Support Float64 constants. |
| locs->set_in(2, Location::RequiresFpuRegister()); |
| break; |
| case kTypedDataInt32x4ArrayCid: |
| case kTypedDataFloat64x2ArrayCid: |
| case kTypedDataFloat32x4ArrayCid: |
| locs->set_in(2, Location::RequiresFpuRegister()); |
| break; |
| default: |
| UNREACHABLE(); |
| return NULL; |
| } |
| return locs; |
| } |
| |
| |
| void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The array register points to the backing store for external arrays. |
| const Register array = locs()->in(0).reg(); |
| const Location index = locs()->in(1); |
| |
| Address element_address = |
| index.IsRegister() |
| ? Assembler::ElementAddressForRegIndex( |
| IsExternal(), class_id(), index_scale(), array, index.reg()) |
| : Assembler::ElementAddressForIntIndex( |
| IsExternal(), class_id(), index_scale(), array, |
| Smi::Cast(index.constant()).Value()); |
| |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| switch (class_id()) { |
| case kArrayCid: |
| if (ShouldEmitStoreBarrier()) { |
| Register value = locs()->in(2).reg(); |
| __ StoreIntoObject(array, element_address, value); |
| } else if (locs()->in(2).IsConstant()) { |
| const Object& constant = locs()->in(2).constant(); |
| __ StoreIntoObjectNoBarrier(array, element_address, constant); |
| } else { |
| Register value = locs()->in(2).reg(); |
| __ StoreIntoObjectNoBarrier(array, element_address, value); |
| } |
| break; |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kOneByteStringCid: |
| if (locs()->in(2).IsConstant()) { |
| const Smi& constant = Smi::Cast(locs()->in(2).constant()); |
| __ movb(element_address, |
| Immediate(static_cast<int8_t>(constant.Value()))); |
| } else { |
| ASSERT(locs()->in(2).reg() == RAX); |
| __ SmiUntag(RAX); |
| __ movb(element_address, RAX); |
| } |
| break; |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: { |
| if (locs()->in(2).IsConstant()) { |
| const Smi& constant = Smi::Cast(locs()->in(2).constant()); |
| intptr_t value = constant.Value(); |
| // Clamp to 0x0 or 0xFF respectively. |
| if (value > 0xFF) { |
| value = 0xFF; |
| } else if (value < 0) { |
| value = 0; |
| } |
| __ movb(element_address, Immediate(static_cast<int8_t>(value))); |
| } else { |
| ASSERT(locs()->in(2).reg() == RAX); |
| Label store_value, store_0xff; |
| __ SmiUntag(RAX); |
| __ CompareImmediate(RAX, Immediate(0xFF)); |
| __ j(BELOW_EQUAL, &store_value, Assembler::kNearJump); |
| // Clamp to 0x0 or 0xFF respectively. |
| __ j(GREATER, &store_0xff); |
| __ xorq(RAX, RAX); |
| __ jmp(&store_value, Assembler::kNearJump); |
| __ Bind(&store_0xff); |
| __ LoadImmediate(RAX, Immediate(0xFF)); |
| __ Bind(&store_value); |
| __ movb(element_address, RAX); |
| } |
| break; |
| } |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: { |
| Register value = locs()->in(2).reg(); |
| __ SmiUntag(value); |
| __ movw(element_address, value); |
| break; |
| } |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: { |
| Register value = locs()->in(2).reg(); |
| __ movl(element_address, value); |
| break; |
| } |
| case kTypedDataInt64ArrayCid: { |
| Register value = locs()->in(2).reg(); |
| __ movq(element_address, value); |
| break; |
| } |
| case kTypedDataFloat32ArrayCid: |
| __ movss(element_address, locs()->in(2).fpu_reg()); |
| break; |
| case kTypedDataFloat64ArrayCid: |
| __ movsd(element_address, locs()->in(2).fpu_reg()); |
| break; |
| case kTypedDataInt32x4ArrayCid: |
| case kTypedDataFloat64x2ArrayCid: |
| case kTypedDataFloat32x4ArrayCid: |
| __ movups(element_address, locs()->in(2).fpu_reg()); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| |
| const intptr_t value_cid = value()->Type()->ToCid(); |
| const intptr_t field_cid = field().guarded_cid(); |
| |
| const bool emit_full_guard = !opt || (field_cid == kIllegalCid); |
| const bool needs_value_cid_temp_reg = |
| (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); |
| const bool needs_field_temp_reg = emit_full_guard; |
| |
| intptr_t num_temps = 0; |
| if (needs_value_cid_temp_reg) { |
| num_temps++; |
| } |
| if (needs_field_temp_reg) { |
| num_temps++; |
| } |
| |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| |
| for (intptr_t i = 0; i < num_temps; i++) { |
| summary->set_temp(i, Location::RequiresRegister()); |
| } |
| |
| |
| return summary; |
| } |
| |
| |
| void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt32Size); |
| const intptr_t value_cid = value()->Type()->ToCid(); |
| const intptr_t field_cid = field().guarded_cid(); |
| const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid; |
| |
| if (field_cid == kDynamicCid) { |
| if (Compiler::IsBackgroundCompilation()) { |
| // Field state changed while compiling. |
| Compiler::AbortBackgroundCompilation( |
| deopt_id(), |
| "GuardFieldClassInstr: field state changed while compiling"); |
| } |
| ASSERT(!compiler->is_optimizing()); |
| return; // Nothing to emit. |
| } |
| |
| const bool emit_full_guard = |
| !compiler->is_optimizing() || (field_cid == kIllegalCid); |
| |
| const bool needs_value_cid_temp_reg = |
| (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); |
| |
| const bool needs_field_temp_reg = emit_full_guard; |
| |
| const Register value_reg = locs()->in(0).reg(); |
| |
| const Register value_cid_reg = |
| needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister; |
| |
| const Register field_reg = needs_field_temp_reg |
| ? locs()->temp(locs()->temp_count() - 1).reg() |
| : kNoRegister; |
| |
| Label ok, fail_label; |
| |
| Label* deopt = |
