blob: a765a6053eeb77a0aeb56a72d40da05df6407149 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_MIPS.
#if defined(TARGET_ARCH_MIPS)
#include "vm/flow_graph_compiler.h"
#include "vm/ast_printer.h"
#include "vm/compiler.h"
#include "vm/dart_entry.h"
#include "vm/deopt_instructions.h"
#include "vm/il_printer.h"
#include "vm/instructions.h"
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(bool, trap_on_deoptimization, false, "Trap on deoptimization.");
FlowGraphCompiler::~FlowGraphCompiler() {
// BlockInfos are zone-allocated, so their destructors are not called.
// Verify the labels explicitly here.
for (int i = 0; i < block_info_.length(); ++i) {
ASSERT(!block_info_[i]->jump_label()->IsLinked());
}
}
bool FlowGraphCompiler::SupportsUnboxedDoubles() {
return true;
}
bool FlowGraphCompiler::SupportsUnboxedMints() {
return true;
}
bool FlowGraphCompiler::SupportsUnboxedSimd128() {
return false;
}
bool FlowGraphCompiler::SupportsHardwareDivision() {
return true;
}
bool FlowGraphCompiler::CanConvertUnboxedMintToDouble() {
// TODO(johnmccutchan): Investigate possibility on MIPS once
// mints are implemented there.
return false;
}
void FlowGraphCompiler::EnterIntrinsicMode() {
ASSERT(!intrinsic_mode());
intrinsic_mode_ = true;
assembler()->set_constant_pool_allowed(false);
}
void FlowGraphCompiler::ExitIntrinsicMode() {
ASSERT(intrinsic_mode());
intrinsic_mode_ = false;
assembler()->set_constant_pool_allowed(true);
}
RawTypedData* CompilerDeoptInfo::CreateDeoptInfo(FlowGraphCompiler* compiler,
DeoptInfoBuilder* builder,
const Array& deopt_table) {
if (deopt_env_ == NULL) {
++builder->current_info_number_;
return TypedData::null();
}
intptr_t stack_height = compiler->StackSize();
AllocateIncomingParametersRecursive(deopt_env_, &stack_height);
intptr_t slot_ix = 0;
Environment* current = deopt_env_;
// Emit all kMaterializeObject instructions describing objects to be
// materialized on the deoptimization as a prefix to the deoptimization info.
EmitMaterializations(deopt_env_, builder);
// The real frame starts here.
builder->MarkFrameStart();
Zone* zone = compiler->zone();
builder->AddPp(current->function(), slot_ix++);
builder->AddPcMarker(Function::ZoneHandle(zone), slot_ix++);
builder->AddCallerFp(slot_ix++);
builder->AddReturnAddress(current->function(), deopt_id(), slot_ix++);
// Emit all values that are needed for materialization as a part of the
// expression stack for the bottom-most frame. This guarantees that GC
// will be able to find them during materialization.
slot_ix = builder->EmitMaterializationArguments(slot_ix);
// For the innermost environment, set outgoing arguments and the locals.
for (intptr_t i = current->Length() - 1;
i >= current->fixed_parameter_count(); i--) {
builder->AddCopy(current->ValueAt(i), current->LocationAt(i), slot_ix++);
}
Environment* previous = current;
current = current->outer();
while (current != NULL) {
builder->AddPp(current->function(), slot_ix++);
builder->AddPcMarker(previous->function(), slot_ix++);
builder->AddCallerFp(slot_ix++);
// For any outer environment the deopt id is that of the call instruction
// which is recorded in the outer environment.
builder->AddReturnAddress(current->function(),
Thread::ToDeoptAfter(current->deopt_id()),
slot_ix++);
// The values of outgoing arguments can be changed from the inlined call so
// we must read them from the previous environment.
for (intptr_t i = previous->fixed_parameter_count() - 1; i >= 0; i--) {
builder->AddCopy(previous->ValueAt(i), previous->LocationAt(i),
slot_ix++);
}
// Set the locals, note that outgoing arguments are not in the environment.
for (intptr_t i = current->Length() - 1;
i >= current->fixed_parameter_count(); i--) {
builder->AddCopy(current->ValueAt(i), current->LocationAt(i), slot_ix++);
}
// Iterate on the outer environment.
previous = current;
current = current->outer();
}
// The previous pointer is now the outermost environment.
ASSERT(previous != NULL);
// Set slots for the outermost environment.
builder->AddCallerPp(slot_ix++);
builder->AddPcMarker(previous->function(), slot_ix++);
builder->AddCallerFp(slot_ix++);
builder->AddCallerPc(slot_ix++);
// For the outermost environment, set the incoming arguments.
for (intptr_t i = previous->fixed_parameter_count() - 1; i >= 0; i--) {
builder->AddCopy(previous->ValueAt(i), previous->LocationAt(i), slot_ix++);
}
return builder->CreateDeoptInfo(deopt_table);
}
void CompilerDeoptInfoWithStub::GenerateCode(FlowGraphCompiler* compiler,
intptr_t stub_ix) {
// Calls do not need stubs, they share a deoptimization trampoline.
ASSERT(reason() != ICData::kDeoptAtCall);
Assembler* assembler = compiler->assembler();
#define __ assembler->
__ Comment("%s", Name());
__ Bind(entry_label());
if (FLAG_trap_on_deoptimization) {
__ break_(0);
}
ASSERT(deopt_env() != NULL);
__ Push(CODE_REG);
__ BranchLink(*StubCode::Deoptimize_entry());
set_pc_offset(assembler->CodeSize());
#undef __
}
#define __ assembler()->
// Fall through if bool_register contains null.
void FlowGraphCompiler::GenerateBoolToJump(Register bool_register,
Label* is_true,
Label* is_false) {
__ Comment("BoolToJump");
Label fall_through;
__ BranchEqual(bool_register, Object::null_object(), &fall_through);
__ BranchEqual(bool_register, Bool::True(), is_true);
__ b(is_false);
__ Bind(&fall_through);
}
// A0: instance (must be preserved).
// A1: instantiator type arguments (if used).
RawSubtypeTestCache* FlowGraphCompiler::GenerateCallSubtypeTestStub(
TypeTestStubKind test_kind,
Register instance_reg,
Register type_arguments_reg,
Register temp_reg,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("CallSubtypeTestStub");
ASSERT(instance_reg == A0);
ASSERT(temp_reg == kNoRegister); // Unused on MIPS.
const SubtypeTestCache& type_test_cache =
SubtypeTestCache::ZoneHandle(zone(), SubtypeTestCache::New());
__ LoadUniqueObject(A2, type_test_cache);
if (test_kind == kTestTypeOneArg) {
ASSERT(type_arguments_reg == kNoRegister);
__ LoadObject(A1, Object::null_object());
__ BranchLink(*StubCode::Subtype1TestCache_entry());
} else if (test_kind == kTestTypeTwoArgs) {
ASSERT(type_arguments_reg == kNoRegister);
__ LoadObject(A1, Object::null_object());
__ BranchLink(*StubCode::Subtype2TestCache_entry());
} else if (test_kind == kTestTypeThreeArgs) {
ASSERT(type_arguments_reg == A1);
__ BranchLink(*StubCode::Subtype3TestCache_entry());
} else {
UNREACHABLE();
}
// Result is in V0: null -> not found, otherwise Bool::True or Bool::False.