| compiler->is_optimizing() |
| ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) |
| : NULL; |
| |
| Label* fail = (deopt != NULL) ? deopt : &fail_label; |
| |
| if (emit_full_guard) { |
| __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); |
| |
| FieldAddress field_cid_operand(field_reg, Field::guarded_cid_offset()); |
| FieldAddress field_nullability_operand(field_reg, |
| Field::is_nullable_offset()); |
| |
| if (value_cid == kDynamicCid) { |
| LoadValueCid(compiler, value_cid_reg, value_reg); |
| |
| __ cmpl(value_cid_reg, field_cid_operand); |
| __ j(EQUAL, &ok); |
| __ cmpl(value_cid_reg, field_nullability_operand); |
| } else if (value_cid == kNullCid) { |
| __ cmpl(field_nullability_operand, Immediate(value_cid)); |
| } else { |
| __ cmpl(field_cid_operand, Immediate(value_cid)); |
| } |
| __ j(EQUAL, &ok); |
| |
| // Check if the tracked state of the guarded field can be initialized |
| // inline. If the field needs length check we fall through to runtime |
| // which is responsible for computing offset of the length field |
| // based on the class id. |
| if (!field().needs_length_check()) { |
| // Uninitialized field can be handled inline. Check if the |
| // field is still unitialized. |
| __ cmpl(field_cid_operand, Immediate(kIllegalCid)); |
| __ j(NOT_EQUAL, fail); |
| |
| if (value_cid == kDynamicCid) { |
| __ movl(field_cid_operand, value_cid_reg); |
| __ movl(field_nullability_operand, value_cid_reg); |
| } else { |
| ASSERT(field_reg != kNoRegister); |
| __ movl(field_cid_operand, Immediate(value_cid)); |
| __ movl(field_nullability_operand, Immediate(value_cid)); |
| } |
| |
| if (deopt == NULL) { |
| ASSERT(!compiler->is_optimizing()); |
| __ jmp(&ok); |
| } |
| } |
| |
| if (deopt == NULL) { |
| ASSERT(!compiler->is_optimizing()); |
| __ Bind(fail); |
| |
| __ cmpl(FieldAddress(field_reg, Field::guarded_cid_offset()), |
| Immediate(kDynamicCid)); |
| __ j(EQUAL, &ok); |
| |
| __ pushq(field_reg); |
| __ pushq(value_reg); |
| __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| __ Drop(2); // Drop the field and the value. |
| } |
| } else { |
| ASSERT(compiler->is_optimizing()); |
| ASSERT(deopt != NULL); |
| |
| // Field guard class has been initialized and is known. |
| if (value_cid == kDynamicCid) { |
| // Value's class id is not known. |
| __ testq(value_reg, Immediate(kSmiTagMask)); |
| |
| if (field_cid != kSmiCid) { |
| __ j(ZERO, fail); |
| __ LoadClassId(value_cid_reg, value_reg); |
| __ CompareImmediate(value_cid_reg, Immediate(field_cid)); |
| } |
| |
| if (field().is_nullable() && (field_cid != kNullCid)) { |
| __ j(EQUAL, &ok); |
| __ CompareObject(value_reg, Object::null_object()); |
| } |
| |
| __ j(NOT_EQUAL, fail); |
| } else { |
| // Both value's and field's class id is known. |
| ASSERT((value_cid != field_cid) && (value_cid != nullability)); |
| __ jmp(fail); |
| } |
| } |
| __ Bind(&ok); |
| } |
| |
| |
| LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) { |
| const intptr_t kNumTemps = 3; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| // We need temporaries for field object, length offset and expected length. |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| summary->set_temp(2, Location::RequiresRegister()); |
| return summary; |
| } else { |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| return summary; |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| if (field().guarded_list_length() == Field::kNoFixedLength) { |
| if (Compiler::IsBackgroundCompilation()) { |
| // Field state changed while compiling. |
| Compiler::AbortBackgroundCompilation( |
| deopt_id(), |
| "GuardFieldLengthInstr: field state changed while compiling"); |
| } |
| ASSERT(!compiler->is_optimizing()); |
| return; // Nothing to emit. |
| } |
| |
| Label* deopt = |
| compiler->is_optimizing() |
| ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) |
| : NULL; |
| |
| const Register value_reg = locs()->in(0).reg(); |
| |
| if (!compiler->is_optimizing() || |
| (field().guarded_list_length() == Field::kUnknownFixedLength)) { |
| const Register field_reg = locs()->temp(0).reg(); |
| const Register offset_reg = locs()->temp(1).reg(); |
| const Register length_reg = locs()->temp(2).reg(); |
| |
| Label ok; |
| |
| __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); |
| |
| __ movsxb( |
| offset_reg, |
| FieldAddress(field_reg, |
| Field::guarded_list_length_in_object_offset_offset())); |
| __ movq(length_reg, |
| FieldAddress(field_reg, Field::guarded_list_length_offset())); |
| |
| __ cmpq(offset_reg, Immediate(0)); |
| __ j(NEGATIVE, &ok); |
| |
| // Load the length from the value. GuardFieldClass already verified that |
| // value's class matches guarded class id of the field. |
| // offset_reg contains offset already corrected by -kHeapObjectTag that is |
| // why we use Address instead of FieldAddress. |
| __ cmpq(length_reg, Address(value_reg, offset_reg, TIMES_1, 0)); |
| |
| if (deopt == NULL) { |
| __ j(EQUAL, &ok); |
| |
| __ pushq(field_reg); |
| __ pushq(value_reg); |
| __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| __ Drop(2); // Drop the field and the value. |
| } else { |
| __ j(NOT_EQUAL, deopt); |
| } |
| |
| __ Bind(&ok); |
| } else { |
| ASSERT(compiler->is_optimizing()); |
| ASSERT(field().guarded_list_length() >= 0); |
| ASSERT(field().guarded_list_length_in_object_offset() != |
| Field::kUnknownLengthOffset); |
| |
| __ CompareImmediate( |
| FieldAddress(value_reg, field().guarded_list_length_in_object_offset()), |
| Immediate(Smi::RawValue(field().guarded_list_length()))); |
| __ j(NOT_EQUAL, deopt); |
| } |
| } |
| |
| |
| class BoxAllocationSlowPath : public SlowPathCode { |
| public: |
| BoxAllocationSlowPath(Instruction* instruction, |
| const Class& cls, |
| Register result) |
| : instruction_(instruction), cls_(cls), result_(result) {} |
| |
| virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| if (Assembler::EmittingComments()) { |
| __ Comment("%s slow path allocation of %s", instruction_->DebugName(), |
| String::Handle(cls_.ScrubbedName()).ToCString()); |
| } |
| __ Bind(entry_label()); |
| const Code& stub = Code::ZoneHandle( |
| compiler->zone(), StubCode::GetAllocationStubForClass(cls_)); |
| const StubEntry stub_entry(stub); |
| |
| LocationSummary* locs = instruction_->locs(); |
| |
| locs->live_registers()->Remove(Location::RegisterLocation(result_)); |
| |
| compiler->SaveLiveRegisters(locs); |
| compiler->GenerateCall(TokenPosition::kNoSource, // No token position. |
| stub_entry, RawPcDescriptors::kOther, locs); |
| compiler->AddStubCallTarget(stub); |
| __ MoveRegister(result_, RAX); |
| compiler->RestoreLiveRegisters(locs); |
| __ jmp(exit_label()); |
| } |
| |
| static void Allocate(FlowGraphCompiler* compiler, |
| Instruction* instruction, |
| const Class& cls, |
| Register result, |
| Register temp) { |
| if (compiler->intrinsic_mode()) { |
| __ TryAllocate(cls, compiler->intrinsic_slow_path_label(), |
| Assembler::kFarJump, result, temp); |
| } else { |
| BoxAllocationSlowPath* slow_path = |
| new BoxAllocationSlowPath(instruction, cls, result); |
| compiler->AddSlowPathCode(slow_path); |
| |
| __ TryAllocate(cls, slow_path->entry_label(), Assembler::kFarJump, result, |
| temp); |
| __ Bind(slow_path->exit_label()); |
| } |
| } |
| |
| private: |
| Instruction* instruction_; |
| const Class& cls_; |
| const Register result_; |
| }; |
| |
| |
| LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = |
| (IsUnboxedStore() && opt) ? 2 : ((IsPotentialUnboxedStore()) ? 3 : 0); |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, |
| ((IsUnboxedStore() && opt && is_initialization()) || |
| IsPotentialUnboxedStore()) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| |
| summary->set_in(0, Location::RequiresRegister()); |
| if (IsUnboxedStore() && opt) { |
| summary->set_in(1, Location::RequiresFpuRegister()); |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| } else if (IsPotentialUnboxedStore()) { |
| summary->set_in(1, ShouldEmitStoreBarrier() ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| summary->set_temp(2, opt ? Location::RequiresFpuRegister() |
| : Location::FpuRegisterLocation(XMM1)); |
| } else { |
| summary->set_in(1, ShouldEmitStoreBarrier() |
| ? Location::WritableRegister() |
| : Location::RegisterOrConstant(value())); |
| } |
| return summary; |
| } |
| |
| |
| static void EnsureMutableBox(FlowGraphCompiler* compiler, |
| StoreInstanceFieldInstr* instruction, |
| Register box_reg, |
| const Class& cls, |
| Register instance_reg, |
| intptr_t offset, |
| Register temp) { |
| Label done; |
| __ movq(box_reg, FieldAddress(instance_reg, offset)); |
| __ CompareObject(box_reg, Object::null_object()); |
| __ j(NOT_EQUAL, &done); |
| BoxAllocationSlowPath::Allocate(compiler, instruction, cls, box_reg, temp); |
| __ movq(temp, box_reg); |
| __ StoreIntoObject(instance_reg, FieldAddress(instance_reg, offset), temp); |
| |
| __ Bind(&done); |
| } |
| |
| |
| void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt32Size); |
| Label skip_store; |
| |
| Register instance_reg = locs()->in(0).reg(); |
| |
| if (IsUnboxedStore() && compiler->is_optimizing()) { |
| XmmRegister value = locs()->in(1).fpu_reg(); |
| Register temp = locs()->temp(0).reg(); |
| Register temp2 = locs()->temp(1).reg(); |
| const intptr_t cid = field().UnboxedFieldCid(); |
| |
| if (is_initialization()) { |
| const Class* cls = NULL; |
| switch (cid) { |
| case kDoubleCid: |
| cls = &compiler->double_class(); |
| break; |
| case kFloat32x4Cid: |
| cls = &compiler->float32x4_class(); |
| break; |
| case kFloat64x2Cid: |
| cls = &compiler->float64x2_class(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2); |
| __ movq(temp2, temp); |
| __ StoreIntoObject(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes_), temp2); |
| } else { |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes_)); |
| } |
| switch (cid) { |
| case kDoubleCid: |
| __ Comment("UnboxedDoubleStoreInstanceFieldInstr"); |
| __ movsd(FieldAddress(temp, Double::value_offset()), value); |
| break; |
| case kFloat32x4Cid: |
| __ Comment("UnboxedFloat32x4StoreInstanceFieldInstr"); |
| __ movups(FieldAddress(temp, Float32x4::value_offset()), value); |
| break; |
| case kFloat64x2Cid: |
| __ Comment("UnboxedFloat64x2StoreInstanceFieldInstr"); |
| __ movups(FieldAddress(temp, Float64x2::value_offset()), value); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| if (IsPotentialUnboxedStore()) { |
| Register value_reg = locs()->in(1).reg(); |
| Register temp = locs()->temp(0).reg(); |
| Register temp2 = locs()->temp(1).reg(); |
| FpuRegister fpu_temp = locs()->temp(2).fpu_reg(); |
| |
| if (ShouldEmitStoreBarrier()) { |
| // Value input is a writable register and should be manually preserved |
| // across allocation slow-path. |
| locs()->live_registers()->Add(locs()->in(1), kTagged); |
| } |
| |
| Label store_pointer; |
| Label store_double; |
| Label store_float32x4; |
| Label store_float64x2; |
| |