GenerateBoolToJump(V0, is_instance_lbl, is_not_instance_lbl);
return type_test_cache.raw();
}
// Jumps to labels 'is_instance' or 'is_not_instance' respectively, if
// type test is conclusive, otherwise fallthrough if a type test could not
// be completed.
// A0: instance being type checked (preserved).
// Clobbers T0.
RawSubtypeTestCache*
FlowGraphCompiler::GenerateInstantiatedTypeWithArgumentsTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InstantiatedTypeWithArgumentsTest");
ASSERT(type.IsInstantiated());
const Class& type_class = Class::ZoneHandle(zone(), type.type_class());
ASSERT(type.IsFunctionType() || (type_class.NumTypeArguments() > 0));
const Register kInstanceReg = A0;
Error& bound_error = Error::Handle(zone());
const Type& int_type = Type::Handle(zone(), Type::IntType());
const bool smi_is_ok =
int_type.IsSubtypeOf(type, &bound_error, NULL, Heap::kOld);
// Malformed type should have been handled at graph construction time.
ASSERT(smi_is_ok || bound_error.IsNull());
__ andi(CMPRES1, kInstanceReg, Immediate(kSmiTagMask));
if (smi_is_ok) {
__ beq(CMPRES1, ZR, is_instance_lbl);
} else {
__ beq(CMPRES1, ZR, is_not_instance_lbl);
}
// A function type test requires checking the function signature.
if (!type.IsFunctionType()) {
const intptr_t num_type_args = type_class.NumTypeArguments();
const intptr_t num_type_params = type_class.NumTypeParameters();
const intptr_t from_index = num_type_args - num_type_params;
const TypeArguments& type_arguments =
TypeArguments::ZoneHandle(zone(), type.arguments());
const bool is_raw_type = type_arguments.IsNull() ||
type_arguments.IsRaw(from_index, num_type_params);
if (is_raw_type) {
const Register kClassIdReg = T0;
// dynamic type argument, check only classes.
__ LoadClassId(kClassIdReg, kInstanceReg);
__ BranchEqual(kClassIdReg, Immediate(type_class.id()), is_instance_lbl);
// List is a very common case.
if (IsListClass(type_class)) {
GenerateListTypeCheck(kClassIdReg, is_instance_lbl);
}
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
}
// If one type argument only, check if type argument is Object or dynamic.
if (type_arguments.Length() == 1) {
const AbstractType& tp_argument =
AbstractType::ZoneHandle(zone(), type_arguments.TypeAt(0));
ASSERT(!tp_argument.IsMalformed());
if (tp_argument.IsType()) {
ASSERT(tp_argument.HasResolvedTypeClass());
// Check if type argument is dynamic or Object.
const Type& object_type = Type::Handle(zone(), Type::ObjectType());
if (object_type.IsSubtypeOf(tp_argument, NULL, NULL, Heap::kOld)) {
// Instance class test only necessary.
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
}
}
}
}
// Regular subtype test cache involving instance's type arguments.
const Register kTypeArgumentsReg = kNoRegister;
const Register kTempReg = kNoRegister;
// A0: instance (must be preserved).
return GenerateCallSubtypeTestStub(kTestTypeTwoArgs, kInstanceReg,
kTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
void FlowGraphCompiler::CheckClassIds(Register class_id_reg,
const GrowableArray<intptr_t>& class_ids,
Label* is_equal_lbl,
Label* is_not_equal_lbl) {
__ Comment("CheckClassIds");
for (intptr_t i = 0; i < class_ids.length(); i++) {
__ BranchEqual(class_id_reg, Immediate(class_ids[i]), is_equal_lbl);
}
__ b(is_not_equal_lbl);
}
// Testing against an instantiated type with no arguments, without
// SubtypeTestCache.
// A0: instance being type checked (preserved).
// Clobbers: T0, T1, T2
// Returns true if there is a fallthrough.
bool FlowGraphCompiler::GenerateInstantiatedTypeNoArgumentsTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InstantiatedTypeNoArgumentsTest");
ASSERT(type.IsInstantiated());
if (type.IsFunctionType()) {
// Fallthrough.
return true;
}
const Class& type_class = Class::Handle(zone(), type.type_class());
ASSERT(type_class.NumTypeArguments() == 0);
const Register kInstanceReg = A0;
__ andi(T0, A0, Immediate(kSmiTagMask));
// If instance is Smi, check directly.
const Class& smi_class = Class::Handle(zone(), Smi::Class());
if (smi_class.IsSubtypeOf(Object::null_type_arguments(), type_class,
Object::null_type_arguments(), NULL, NULL,
Heap::kOld)) {
__ beq(T0, ZR, is_instance_lbl);
} else {
__ beq(T0, ZR, is_not_instance_lbl);
}
const Register kClassIdReg = T0;
__ LoadClassId(kClassIdReg, kInstanceReg);
// See ClassFinalizer::ResolveSuperTypeAndInterfaces for list of restricted
// interfaces.
// Bool interface can be implemented only by core class Bool.
if (type.IsBoolType()) {
__ BranchEqual(kClassIdReg, Immediate(kBoolCid), is_instance_lbl);
__ b(is_not_instance_lbl);
return false;
}
// Custom checking for numbers (Smi, Mint, Bigint and Double).
// Note that instance is not Smi (checked above).
if (type.IsNumberType() || type.IsIntType() || type.IsDoubleType()) {
GenerateNumberTypeCheck(kClassIdReg, type, is_instance_lbl,
is_not_instance_lbl);
return false;
}
if (type.IsStringType()) {
GenerateStringTypeCheck(kClassIdReg, is_instance_lbl, is_not_instance_lbl);
return false;
}
if (type.IsDartFunctionType()) {
// Check if instance is a closure.
__ BranchEqual(kClassIdReg, Immediate(kClosureCid), is_instance_lbl);
return true; // Fall through
}
// Compare if the classes are equal.
if (!type_class.is_abstract()) {
__ BranchEqual(kClassIdReg, Immediate(type_class.id()), is_instance_lbl);
}
// Otherwise fallthrough.
return true;
}
// Uses SubtypeTestCache to store instance class and result.
// A0: instance to test.
// Clobbers A1, A2, T0-T3.
// Immediate class test already done.
// TODO(srdjan): Implement a quicker subtype check, as type test
// arrays can grow too high, but they may be useful when optimizing
// code (type-feedback).
RawSubtypeTestCache* FlowGraphCompiler::GenerateSubtype1TestCacheLookup(
TokenPosition token_pos,
const Class& type_class,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("Subtype1TestCacheLookup");
const Register kInstanceReg = A0;
__ LoadClass(T0, kInstanceReg);
// T0: instance class.
// Check immediate superclass equality.
__ lw(T0, FieldAddress(T0, Class::super_type_offset()));
__ lw(T0, FieldAddress(T0, Type::type_class_id_offset()));
__ BranchEqual(T0, Immediate(Smi::RawValue(type_class.id())),
is_instance_lbl);
const Register kTypeArgumentsReg = kNoRegister;
const Register kTempReg = kNoRegister;
return GenerateCallSubtypeTestStub(kTestTypeOneArg, kInstanceReg,
kTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
// Generates inlined check if 'type' is a type parameter or type itself
// A0: instance (preserved).
RawSubtypeTestCache* FlowGraphCompiler::GenerateUninstantiatedTypeTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("UninstantiatedTypeTest");
ASSERT(!type.IsInstantiated());
// Skip check if destination is a dynamic type.
if (type.IsTypeParameter()) {
const TypeParameter& type_param = TypeParameter::Cast(type);
// Load instantiator type arguments on stack.
__ lw(A1, Address(SP, 0)); // Get instantiator type arguments.
// A1: instantiator type arguments.
// Check if type arguments are null, i.e. equivalent to vector of dynamic.
__ LoadObject(T7, Object::null_object());
__ beq(A1, T7, is_instance_lbl);
__ lw(T2,
FieldAddress(A1, TypeArguments::type_at_offset(type_param.index())));
// R2: concrete type of type.
// Check if type argument is dynamic.
__ BranchEqual(T2, Object::dynamic_type(), is_instance_lbl);
__ BranchEqual(T2, Type::ZoneHandle(zone(), Type::ObjectType()),
is_instance_lbl);
// For Smi check quickly against int and num interfaces.
Label not_smi;
__ andi(CMPRES1, A0, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &not_smi); // Value is Smi?
__ BranchEqual(T2, Type::ZoneHandle(zone(), Type::IntType()),
is_instance_lbl);
__ BranchEqual(T2, Type::ZoneHandle(zone(), Type::Number()),
is_instance_lbl);
// Smi must be handled in runtime.
Label fall_through;
__ b(&fall_through);
__ Bind(&not_smi);
// T1: instantiator type arguments.
// A0: instance.
const Register kInstanceReg = A0;
const Register kTypeArgumentsReg = A1;
const Register kTempReg = kNoRegister;
const SubtypeTestCache& type_test_cache = SubtypeTestCache::ZoneHandle(
zone(), GenerateCallSubtypeTestStub(
kTestTypeThreeArgs, kInstanceReg, kTypeArgumentsReg,
kTempReg, is_instance_lbl, is_not_instance_lbl));
__ Bind(&fall_through);
return type_test_cache.raw();
}
if (type.IsType()) {
const Register kInstanceReg = A0;
const Register kTypeArgumentsReg = A1;
__ andi(CMPRES1, kInstanceReg, Immediate(kSmiTagMask));
__ beq(CMPRES1, ZR, is_not_instance_lbl); // Is instance Smi?
__ lw(kTypeArgumentsReg, Address(SP, 0)); // Instantiator type args.
// Uninstantiated type class is known at compile time, but the type
// arguments are determined at runtime by the instantiator.
const Register kTempReg = kNoRegister;
return GenerateCallSubtypeTestStub(kTestTypeThreeArgs, kInstanceReg,
kTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
return SubtypeTestCache::null();
}
// Inputs:
// - A0: instance being type checked (preserved).
// - A1: optional instantiator type arguments (preserved).
// Returns:
// - preserved instance in A0 and optional instantiator type arguments in A1.
// Clobbers: T0, T1, T2
// Note that this inlined code must be followed by the runtime_call code, as it
// may fall through to it. Otherwise, this inline code will jump to the label
// is_instance or to the label is_not_instance.
RawSubtypeTestCache* FlowGraphCompiler::GenerateInlineInstanceof(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InlineInstanceof");
if (type.IsVoidType()) {
// A non-null value is returned from a void function, which will result in a
// type error. A null value is handled prior to executing this inline code.
return SubtypeTestCache::null();
}
if (type.IsInstantiated()) {
const Class& type_class = Class::ZoneHandle(zone(), type.type_class());
// A class equality check is only applicable with a dst type (not a
// function type) of a non-parameterized class or with a raw dst type of
// a parameterized class.
if (type.IsFunctionType() || (type_class.NumTypeArguments() > 0)) {
return GenerateInstantiatedTypeWithArgumentsTest(
token_pos, type, is_instance_lbl, is_not_instance_lbl);
// Fall through to runtime call.
}
const bool has_fall_through = GenerateInstantiatedTypeNoArgumentsTest(
token_pos, type, is_instance_lbl, is_not_instance_lbl);
if (has_fall_through) {
// If test non-conclusive so far, try the inlined type-test cache.
// 'type' is known at compile time.
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
} else {
return SubtypeTestCache::null();
}
}
return GenerateUninstantiatedTypeTest(token_pos, type, is_instance_lbl,
is_not_instance_lbl);
}
// If instanceof type test cannot be performed successfully at compile time and
// therefore eliminated, optimize it by adding inlined tests for:
// - NULL -> return type == Null (type is not Object or dynamic).
// - Smi -> compile time subtype check (only if dst class is not parameterized).
// - Class equality (only if class is not parameterized).
// Inputs:
// - A0: object.
// - A1: instantiator type arguments or raw_null.
// Returns:
// - true or false in V0.
void FlowGraphCompiler::GenerateInstanceOf(TokenPosition token_pos,
intptr_t deopt_id,
const AbstractType& type,
LocationSummary* locs) {
ASSERT(type.IsFinalized() && !type.IsMalformed() && !type.IsMalbounded());
ASSERT(!type.IsObjectType() && !type.IsDynamicType());
// Preserve instantiator type arguments (A1).
__ addiu(SP, SP, Immediate(-1 * kWordSize));
__ sw(A1, Address(SP, 0 * kWordSize));
Label is_instance, is_not_instance;
// If type is instantiated and non-parameterized, we can inline code
// checking whether the tested instance is a Smi.
if (type.IsInstantiated()) {
// A null object is only an instance of Null, Object, and dynamic.
// Object and dynamic have already been checked above (if the type is
// instantiated). So we can return false here if the instance is null,
// unless the type is Null (and if the type is instantiated).
// We can only inline this null check if the type is instantiated at compile
// time, since an uninstantiated type at compile time could be Null, Object,
// or dynamic at run time.
__ BranchEqual(A0, Object::null_object(),
type.IsNullType() ? &is_instance : &is_not_instance);
}
// Generate inline instanceof test.
SubtypeTestCache& test_cache = SubtypeTestCache::ZoneHandle(zone());
test_cache =
GenerateInlineInstanceof(token_pos, type, &is_instance, &is_not_instance);
// test_cache is null if there is no fall-through.
Label done;
if (!test_cache.IsNull()) {
// Generate runtime call.
// Load instantiator type arguments (A1).
__ lw(A1, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(-5 * kWordSize));
__ LoadObject(TMP, Object::null_object());
__ sw(TMP, Address(SP, 4 * kWordSize)); // Make room for the result.
__ sw(A0, Address(SP, 3 * kWordSize)); // Push the instance.
__ LoadObject(TMP, type);
__ sw(TMP, Address(SP, 2 * kWordSize)); // Push the type.
__ sw(A1, Address(SP, 1 * kWordSize)); // Push type arguments.
__ LoadUniqueObject(A0, test_cache);
__ sw(A0, Address(SP, 0 * kWordSize));
GenerateRuntimeCall(token_pos, deopt_id, kInstanceofRuntimeEntry, 4, locs);
// Pop the parameters supplied to the runtime entry. The result of the
// instanceof runtime call will be left as the result of the operation.
__ lw(T0, Address(SP, 4 * kWordSize));
__ addiu(SP, SP, Immediate(5 * kWordSize));
__ mov(V0, T0);
__ b(&done);
}
__ Bind(&is_not_instance);
__ LoadObject(V0, Bool::Get(false));
__ b(&done);
__ Bind(&is_instance);
__ LoadObject(V0, Bool::Get(true));
__ Bind(&done);
// Remove instantiator type arguments (A1).