| __ LoadObject(temp, Field::ZoneHandle(Z, field().Original())); |
| |
| __ cmpl(FieldAddress(temp, Field::is_nullable_offset()), |
| Immediate(kNullCid)); |
| __ j(EQUAL, &store_pointer); |
| |
| __ movzxb(temp2, FieldAddress(temp, Field::kind_bits_offset())); |
| __ testq(temp2, Immediate(1 << Field::kUnboxingCandidateBit)); |
| __ j(ZERO, &store_pointer); |
| |
| __ cmpl(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kDoubleCid)); |
| __ j(EQUAL, &store_double); |
| |
| __ cmpl(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kFloat32x4Cid)); |
| __ j(EQUAL, &store_float32x4); |
| |
| __ cmpl(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kFloat64x2Cid)); |
| __ j(EQUAL, &store_float64x2); |
| |
| // Fall through. |
| __ jmp(&store_pointer); |
| |
| if (!compiler->is_optimizing()) { |
| locs()->live_registers()->Add(locs()->in(0)); |
| locs()->live_registers()->Add(locs()->in(1)); |
| } |
| |
| { |
| __ Bind(&store_double); |
| EnsureMutableBox(compiler, this, temp, compiler->double_class(), |
| instance_reg, offset_in_bytes_, temp2); |
| __ movsd(fpu_temp, FieldAddress(value_reg, Double::value_offset())); |
| __ movsd(FieldAddress(temp, Double::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| { |
| __ Bind(&store_float32x4); |
| EnsureMutableBox(compiler, this, temp, compiler->float32x4_class(), |
| instance_reg, offset_in_bytes_, temp2); |
| __ movups(fpu_temp, FieldAddress(value_reg, Float32x4::value_offset())); |
| __ movups(FieldAddress(temp, Float32x4::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| { |
| __ Bind(&store_float64x2); |
| EnsureMutableBox(compiler, this, temp, compiler->float64x2_class(), |
| instance_reg, offset_in_bytes_, temp2); |
| __ movups(fpu_temp, FieldAddress(value_reg, Float64x2::value_offset())); |
| __ movups(FieldAddress(temp, Float64x2::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| __ Bind(&store_pointer); |
| } |
| |
| if (ShouldEmitStoreBarrier()) { |
| Register value_reg = locs()->in(1).reg(); |
| __ StoreIntoObject(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes_), value_reg, |
| CanValueBeSmi()); |
| } else { |
| if (locs()->in(1).IsConstant()) { |
| __ StoreIntoObjectNoBarrier(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes_), |
| locs()->in(1).constant()); |
| } else { |
| Register value_reg = locs()->in(1).reg(); |
| __ StoreIntoObjectNoBarrier(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes_), |
| value_reg); |
| } |
| } |
| __ Bind(&skip_store); |
| } |
| |
| |
| LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| |
| |
| // When the parser is building an implicit static getter for optimization, |
| // it can generate a function body where deoptimization ids do not line up |
| // with the unoptimized code. |
| // |
| // This is safe only so long as LoadStaticFieldInstr cannot deoptimize. |
| void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register field = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| __ movq(result, FieldAddress(field, Field::static_value_offset())); |
| } |
| |
| |
| LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| LocationSummary* locs = |
| new (zone) LocationSummary(zone, 1, 1, LocationSummary::kNoCall); |
| locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| locs->set_temp(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| |
| void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register value = locs()->in(0).reg(); |
| Register temp = locs()->temp(0).reg(); |
| |
| __ LoadObject(temp, Field::ZoneHandle(Z, field().Original())); |
| if (this->value()->NeedsStoreBuffer()) { |
| __ StoreIntoObject(temp, FieldAddress(temp, Field::static_value_offset()), |
| value, CanValueBeSmi()); |
| } else { |
| __ StoreIntoObjectNoBarrier( |
| temp, FieldAddress(temp, Field::static_value_offset()), value); |
| } |
| } |
| |
| |
| LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(RAX)); |
| summary->set_in(1, Location::RegisterLocation(RDX)); |
| summary->set_out(0, Location::RegisterLocation(RAX)); |
| return summary; |
| } |
| |
| |
| void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(locs()->in(0).reg() == RAX); // Value. |
| ASSERT(locs()->in(1).reg() == RDX); // Instantiator type arguments. |
| |
| compiler->GenerateInstanceOf(token_pos(), deopt_id(), type(), locs()); |
| ASSERT(locs()->out(0).reg() == RAX); |
| } |
| |
| |
| // TODO(srdjan): In case of constant inputs make CreateArray kNoCall and |
| // use slow path stub. |
| LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RBX)); |
| locs->set_in(1, Location::RegisterLocation(R10)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| |
| // Inlines array allocation for known constant values. |
| static void InlineArrayAllocation(FlowGraphCompiler* compiler, |
| intptr_t num_elements, |
| Label* slow_path, |
| Label* done) { |
| const int kInlineArraySize = 12; // Same as kInlineInstanceSize. |
| const Register kLengthReg = R10; |
| const Register kElemTypeReg = RBX; |
| const intptr_t instance_size = Array::InstanceSize(num_elements); |
| |
| __ TryAllocateArray(kArrayCid, instance_size, slow_path, Assembler::kFarJump, |
| RAX, // instance |
| RCX, // end address |
| R13); // temp |
| |
| // RAX: new object start as a tagged pointer. |
| // Store the type argument field. |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, Array::type_arguments_offset()), kElemTypeReg); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, Array::length_offset()), |
| kLengthReg); |
| |
| // Initialize all array elements to raw_null. |
| // RAX: new object start as a tagged pointer. |
| // RCX: new object end address. |
| // RDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| if (num_elements > 0) { |
| const intptr_t array_size = instance_size - sizeof(RawArray); |
| __ LoadObject(R12, Object::null_object()); |
| __ leaq(RDI, FieldAddress(RAX, sizeof(RawArray))); |
| if (array_size < (kInlineArraySize * kWordSize)) { |
| intptr_t current_offset = 0; |
| while (current_offset < array_size) { |
| __ StoreIntoObjectNoBarrier(RAX, Address(RDI, current_offset), R12); |
| current_offset += kWordSize; |
| } |
| } else { |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ StoreIntoObjectNoBarrier(RAX, Address(RDI, 0), R12); |
| __ addq(RDI, Immediate(kWordSize)); |
| __ cmpq(RDI, RCX); |
| __ j(BELOW, &init_loop, Assembler::kNearJump); |
| } |
| } |
| __ jmp(done, Assembler::kNearJump); |
| } |
| |
| |
| void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // Allocate the array. R10 = length, RBX = element type. |
| const Register kLengthReg = R10; |
| const Register kElemTypeReg = RBX; |
| const Register kResultReg = RAX; |
| ASSERT(locs()->in(0).reg() == kElemTypeReg); |
| ASSERT(locs()->in(1).reg() == kLengthReg); |
| |
| Label slow_path, done; |
| if (compiler->is_optimizing() && !FLAG_precompiled_mode && |
| num_elements()->BindsToConstant() && |
| num_elements()->BoundConstant().IsSmi()) { |
| const intptr_t length = Smi::Cast(num_elements()->BoundConstant()).Value(); |
| if ((length >= 0) && (length <= Array::kMaxElements)) { |
| Label slow_path, done; |
| InlineArrayAllocation(compiler, length, &slow_path, &done); |
| __ Bind(&slow_path); |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ pushq(kLengthReg); |
| __ pushq(kElemTypeReg); |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kAllocateArrayRuntimeEntry, 2, locs()); |
| __ Drop(2); |
| __ popq(kResultReg); |
| __ Bind(&done); |
| return; |
| } |
| } |
| |
| __ Bind(&slow_path); |
| const Code& stub = Code::ZoneHandle(compiler->zone(), |
| StubCode::AllocateArray_entry()->code()); |
| compiler->AddStubCallTarget(stub); |
| compiler->GenerateCallWithDeopt(token_pos(), deopt_id(), |
| *StubCode::AllocateArray_entry(), |
| RawPcDescriptors::kOther, locs()); |
| __ Bind(&done); |
| ASSERT(locs()->out(0).reg() == kResultReg); |
| } |
| |
| |
| LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = |
| (IsUnboxedLoad() && opt) ? 1 : ((IsPotentialUnboxedLoad()) ? 2 : 0); |
| LocationSummary* locs = new (zone) LocationSummary( |
| zone, kNumInputs, kNumTemps, (opt && !IsPotentialUnboxedLoad()) |
| ? LocationSummary::kNoCall |
| : LocationSummary::kCallOnSlowPath); |
| |
| locs->set_in(0, Location::RequiresRegister()); |
| |
| if (IsUnboxedLoad() && opt) { |
| locs->set_temp(0, Location::RequiresRegister()); |
| } else if (IsPotentialUnboxedLoad()) { |
| locs->set_temp(0, opt ? Location::RequiresFpuRegister() |
| : Location::FpuRegisterLocation(XMM1)); |
| locs->set_temp(1, Location::RequiresRegister()); |
| } |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| |
| void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt32Size); |
| Register instance_reg = locs()->in(0).reg(); |
| if (IsUnboxedLoad() && compiler->is_optimizing()) { |
| XmmRegister result = locs()->out(0).fpu_reg(); |
| Register temp = locs()->temp(0).reg(); |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes())); |
| intptr_t cid = field()->UnboxedFieldCid(); |
| switch (cid) { |
| case kDoubleCid: |
| __ Comment("UnboxedDoubleLoadFieldInstr"); |
| __ movsd(result, FieldAddress(temp, Double::value_offset())); |
| break; |
| case kFloat32x4Cid: |
| __ Comment("UnboxedFloat32x4LoadFieldInstr"); |
| __ movups(result, FieldAddress(temp, Float32x4::value_offset())); |
| break; |
| case kFloat64x2Cid: |
| __ Comment("UnboxedFloat64x2LoadFieldInstr"); |
| __ movups(result, FieldAddress(temp, Float64x2::value_offset())); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| Label done; |
| Register result = locs()->out(0).reg(); |
| if (IsPotentialUnboxedLoad()) { |
| Register temp = locs()->temp(1).reg(); |
| XmmRegister value = locs()->temp(0).fpu_reg(); |
| |
| Label load_pointer; |
| Label load_double; |
| Label load_float32x4; |
| Label load_float64x2; |
| |
| __ LoadObject(result, Field::ZoneHandle(field()->Original())); |
| |
| __ cmpl(FieldAddress(result, Field::is_nullable_offset()), |
| Immediate(kNullCid)); |
| __ j(EQUAL, &load_pointer); |
| |
| __ cmpl(FieldAddress(result, Field::guarded_cid_offset()), |
| Immediate(kDoubleCid)); |
| __ j(EQUAL, &load_double); |
| |
| __ cmpl(FieldAddress(result, Field::guarded_cid_offset()), |
| Immediate(kFloat32x4Cid)); |
| __ j(EQUAL, &load_float32x4); |
| |
| __ cmpl(FieldAddress(result, Field::guarded_cid_offset()), |
| Immediate(kFloat64x2Cid)); |
| __ j(EQUAL, &load_float64x2); |
| |
| // Fall through. |
| __ jmp(&load_pointer); |
| |
| if (!compiler->is_optimizing()) { |
| locs()->live_registers()->Add(locs()->in(0)); |
| } |
| |
| { |
| __ Bind(&load_double); |
| BoxAllocationSlowPath::Allocate(compiler, this, compiler->double_class(), |
| result, temp); |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes())); |
| __ movsd(value, FieldAddress(temp, Double::value_offset())); |
| __ movsd(FieldAddress(result, Double::value_offset()), value); |
| __ jmp(&done); |
| } |
| |
| { |
| __ Bind(&load_float32x4); |
| BoxAllocationSlowPath::Allocate( |