__ Drop(1);
}
// Optimize assignable type check by adding inlined tests for:
// - NULL -> return NULL.
// - Smi -> compile time subtype check (only if dst class is not parameterized).
// - Class equality (only if class is not parameterized).
// Inputs:
// - A0: instance being type checked.
// - A1: instantiator type arguments or raw_null.
// Returns:
// - object in A0 for successful assignable check (or throws TypeError).
// Clobbers: T0, T1, T2
// Performance notes: positive checks must be quick, negative checks can be slow
// as they throw an exception.
void FlowGraphCompiler::GenerateAssertAssignable(TokenPosition token_pos,
intptr_t deopt_id,
const AbstractType& dst_type,
const String& dst_name,
LocationSummary* locs) {
__ Comment("AssertAssignable");
ASSERT(!token_pos.IsClassifying());
ASSERT(!dst_type.IsNull());
ASSERT(dst_type.IsFinalized());
// Assignable check is skipped in FlowGraphBuilder, not here.
ASSERT(dst_type.IsMalformedOrMalbounded() ||
(!dst_type.IsDynamicType() && !dst_type.IsObjectType()));
// Preserve instantiator type arguments.
__ addiu(SP, SP, Immediate(-1 * kWordSize));
__ sw(A1, Address(SP, 0 * kWordSize));
// A null object is always assignable and is returned as result.
Label is_assignable, runtime_call;
__ BranchEqual(A0, Object::null_object(), &is_assignable);
__ delay_slot()->sw(A1, Address(SP, 0 * kWordSize));
// Generate throw new TypeError() if the type is malformed or malbounded.
if (dst_type.IsMalformedOrMalbounded()) {
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ LoadObject(TMP, Object::null_object());
__ sw(TMP, Address(SP, 3 * kWordSize)); // Make room for the result.
__ sw(A0, Address(SP, 2 * kWordSize)); // Push the source object.
__ LoadObject(TMP, dst_name);
__ sw(TMP, Address(SP, 1 * kWordSize)); // Push the destination name.
__ LoadObject(TMP, dst_type);
__ sw(TMP, Address(SP, 0 * kWordSize)); // Push the destination type.
GenerateRuntimeCall(token_pos, deopt_id, kBadTypeErrorRuntimeEntry, 3,
locs);
// We should never return here.
__ break_(0);
__ Bind(&is_assignable); // For a null object.
// Restore instantiator type arguments.
__ lw(A1, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(1 * kWordSize));
return;
}
// Generate inline type check, linking to runtime call if not assignable.
SubtypeTestCache& test_cache = SubtypeTestCache::ZoneHandle(zone());
test_cache = GenerateInlineInstanceof(token_pos, dst_type, &is_assignable,
&runtime_call);
__ Bind(&runtime_call);
// Load instantiator type arguments (A1).
__ lw(A1, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(-6 * kWordSize));
__ LoadObject(TMP, Object::null_object());
__ sw(TMP, Address(SP, 5 * kWordSize)); // Make room for the result.
__ sw(A0, Address(SP, 4 * kWordSize)); // Push the source object.
__ LoadObject(TMP, dst_type);
__ sw(TMP, Address(SP, 3 * kWordSize)); // Push the type of the destination.
__ sw(A1, Address(SP, 2 * kWordSize)); // Push type arguments.
__ LoadObject(TMP, dst_name);
__ sw(TMP, Address(SP, 1 * kWordSize)); // Push the name of the destination.
__ LoadUniqueObject(T0, test_cache);
__ sw(T0, Address(SP, 0 * kWordSize));
GenerateRuntimeCall(token_pos, deopt_id, kTypeCheckRuntimeEntry, 5, locs);
// Pop the parameters supplied to the runtime entry. The result of the
// type check runtime call is the checked value.
__ lw(A0, Address(SP, 5 * kWordSize));
__ addiu(SP, SP, Immediate(6 * kWordSize));
__ Bind(&is_assignable);
// Restore instantiator type arguments.
__ lw(A1, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(1 * kWordSize));
}
void FlowGraphCompiler::EmitInstructionEpilogue(Instruction* instr) {
if (is_optimizing()) return;
Definition* defn = instr->AsDefinition();
if ((defn != NULL) && defn->HasTemp()) {
__ Push(defn->locs()->out(0).reg());
}
}
// Input parameters:
// S4: arguments descriptor array.
void FlowGraphCompiler::CopyParameters() {
__ Comment("Copy parameters");
const Function& function = parsed_function().function();
LocalScope* scope = parsed_function().node_sequence()->scope();
const int num_fixed_params = function.num_fixed_parameters();
const int num_opt_pos_params = function.NumOptionalPositionalParameters();
const int num_opt_named_params = function.NumOptionalNamedParameters();
const int num_params =
num_fixed_params + num_opt_pos_params + num_opt_named_params;
ASSERT(function.NumParameters() == num_params);
ASSERT(parsed_function().first_parameter_index() == kFirstLocalSlotFromFp);
// Check that min_num_pos_args <= num_pos_args <= max_num_pos_args,
// where num_pos_args is the number of positional arguments passed in.
const int min_num_pos_args = num_fixed_params;
const int max_num_pos_args = num_fixed_params + num_opt_pos_params;
__ lw(T2, FieldAddress(S4, ArgumentsDescriptor::positional_count_offset()));
// Check that min_num_pos_args <= num_pos_args.
Label wrong_num_arguments;
__ BranchSignedLess(T2, Immediate(Smi::RawValue(min_num_pos_args)),
&wrong_num_arguments);
// Check that num_pos_args <= max_num_pos_args.
__ BranchSignedGreater(T2, Immediate(Smi::RawValue(max_num_pos_args)),
&wrong_num_arguments);
// Copy positional arguments.
// Argument i passed at fp[kParamEndSlotFromFp + num_args - i] is copied
// to fp[kFirstLocalSlotFromFp - i].
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
// Since T1 and T2 are Smi, use sll 1 instead of sll 2.
// Let T1 point to the last passed positional argument, i.e. to
// fp[kParamEndSlotFromFp + num_args - (num_pos_args - 1)].
__ subu(T1, T1, T2);
__ sll(T1, T1, 1);
__ addu(T1, FP, T1);
__ AddImmediate(T1, (kParamEndSlotFromFp + 1) * kWordSize);
// Let T0 point to the last copied positional argument, i.e. to
// fp[kFirstLocalSlotFromFp - (num_pos_args - 1)].
__ AddImmediate(T0, FP, (kFirstLocalSlotFromFp + 1) * kWordSize);
__ sll(T2, T2, 1); // T2 is a Smi.
__ Comment("Argument Copy Loop");
Label loop, loop_exit;
__ blez(T2, &loop_exit);
__ delay_slot()->subu(T0, T0, T2);
__ Bind(&loop);
__ addu(T4, T1, T2);
__ lw(T3, Address(T4, -kWordSize));
__ addiu(T2, T2, Immediate(-kWordSize));
__ addu(T5, T0, T2);
__ bgtz(T2, &loop);
__ delay_slot()->sw(T3, Address(T5));
__ Bind(&loop_exit);
// Copy or initialize optional named arguments.
Label all_arguments_processed;
#ifdef DEBUG
const bool check_correct_named_args = true;
#else
const bool check_correct_named_args = function.IsClosureFunction();
#endif
if (num_opt_named_params > 0) {
__ Comment("There are named parameters");
// Start by alphabetically sorting the names of the optional parameters.