| compiler, this, compiler->float32x4_class(), result, temp); |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes())); |
| __ movups(value, FieldAddress(temp, Float32x4::value_offset())); |
| __ movups(FieldAddress(result, Float32x4::value_offset()), value); |
| __ jmp(&done); |
| } |
| |
| { |
| __ Bind(&load_float64x2); |
| BoxAllocationSlowPath::Allocate( |
| compiler, this, compiler->float64x2_class(), result, temp); |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes())); |
| __ movups(value, FieldAddress(temp, Float64x2::value_offset())); |
| __ movups(FieldAddress(result, Float64x2::value_offset()), value); |
| __ jmp(&done); |
| } |
| |
| __ Bind(&load_pointer); |
| } |
| __ movq(result, FieldAddress(instance_reg, offset_in_bytes())); |
| __ Bind(&done); |
| } |
| |
| |
| LocationSummary* InstantiateTypeInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| |
| void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register instantiator_reg = locs()->in(0).reg(); |
| Register result_reg = locs()->out(0).reg(); |
| |
| // 'instantiator_reg' is the instantiator TypeArguments object (or null). |
| // A runtime call to instantiate the type is required. |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ PushObject(type()); |
| __ pushq(instantiator_reg); // Push instantiator type arguments. |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kInstantiateTypeRuntimeEntry, 2, locs()); |
| __ Drop(2); // Drop instantiator and uninstantiated type. |
| __ popq(result_reg); // Pop instantiated type. |
| ASSERT(instantiator_reg == result_reg); |
| } |
| |
| |
| LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary( |
| Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| |
| void InstantiateTypeArgumentsInstr::EmitNativeCode( |
| FlowGraphCompiler* compiler) { |
| Register instantiator_reg = locs()->in(0).reg(); |
| Register result_reg = locs()->out(0).reg(); |
| ASSERT(instantiator_reg == RAX); |
| ASSERT(instantiator_reg == result_reg); |
| |
| // 'instantiator_reg' is the instantiator TypeArguments object (or null). |
| ASSERT(!type_arguments().IsUninstantiatedIdentity() && |
| !type_arguments().CanShareInstantiatorTypeArguments( |
| instantiator_class())); |
| // If the instantiator is null and if the type argument vector |
| // instantiated from null becomes a vector of dynamic, then use null as |
| // the type arguments. |
| Label type_arguments_instantiated; |
| const intptr_t len = type_arguments().Length(); |
| if (type_arguments().IsRawInstantiatedRaw(len)) { |
| __ CompareObject(instantiator_reg, Object::null_object()); |
| __ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump); |
| } |
| |
| // Lookup cache before calling runtime. |
| // TODO(fschneider): Consider moving this into a shared stub to reduce |
| // generated code size. |
| __ LoadObject(RDI, type_arguments()); |
| __ movq(RDI, FieldAddress(RDI, TypeArguments::instantiations_offset())); |
| __ leaq(RDI, FieldAddress(RDI, Array::data_offset())); |
| // The instantiations cache is initialized with Object::zero_array() and is |
| // therefore guaranteed to contain kNoInstantiator. No length check needed. |
| Label loop, found, slow_case; |
| __ Bind(&loop); |
| __ movq(RDX, Address(RDI, 0 * kWordSize)); // Cached instantiator. |
| __ cmpq(RDX, RAX); |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| __ addq(RDI, Immediate(2 * kWordSize)); |
| __ cmpq(RDX, Immediate(Smi::RawValue(StubCode::kNoInstantiator))); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| __ jmp(&slow_case, Assembler::kNearJump); |
| __ Bind(&found); |
| __ movq(RAX, Address(RDI, 1 * kWordSize)); // Cached instantiated args. |
| __ jmp(&type_arguments_instantiated, Assembler::kNearJump); |
| |
| __ Bind(&slow_case); |
| // Instantiate non-null type arguments. |
| // A runtime call to instantiate the type arguments is required. |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ PushObject(type_arguments()); |
| __ pushq(instantiator_reg); // Push instantiator type arguments. |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kInstantiateTypeArgumentsRuntimeEntry, 2, |
| locs()); |
| __ Drop(2); // Drop instantiator and uninstantiated type arguments. |
| __ popq(result_reg); // Pop instantiated type arguments. |
| __ Bind(&type_arguments_instantiated); |
| ASSERT(instantiator_reg == result_reg); |
| } |
| |
| |
| LocationSummary* AllocateUninitializedContextInstr::MakeLocationSummary( |
| Zone* zone, |
| bool opt) const { |
| ASSERT(opt); |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = 2; |
| LocationSummary* locs = new (zone) LocationSummary( |
| zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| locs->set_temp(0, Location::RegisterLocation(R10)); |
| locs->set_temp(1, Location::RegisterLocation(R13)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| |
| class AllocateContextSlowPath : public SlowPathCode { |
| public: |
| explicit AllocateContextSlowPath( |
| AllocateUninitializedContextInstr* instruction) |
| : instruction_(instruction) {} |
| |
| virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| __ Comment("AllocateContextSlowPath"); |
| __ Bind(entry_label()); |
| |
| LocationSummary* locs = instruction_->locs(); |
| locs->live_registers()->Remove(locs->out(0)); |
| |
| compiler->SaveLiveRegisters(locs); |
| |
| __ LoadImmediate(R10, Immediate(instruction_->num_context_variables())); |
| const Code& stub = Code::ZoneHandle( |
| compiler->zone(), StubCode::AllocateContext_entry()->code()); |
| compiler->AddStubCallTarget(stub); |
| compiler->GenerateCall(instruction_->token_pos(), |
| *StubCode::AllocateContext_entry(), |
| RawPcDescriptors::kOther, locs); |
| ASSERT(instruction_->locs()->out(0).reg() == RAX); |
| compiler->RestoreLiveRegisters(instruction_->locs()); |
| __ jmp(exit_label()); |
| } |
| |
| private: |
| AllocateUninitializedContextInstr* instruction_; |
| }; |
| |
| |
| void AllocateUninitializedContextInstr::EmitNativeCode( |
| FlowGraphCompiler* compiler) { |
| ASSERT(compiler->is_optimizing()); |
| Register temp = locs()->temp(0).reg(); |
| Register result = locs()->out(0).reg(); |
| // Try allocate the object. |
| AllocateContextSlowPath* slow_path = new AllocateContextSlowPath(this); |
| compiler->AddSlowPathCode(slow_path); |
| intptr_t instance_size = Context::InstanceSize(num_context_variables()); |
| |
| __ TryAllocateArray(kContextCid, instance_size, slow_path->entry_label(), |
| Assembler::kFarJump, |
| result, // instance |
| temp, // end address |
| locs()->temp(1).reg()); |
| |
| // Setup up number of context variables field. |
| __ movq(FieldAddress(result, Context::num_variables_offset()), |
| Immediate(num_context_variables())); |
| |
| __ Bind(slow_path->exit_label()); |
| } |
| |
| |
| LocationSummary* AllocateContextInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_temp(0, Location::RegisterLocation(R10)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| |
| void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(locs()->temp(0).reg() == R10); |
| ASSERT(locs()->out(0).reg() == RAX); |
| |
| __ LoadImmediate(R10, Immediate(num_context_variables())); |
| compiler->GenerateCall(token_pos(), *StubCode::AllocateContext_entry(), |
| RawPcDescriptors::kOther, locs()); |
| } |
| |
| |
| LocationSummary* InitStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| locs->set_temp(0, Location::RegisterLocation(RCX)); |
| return locs; |
| } |
| |
| |
| void InitStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register field = locs()->in(0).reg(); |
| Register temp = locs()->temp(0).reg(); |
| |
| Label call_runtime, no_call; |
| |
| __ movq(temp, FieldAddress(field, Field::static_value_offset())); |
| __ CompareObject(temp, Object::sentinel()); |
| __ j(EQUAL, &call_runtime); |
| |
| __ CompareObject(temp, Object::transition_sentinel()); |
| __ j(NOT_EQUAL, &no_call); |
| |
| __ Bind(&call_runtime); |
| __ PushObject(Object::null_object()); // Make room for (unused) result. |
| __ pushq(field); |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kInitStaticFieldRuntimeEntry, 1, locs()); |
| __ Drop(2); // Remove argument and unused result. |
| __ Bind(&no_call); |
| } |
| |
| |
| LocationSummary* CloneContextInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| |
| void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register context_value = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ pushq(context_value); |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kCloneContextRuntimeEntry, 1, locs()); |
| __ popq(result); // Remove argument. |
| __ popq(result); // Get result (cloned context). |
| } |
| |
| |
| LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| __ Bind(compiler->GetJumpLabel(this)); |
| compiler->AddExceptionHandler(catch_try_index(), try_index(), |
| compiler->assembler()->CodeSize(), |
| handler_token_pos(), is_generated(), |
| catch_handler_types_, needs_stacktrace()); |
| // On lazy deoptimization we patch the optimized code here to enter the |
| // deoptimization stub. |
| const intptr_t deopt_id = Thread::ToDeoptAfter(GetDeoptId()); |
| if (compiler->is_optimizing()) { |
| compiler->AddDeoptIndexAtCall(deopt_id); |
| } else { |
| compiler->AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id, |
| TokenPosition::kNoSource); |
| } |
| if (HasParallelMove()) { |
| compiler->parallel_move_resolver()->EmitNativeCode(parallel_move()); |
| } |
| |
| // Restore RSP from RBP as we are coming from a throw and the code for |
| // popping arguments has not been run. |
| const intptr_t fp_sp_dist = |
| (kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize; |
| ASSERT(fp_sp_dist <= 0); |
| __ leaq(RSP, Address(RBP, fp_sp_dist)); |
| |
| // Auxiliary variables introduced by the try catch can be captured if we are |
| // inside a function with yield/resume points. In this case we first need |
| // to restore the context to match the context at entry into the closure. |
| if (should_restore_closure_context()) { |
| const ParsedFunction& parsed_function = compiler->parsed_function(); |
| ASSERT(parsed_function.function().IsClosureFunction()); |
| LocalScope* scope = parsed_function.node_sequence()->scope(); |
| |
| LocalVariable* closure_parameter = scope->VariableAt(0); |
| ASSERT(!closure_parameter->is_captured()); |
| __ movq(CTX, Address(RBP, closure_parameter->index() * kWordSize)); |
| __ movq(CTX, FieldAddress(CTX, Closure::context_offset())); |
| |
| #ifdef DEBUG |
| Label ok; |
| __ LoadClassId(RBX, CTX); |
| __ cmpq(RBX, Immediate(kContextCid)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect context at entry"); |
| __ Bind(&ok); |
| #endif |
| |
| const intptr_t context_index = |
| parsed_function.current_context_var()->index(); |
| __ movq(Address(RBP, context_index * kWordSize), CTX); |
| } |
| |
| // Initialize exception and stack trace variables. |
| if (exception_var().is_captured()) { |
| ASSERT(stacktrace_var().is_captured()); |
| __ StoreIntoObject( |
| CTX, |
| FieldAddress(CTX, Context::variable_offset(exception_var().index())), |