LocalVariable** opt_param = new LocalVariable*[num_opt_named_params];
int* opt_param_position = new int[num_opt_named_params];
for (int pos = num_fixed_params; pos < num_params; pos++) {
LocalVariable* parameter = scope->VariableAt(pos);
const String& opt_param_name = parameter->name();
int i = pos - num_fixed_params;
while (--i >= 0) {
LocalVariable* param_i = opt_param[i];
const intptr_t result = opt_param_name.CompareTo(param_i->name());
ASSERT(result != 0);
if (result > 0) break;
opt_param[i + 1] = opt_param[i];
opt_param_position[i + 1] = opt_param_position[i];
}
opt_param[i + 1] = parameter;
opt_param_position[i + 1] = pos;
}
// Generate code handling each optional parameter in alphabetical order.
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
// Let T1 point to the first passed argument, i.e. to
// fp[kParamEndSlotFromFp + num_args - 0]; num_args (T1) is Smi.
__ sll(T3, T1, 1);
__ addu(T1, FP, T3);
__ AddImmediate(T1, kParamEndSlotFromFp * kWordSize);
// Let T0 point to the entry of the first named argument.
__ AddImmediate(T0, S4, ArgumentsDescriptor::first_named_entry_offset() -
kHeapObjectTag);
for (int i = 0; i < num_opt_named_params; i++) {
Label load_default_value, assign_optional_parameter;
const int param_pos = opt_param_position[i];
// Check if this named parameter was passed in.
// Load T3 with the name of the argument.
__ lw(T3, Address(T0, ArgumentsDescriptor::name_offset()));
ASSERT(opt_param[i]->name().IsSymbol());
__ BranchNotEqual(T3, opt_param[i]->name(), &load_default_value);
// Load T3 with passed-in argument at provided arg_pos, i.e. at
// fp[kParamEndSlotFromFp + num_args - arg_pos].
__ lw(T3, Address(T0, ArgumentsDescriptor::position_offset()));
// T3 is arg_pos as Smi.
// Point to next named entry.
__ AddImmediate(T0, ArgumentsDescriptor::named_entry_size());
__ subu(T3, ZR, T3);
__ sll(T3, T3, 1);
__ addu(T3, T1, T3);
__ b(&assign_optional_parameter);
__ delay_slot()->lw(T3, Address(T3));
__ Bind(&load_default_value);
// Load T3 with default argument.
const Instance& value = parsed_function().DefaultParameterValueAt(
param_pos - num_fixed_params);
__ LoadObject(T3, value);
__ Bind(&assign_optional_parameter);
// Assign T3 to fp[kFirstLocalSlotFromFp - param_pos].
// We do not use the final allocation index of the variable here, i.e.
// scope->VariableAt(i)->index(), because captured variables still need
// to be copied to the context that is not yet allocated.
const intptr_t computed_param_pos = kFirstLocalSlotFromFp - param_pos;
__ sw(T3, Address(FP, computed_param_pos * kWordSize));
}
delete[] opt_param;
delete[] opt_param_position;
if (check_correct_named_args) {
// Check that T0 now points to the null terminator in the arguments
// descriptor.
__ lw(T3, Address(T0));
__ BranchEqual(T3, Object::null_object(), &all_arguments_processed);
}
} else {
ASSERT(num_opt_pos_params > 0);
__ Comment("There are optional positional parameters");
__ lw(T2, FieldAddress(S4, ArgumentsDescriptor::positional_count_offset()));
__ SmiUntag(T2);
for (int i = 0; i < num_opt_pos_params; i++) {
Label next_parameter;
// Handle this optional positional parameter only if k or fewer positional
// arguments have been passed, where k is param_pos, the position of this
// optional parameter in the formal parameter list.
const int param_pos = num_fixed_params + i;
__ BranchSignedGreater(T2, Immediate(param_pos), &next_parameter);
// Load T3 with default argument.
const Object& value = parsed_function().DefaultParameterValueAt(i);
__ LoadObject(T3, value);
// Assign T3 to fp[kFirstLocalSlotFromFp - param_pos].
// We do not use the final allocation index of the variable here, i.e.
// scope->VariableAt(i)->index(), because captured variables still need
// to be copied to the context that is not yet allocated.
const intptr_t computed_param_pos = kFirstLocalSlotFromFp - param_pos;
__ sw(T3, Address(FP, computed_param_pos * kWordSize));
__ Bind(&next_parameter);
}
if (check_correct_named_args) {
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ SmiUntag(T1);
// Check that T2 equals T1, i.e. no named arguments passed.
__ beq(T2, T1, &all_arguments_processed);
}
}
__ Bind(&wrong_num_arguments);
if (function.IsClosureFunction()) {
__ LeaveDartFrame(kKeepCalleePP); // Arguments are still on the stack.
__ Branch(*StubCode::CallClosureNoSuchMethod_entry());
// The noSuchMethod call may return to the caller, but not here.
} else if (check_correct_named_args) {
__ Stop("Wrong arguments");
}
__ Bind(&all_arguments_processed);
// Nullify originally passed arguments only after they have been copied and
// checked, otherwise noSuchMethod would not see their original values.
// This step can be skipped in case we decide that formal parameters are
// implicitly final, since garbage collecting the unmodified value is not
// an issue anymore.
// S4 : arguments descriptor array.
__ lw(T2, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ sll(T2, T2, 1); // T2 is a Smi.
__ Comment("Null arguments loop");
Label null_args_loop, null_args_loop_exit;
__ blez(T2, &null_args_loop_exit);
__ delay_slot()->addiu(T1, FP,
Immediate((kParamEndSlotFromFp + 1) * kWordSize));
__ Bind(&null_args_loop);
__ addiu(T2, T2, Immediate(-kWordSize));
__ addu(T3, T1, T2);
__ LoadObject(T5, Object::null_object());
__ bgtz(T2, &null_args_loop);
__ delay_slot()->sw(T5, Address(T3));
__ Bind(&null_args_loop_exit);
}
void FlowGraphCompiler::GenerateInlinedGetter(intptr_t offset) {
// RA: return address.
// SP: receiver.
// Sequence node has one return node, its input is load field node.
__ Comment("Inlined Getter");
__ lw(V0, Address(SP, 0 * kWordSize));
__ LoadFieldFromOffset(V0, V0, offset);
__ Ret();
}
void FlowGraphCompiler::GenerateInlinedSetter(intptr_t offset) {
// RA: return address.
// SP+1: receiver.
// SP+0: value.
// Sequence node has one store node and one return NULL node.
__ Comment("Inlined Setter");
__ lw(T0, Address(SP, 1 * kWordSize)); // Receiver.
__ lw(T1, Address(SP, 0 * kWordSize)); // Value.
__ StoreIntoObjectOffset(T0, offset, T1);
__ LoadObject(V0, Object::null_object());
__ Ret();
}
static const Register new_pp = T7;
void FlowGraphCompiler::EmitFrameEntry() {
const Function& function = parsed_function().function();
if (CanOptimizeFunction() && function.IsOptimizable() &&
(!is_optimizing() || may_reoptimize())) {
__ Comment("Invocation Count Check");
const Register function_reg = T0;
// Temporarily setup pool pointer for this dart function.
__ LoadPoolPointer(new_pp);
// Load function object from object pool.