| kExceptionObjectReg); |
| __ StoreIntoObject( |
| CTX, |
| FieldAddress(CTX, Context::variable_offset(stacktrace_var().index())), |
| kStackTraceObjectReg); |
| } else { |
| __ movq(Address(RBP, exception_var().index() * kWordSize), |
| kExceptionObjectReg); |
| __ movq(Address(RBP, stacktrace_var().index() * kWordSize), |
| kStackTraceObjectReg); |
| } |
| } |
| |
| |
| LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* summary = new (zone) LocationSummary( |
| zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| summary->set_temp(0, Location::RequiresRegister()); |
| return summary; |
| } |
| |
| |
| class CheckStackOverflowSlowPath : public SlowPathCode { |
| public: |
| explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction) |
| : instruction_(instruction) {} |
| |
| virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| if (compiler->isolate()->use_osr() && osr_entry_label()->IsLinked()) { |
| __ Comment("CheckStackOverflowSlowPathOsr"); |
| __ Bind(osr_entry_label()); |
| __ movq(Address(THR, Thread::stack_overflow_flags_offset()), |
| Immediate(Thread::kOsrRequest)); |
| } |
| __ Comment("CheckStackOverflowSlowPath"); |
| __ Bind(entry_label()); |
| compiler->SaveLiveRegisters(instruction_->locs()); |
| // pending_deoptimization_env_ is needed to generate a runtime call that |
| // may throw an exception. |
| ASSERT(compiler->pending_deoptimization_env_ == NULL); |
| Environment* env = compiler->SlowPathEnvironmentFor(instruction_); |
| compiler->pending_deoptimization_env_ = env; |
| compiler->GenerateRuntimeCall( |
| instruction_->token_pos(), instruction_->deopt_id(), |
| kStackOverflowRuntimeEntry, 0, instruction_->locs()); |
| |
| if (compiler->isolate()->use_osr() && !compiler->is_optimizing() && |
| instruction_->in_loop()) { |
| // In unoptimized code, record loop stack checks as possible OSR entries. |
| compiler->AddCurrentDescriptor(RawPcDescriptors::kOsrEntry, |
| instruction_->deopt_id(), |
| TokenPosition::kNoSource); |
| } |
| compiler->pending_deoptimization_env_ = NULL; |
| compiler->RestoreLiveRegisters(instruction_->locs()); |
| __ jmp(exit_label()); |
| } |
| |
| |
| Label* osr_entry_label() { |
| ASSERT(Isolate::Current()->use_osr()); |
| return &osr_entry_label_; |
| } |
| |
| private: |
| CheckStackOverflowInstr* instruction_; |
| Label osr_entry_label_; |
| }; |
| |
| |
| void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this); |
| compiler->AddSlowPathCode(slow_path); |
| |
| Register temp = locs()->temp(0).reg(); |
| // Generate stack overflow check. |
| __ cmpq(RSP, Address(THR, Thread::stack_limit_offset())); |
| __ j(BELOW_EQUAL, slow_path->entry_label()); |
| if (compiler->CanOSRFunction() && in_loop()) { |
| // In unoptimized code check the usage counter to trigger OSR at loop |
| // stack checks. Use progressively higher thresholds for more deeply |
| // nested loops to attempt to hit outer loops with OSR when possible. |
| __ LoadObject(temp, compiler->parsed_function().function()); |
| int32_t threshold = |
| FLAG_optimization_counter_threshold * (loop_depth() + 1); |
| __ cmpl(FieldAddress(temp, Function::usage_counter_offset()), |
| Immediate(threshold)); |
| __ j(GREATER_EQUAL, slow_path->osr_entry_label()); |
| } |
| if (compiler->ForceSlowPathForStackOverflow()) { |
| __ jmp(slow_path->entry_label()); |
| } |
| __ Bind(slow_path->exit_label()); |
| } |
| |
| |
| static void EmitSmiShiftLeft(FlowGraphCompiler* compiler, |
| BinarySmiOpInstr* shift_left) { |
| const LocationSummary& locs = *shift_left->locs(); |
| Register left = locs.in(0).reg(); |
| Register result = locs.out(0).reg(); |
| ASSERT(left == result); |
| Label* deopt = shift_left->CanDeoptimize() |
| ? compiler->AddDeoptStub(shift_left->deopt_id(), |
| ICData::kDeoptBinarySmiOp) |
| : NULL; |
| if (locs.in(1).IsConstant()) { |
| const Object& constant = locs.in(1).constant(); |
| ASSERT(constant.IsSmi()); |
| // shlq operation masks the count to 6 bits. |
| const intptr_t kCountLimit = 0x3F; |
| const intptr_t value = Smi::Cast(constant).Value(); |
| ASSERT((0 < value) && (value < kCountLimit)); |
| if (shift_left->can_overflow()) { |
| if (value == 1) { |
| // Use overflow flag. |
| __ shlq(left, Immediate(1)); |
| __ j(OVERFLOW, deopt); |
| return; |
| } |
| // Check for overflow. |
| Register temp = locs.temp(0).reg(); |
| __ movq(temp, left); |
| __ shlq(left, Immediate(value)); |
| __ sarq(left, Immediate(value)); |
| __ cmpq(left, temp); |
| __ j(NOT_EQUAL, deopt); // Overflow. |
| } |
| // Shift for result now we know there is no overflow. |
| __ shlq(left, Immediate(value)); |
| return; |
| } |
| |
| // Right (locs.in(1)) is not constant. |
| Register right = locs.in(1).reg(); |
| Range* right_range = shift_left->right()->definition()->range(); |
| if (shift_left->left()->BindsToConstant() && shift_left->can_overflow()) { |
| // TODO(srdjan): Implement code below for is_truncating(). |
| // If left is constant, we know the maximal allowed size for right. |
| const Object& obj = shift_left->left()->BoundConstant(); |
| if (obj.IsSmi()) { |
| const intptr_t left_int = Smi::Cast(obj).Value(); |
| if (left_int == 0) { |
| __ CompareImmediate(right, Immediate(0)); |
| __ j(NEGATIVE, deopt); |
| return; |
| } |
| const intptr_t max_right = kSmiBits - Utils::HighestBit(left_int); |
| const bool right_needs_check = |
| !RangeUtils::IsWithin(right_range, 0, max_right - 1); |
| if (right_needs_check) { |
| __ CompareImmediate( |
| right, Immediate(rein
|