__ LoadFunctionFromCalleePool(function_reg, function, new_pp);
__ lw(T1, FieldAddress(function_reg, Function::usage_counter_offset()));
// Reoptimization of an optimized function is triggered by counting in
// IC stubs, but not at the entry of the function.
if (!is_optimizing()) {
__ addiu(T1, T1, Immediate(1));
__ sw(T1, FieldAddress(function_reg, Function::usage_counter_offset()));
}
// Skip Branch if T1 is less than the threshold.
Label dont_branch;
__ BranchSignedLess(T1, Immediate(GetOptimizationThreshold()),
&dont_branch);
ASSERT(function_reg == T0);
__ Branch(*StubCode::OptimizeFunction_entry(), new_pp);
__ Bind(&dont_branch);
}
__ Comment("Enter frame");
if (flow_graph().IsCompiledForOsr()) {
intptr_t extra_slots = StackSize() - flow_graph().num_stack_locals() -
flow_graph().num_copied_params();
ASSERT(extra_slots >= 0);
__ EnterOsrFrame(extra_slots * kWordSize);
} else {
ASSERT(StackSize() >= 0);
__ EnterDartFrame(StackSize() * kWordSize);
}
}
// Input parameters:
// RA: return address.
// SP: address of last argument.
// FP: caller's frame pointer.
// PP: caller's pool pointer.
// S5: ic-data.
// S4: arguments descriptor array.
void FlowGraphCompiler::CompileGraph() {
InitCompiler();
const Function& function = parsed_function().function();
#ifdef DART_PRECOMPILER
if (function.IsDynamicFunction()) {
__ MonomorphicCheckedEntry();
}
#endif // DART_PRECOMPILER
if (TryIntrinsify()) {
// Skip regular code generation.
return;
}
EmitFrameEntry();
ASSERT(assembler()->constant_pool_allowed());
const int num_fixed_params = function.num_fixed_parameters();
const int num_copied_params = parsed_function().num_copied_params();
const int num_locals = parsed_function().num_stack_locals();
// We check the number of passed arguments when we have to copy them due to
// the presence of optional parameters.
// No such checking code is generated if only fixed parameters are declared,
// unless we are in debug mode or unless we are compiling a closure.
if (num_copied_params == 0) {
const bool check_arguments =
function.IsClosureFunction() && !flow_graph().IsCompiledForOsr();
if (check_arguments) {
__ Comment("Check argument count");
// Check that exactly num_fixed arguments are passed in.
Label correct_num_arguments, wrong_num_arguments;
__ lw(T0, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ BranchNotEqual(T0, Immediate(Smi::RawValue(num_fixed_params)),
&wrong_num_arguments);
__ lw(T1,
FieldAddress(S4, ArgumentsDescriptor::positional_count_offset()));
__ beq(T0, T1, &correct_num_arguments);
__ Bind(&wrong_num_arguments);
__ LeaveDartFrame(kKeepCalleePP); // Arguments are still on the stack.
__ Branch(*StubCode::CallClosureNoSuchMethod_entry());
// The noSuchMethod call may return to the caller, but not here.
__ Bind(&correct_num_arguments);
}
} else if (!flow_graph().IsCompiledForOsr()) {
CopyParameters();
}
if (function.IsClosureFunction() && !flow_graph().IsCompiledForOsr()) {
// Load context from the closure object (first argument).
LocalScope* scope = parsed_function().node_sequence()->scope();
LocalVariable* closure_parameter = scope->VariableAt(0);
__ lw(CTX, Address(FP, closure_parameter->index() * kWordSize));
__ lw(CTX, FieldAddress(CTX, Closure::context_offset()));
}
// In unoptimized code, initialize (non-argument) stack allocated slots to
// null.
if (!is_optimizing()) {
ASSERT(num_locals > 0); // There is always at least context_var.
__ Comment("Initialize spill slots");
const intptr_t slot_base = parsed_function().first_stack_local_index();
const intptr_t context_index =
parsed_function().current_context_var()->index();
if (num_locals > 1) {
__ LoadObject(V0, Object::null_object());
}
for (intptr_t i = 0; i < num_locals; ++i) {
// Subtract index i (locals lie at lower addresses than FP).
if (((slot_base - i) == context_index)) {
if (function.IsClosureFunction()) {
__ sw(CTX, Address(FP, (slot_base - i) * kWordSize));
} else {
const Context& empty_context = Context::ZoneHandle(
zone(), isolate()->object_store()->empty_context());
__ LoadObject(V1, empty_context);
__ sw(V1, Address(FP, (slot_base - i) * kWordSize));
}
} else {
ASSERT(num_locals > 1);
__ sw(V0, Address(FP, (slot_base - i) * kWordSize));
}
}
}
EndCodeSourceRange(TokenPosition::kDartCodePrologue);
VisitBlocks();
__ break_(0);
GenerateDeferredCode();
}
void FlowGraphCompiler::GenerateCall(TokenPosition token_pos,
const StubEntry& stub_entry,
RawPcDescriptors::Kind kind,
LocationSummary* locs) {
__ BranchLink(stub_entry);
EmitCallsiteMetaData(token_pos, Thread::kNoDeoptId, kind, locs);
}
void FlowGraphCompiler::GeneratePatchableCall(TokenPosition token_pos,
const StubEntry& stub_entry,
RawPcDescriptors::Kind kind,
LocationSummary* locs) {
__ BranchLinkPatchable(stub_entry);
EmitCallsiteMetaData(token_pos, Thread::kNoDeoptId, kind, locs);
}
void FlowGraphCompiler::GenerateDartCall(intptr_t deopt_id,
TokenPosition token_pos,
const StubEntry& stub_entry,
RawPcDescriptors::Kind kind,
LocationSummary* locs) {
__ BranchLinkPatchable(stub_entry);
EmitCallsiteMetaData(token_pos, deopt_id, kind, locs);
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id_after);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
}
void FlowGraphCompiler::GenerateStaticDartCall(intptr_t deopt_id,
TokenPosition token_pos,
const StubEntry& stub_entry,
RawPcDescriptors::Kind kind,
LocationSummary* locs,
const Function& target) {
// Call sites to the same target can share object pool entries. These
// call sites are never patched for breakpoints: the function is deoptimized
// and the unoptimized code with IC calls for static calls is patched instead.
ASSERT(is_optimizing());
__ BranchLinkWithEquivalence(stub_entry, target);
EmitCallsiteMetaData(token_pos, deopt_id, kind, locs);
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id_after);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
AddStaticCallTarget(target);
}
void FlowGraphCompiler::GenerateRuntimeCall(TokenPosition token_pos,
intptr_t deopt_id,
const RuntimeEntry& entry,
intptr_t argument_count,
LocationSummary* locs) {
__ CallRuntime(entry, argument_count);
EmitCallsiteMetaData(token_pos, deopt_id, RawPcDescriptors::kOther, locs);
if (deopt_id != Thread::kNoDeoptId) {
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id_after);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
}
}
void FlowGraphCompiler::EmitEdgeCounter(intptr_t edge_id) {
// We do not check for overflow when incrementing the edge counter. The
// function should normally be optimized long before the counter can
// overflow; and though we do not reset the counters when we optimize or
// deoptimize, there is a bound on the number of
// optimization/deoptimization cycles we will attempt.
ASSERT(!edge_counters_array_.IsNull());
__ Comment("Edge counter");
__ LoadObject(T0, edge_counters_array_);
__ LoadFieldFromOffset(T1, T0, Array::element_offset(edge_id));
__ AddImmediate(T1, T1, Smi::RawValue(1));
__ StoreFieldToOffset(T1, T0, Array::element_offset(edge_id));
}
void FlowGraphCompiler::EmitOptimizedInstanceCall(const StubEntry& stub_entry,
const ICData& ic_data,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
ASSERT(Array::Handle(zone(), ic_data.arguments_descriptor()).Length() > 0);
// Each ICData propagated from unoptimized to optimized code contains the
// function that corresponds to the Dart function of that IC call. Due
// to inlining in optimized code, that function may not correspond to the
// top-level function (parsed_function().function()) which could be
// reoptimized and which counter needs to be incremented.
// Pass the function explicitly, it is used in IC stub.
__ Comment("OptimizedInstanceCall");
__ LoadObject(T0, parsed_function().function());
__ LoadUniqueObject(S5, ic_data);
GenerateDartCall(deopt_id, token_pos, stub_entry, RawPcDescriptors::kIcCall,
locs);
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitInstanceCall(const StubEntry& stub_entry,
const ICData& ic_data,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
ASSERT(Array::Handle(zone(), ic_data.arguments_descriptor()).Length() > 0);
__ Comment("InstanceCall");
__ LoadUniqueObject(S5, ic_data);
GenerateDartCall(deopt_id, token_pos, stub_entry, RawPcDescriptors::kIcCall,
locs);
__ Comment("InstanceCall return");
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitMegamorphicInstanceCall(
const ICData& ic_data,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
intptr_t try_index,
intptr_t slow_path_argument_count) {
const String& name = String::Handle(zone(), ic_data.target_name());
const Array& arguments_descriptor =
Array::ZoneHandle(zone(), ic_data.arguments_descriptor());
ASSERT(!arguments_descriptor.IsNull() && (arguments_descriptor.Length() > 0));
const MegamorphicCache& cache = MegamorphicCache::ZoneHandle(
zone(),
MegamorphicCacheTable::Lookup(isolate(), name, arguments_descriptor));
__ Comment("MegamorphicCall");
// Load receiver into T0,
__ lw(T0, Address(SP, (argument_count - 1) * kWordSize));
__ LoadObject(S5, cache);
__ lw(T9, Address(THR, Thread::megamorphic_call_checked_entry_offset()));
__ jalr(T9);
RecordSafepoint(locs, slow_path_argument_count);
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (FLAG_precompiled_mode) {
// Megamorphic calls may occur in slow path stubs.
// If valid use try_index argument.
if (try_index == CatchClauseNode::kInvalidTryIndex) {
try_index = CurrentTryIndex();
}
AddDescriptor(RawPcDescriptors::kOther, assembler()->CodeSize(),
Thread::kNoDeoptId, token_pos, try_index);
} else if (is_optimizing()) {
AddCurrentDescriptor(RawPcDescriptors::kOther, Thread::kNoDeoptId,
token_pos);
AddDeoptIndexAtCall(deopt_id_after);
} else {
AddCurrentDescriptor(RawPcDescriptors::kOther, Thread::kNoDeoptId,
token_pos);
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
EmitCatchEntryState(pending_deoptimization_env_, try_index);
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitSwitchableInstanceCall(const ICData& ic_data,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
ASSERT(ic_data.NumArgsTested() == 1);
const Code& initial_stub =
Code::ZoneHandle(StubCode::ICCallThroughFunction_entry()->code());
__ Comment("SwitchableCall");
__ lw(T0, Address(SP, (argument_count - 1) * kWordSize));
__ LoadUniqueObject(CODE_REG, initial_stub);
__ lw(T9, FieldAddress(CODE_REG, Code::checked_entry_point_offset()));
__ LoadUniqueObject(S5, ic_data);
__ jalr(T9);
EmitCallsiteMetaData(token_pos, Thread::kNoDeoptId, RawPcDescriptors::kOther,
locs);
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id_after);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitUnoptimizedStaticCall(intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
const ICData& ic_data) {
const StubEntry* stub_entry =
StubCode::UnoptimizedStaticCallEntry(ic_data.NumArgsTested());
__ LoadObject(S5, ic_data);
GenerateDartCall(deopt_id, token_pos, *stub_entry,
RawPcDescriptors::kUnoptStaticCall, locs);
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitOptimizedStaticCall(
const Function& function,
const Array& arguments_descriptor,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
__ Comment("StaticCall");
ASSERT(!function.IsClosureFunction());
if (function.HasOptionalParameters()) {
__ LoadObject(S4, arguments_descriptor);
} else {
__ LoadImmediate(S4, 0); // GC safe smi zero because of stub.
}
// Do not use the code from the function, but let the code be patched so that
// we can record the outgoing edges to other code.
GenerateStaticDartCall(deopt_id, token_pos,
*StubCode::CallStaticFunction_entry(),
RawPcDescriptors::kOther, locs, function);
__ Drop(argument_count);
}
Condition FlowGraphCompiler::EmitEqualityRegConstCompare(
Register reg,
const Object& obj,
bool needs_number_check,
TokenPosition token_pos) {
__ Comment("EqualityRegConstCompare");
ASSERT(!needs_number_check ||
(!obj.IsMint() && !obj.IsDouble() && !obj.IsBigint()));
if (needs_number_check) {
ASSERT(!obj.IsMint() && !obj.IsDouble() && !obj.IsBigint());
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(reg, Address(SP, 1 * kWordSize));
__ LoadObject(TMP, obj);
__ sw(TMP, Address(SP, 0 * kWordSize));
if (is_optimizing()) {
__ BranchLinkPatchable(
*StubCode::OptimizedIdenticalWithNumberCheck_entry());
} else {
__ BranchLinkPatchable(
*StubCode::UnoptimizedIdenticalWithNumberCheck_entry());
}
if (token_pos.IsReal()) {
AddCurrentDescriptor(RawPcDescriptors::kRuntimeCall, Thread::kNoDeoptId,
token_pos);
}
__ Comment("EqualityRegConstCompare return");
// Stub returns result in CMPRES1 (if it is 0, then reg and obj are equal).
__ lw(reg, Address(SP, 1 * kWordSize)); // Restore 'reg'.
__ addiu(SP, SP, Immediate(2 * kWordSize)); // Discard constant.
return Condition(CMPRES1, ZR, EQ);
} else {
int16_t imm = 0;
const Register obj_reg = __ LoadConditionOperand(CMPRES1, obj, &imm);
return Condition(reg, obj_reg, EQ, imm);
}
}
Condition FlowGraphCompiler::EmitEqualityRegRegCompare(
Register left,
Register right,
bool needs_number_check,
TokenPosition token_pos) {
__ Comment("EqualityRegRegCompare");
if (needs_number_check) {
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(left, Address(SP, 1 * kWordSize));
__ sw(right, Address(SP, 0 * kWordSize));
if (is_optimizing()) {
__ BranchLinkPatchable(
*StubCode::OptimizedIdenticalWithNumberCheck_entry());
} else {
__ BranchLinkPatchable(
*StubCode::UnoptimizedIdenticalWithNumberCheck_entry());
}
if (token_pos.IsReal()) {
AddCurrentDescriptor(RawPcDescriptors::kRuntimeCall, Thread::kNoDeoptId,
token_pos);
}
__ Comment("EqualityRegRegCompare return");
// Stub returns result in CMPRES1 (if it is 0, then left and right are
// equal).
__ lw(right, Address(SP, 0 * kWordSize));
__ lw(left, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
return Condition(CMPRES1, ZR, EQ);
} else {
return Condition(left, right, EQ);
}
}
// This function must be in sync with FlowGraphCompiler::RecordSafepoint and
// FlowGraphCompiler::SlowPathEnvironmentFor.
void FlowGraphCompiler::SaveLiveRegisters(LocationSummary* locs) {
#if defined(DEBUG)
locs->CheckWritableInputs();
ClobberDeadTempRegisters(locs);
#endif
__ Comment("SaveLiveRegisters");
// TODO(vegorov): consider saving only caller save (volatile) registers.
const intptr_t fpu_regs_count = locs->live_registers()->FpuRegisterCount();
if (fpu_regs_count > 0) {
__ AddImmediate(SP, -(fpu_regs_count * kFpuRegisterSize));
// Store fpu registers with the lowest register number at the lowest
// address.
intptr_t offset = 0;
for (intptr_t i = 0; i < kNumberOfFpuRegisters; ++i) {
DRegister fpu_reg = static_cast<DRegister>(i);
if (locs->live_registers()->ContainsFpuRegister(fpu_reg)) {
__ StoreDToOffset(fpu_reg, SP, offset);
offset += kFpuRegisterSize;
}
}
ASSERT(offset == (fpu_regs_count * kFpuRegisterSize));
}
// The order in which the registers are pushed must match the order
// in which the registers are encoded in the safe point's stack map.
const intptr_t cpu_registers = locs->live_registers()->cpu_registers();
ASSERT((cpu_registers & ~kAllCpuRegistersList) == 0);
const int register_count = Utils::CountOneBits(cpu_registers);
if (register_count > 0) {
__ addiu(SP, SP, Immediate(-register_count * kWordSize));
intptr_t offset = register_count * kWordSize;
for (int i = kNumberOfCpuRegisters - 1; i >= 0; --i) {
Register r = static_cast<Register>(i);
if (locs->live_registers()->ContainsRegister(r)) {
offset -= kWordSize;
__ sw(r, Address(SP, offset));
}
}
ASSERT(offset == 0);
}
}
void FlowGraphCompiler::RestoreLiveRegisters(LocationSummary* locs) {
__ Comment("RestoreLiveRegisters");
const intptr_t cpu_registers = locs->live_registers()->cpu_registers();
ASSERT((cpu_registers & ~kAllCpuRegistersList) == 0);
const int register_count = Utils::CountOneBits(cpu_registers);
if (register_count > 0) {
intptr_t offset = register_count * kWordSize;
for (int i = kNumberOfCpuRegisters - 1; i >= 0; --i) {
Register r = static_cast<Register>(i);
if (locs->live_registers()->ContainsRegister(r)) {
offset -= kWordSize;
__ lw(r, Address(SP, offset));
}
}
ASSERT(offset == 0);
__ addiu(SP, SP, Immediate(register_count * kWordSize));
}
const intptr_t fpu_regs_count = locs->live_registers()->FpuRegisterCount();
if (fpu_regs_count > 0) {
// Fpu registers have the lowest register number at the lowest address.
intptr_t offset = 0;
for (intptr_t i = 0; i < kNumberOfFpuRegisters; ++i) {
DRegister fpu_reg = static_cast<DRegister>(i);
if (locs->live_registers()->ContainsFpuRegister(fpu_reg)) {
__ LoadDFromOffset(fpu_reg, SP, offset);
offset += kFpuRegisterSize;
}
}
ASSERT(offset == (fpu_regs_count * kFpuRegisterSize));
__ AddImmediate(SP, offset);
}
}
#if defined(DEBUG)
void FlowGraphCompiler::ClobberDeadTempRegisters(LocationSummary* locs) {
// Clobber temporaries that have not been manually preserved.
for (intptr_t i = 0; i < locs->temp_count(); ++i) {
Location tmp = locs->temp(i);
// TODO(zerny): clobber non-live temporary FPU registers.
if (tmp.IsRegister() &&
!locs->live_registers()->ContainsRegister(tmp.reg())) {
__ LoadImmediate(tmp.reg(), 0xf7);
}
}
}
#endif
void FlowGraphCompiler::EmitTestAndCall(const ICData& ic_data,
intptr_t argument_count,
const Array& argument_names,
Label* failed,
Label* match_found,
intptr_t deopt_id,
TokenPosition token_index,
LocationSummary* locs,
bool complete,
intptr_t total_ic_calls) {
ASSERT(is_optimizing());
__ Comment("EmitTestAndCall");
const Array& arguments_descriptor = Array::ZoneHandle(
zone(), ArgumentsDescriptor::New(argument_count, argument_names));
// Load receiver into T0.
__ LoadFromOffset(T0, SP, (argument_count - 1) * kWordSize);
__ LoadObject(S4, arguments_descriptor);
const bool kFirstCheckIsSmi = ic_data.GetReceiverClassIdAt(0) == kSmiCid;
const intptr_t num_checks = ic_data.NumberOfChecks();
ASSERT(!ic_data.IsNull() && (num_checks > 0));
Label after_smi_test;
if (kFirstCheckIsSmi) {
__ andi(CMPRES1, T0, Immediate(kSmiTagMask));
// Jump if receiver is not Smi.
if (num_checks == 1) {
__ bne(CMPRES1, ZR, failed);
} else {
__ bne(CMPRES1, ZR, &after_smi_test);
}
// Do not use the code from the function, but let the code be patched so
// that we can record the outgoing edges to other code.
const Function& function =
Function::ZoneHandle(zone(), ic_data.GetTargetAt(0));
GenerateStaticDartCall(deopt_id, token_index,
*StubCode::CallStaticFunction_entry(),
RawPcDescriptors::kOther, locs, function);
__ Drop(argument_count);
if (num_checks > 1) {
__ b(match_found);
}
} else {
// Receiver is Smi, but Smi is not a valid class therefore fail.
// (Smi class must be first in the list).
if (!complete) {
__ andi(CMPRES1, T0, Immediate(kSmiTagMask));
__ beq(CMPRES1, ZR, failed);
}
}
__ Bind(&after_smi_test);
ASSERT(!ic_data.IsNull() && (num_checks > 0));
GrowableArray<CidRangeTarget> sorted(num_checks);
SortICDataByCount(ic_data, &sorted, /* drop_smi = */ true);
const intptr_t sorted_len = sorted.length();
// If sorted_len is 0 then only a Smi check was needed; the Smi check above
// will fail if there was only one check and receiver is not Smi.
if (sorted_len == 0) return;
// Value is not Smi,
__ LoadClassId(T2, T0);
bool add_megamorphic_call = false;
int bias = 0;
for (intptr_t i = 0; i < sorted_len; i++) {
const bool is_last_check = (i == (sorted_len - 1));
int cid_start = sorted[i].cid_start;
int cid_end = sorted[i].cid_end;
int count = sorted[i].count;
if (!is_last_check && !complete && count < (total_ic_calls >> 5)) {
// This case is hit too rarely to be worth writing class-id checks inline
// for.
add_megamorphic_call = true;
break;
}
ASSERT(cid_start > kSmiCid || cid_end < kSmiCid);
Label next_test;
Condition no_match;
if (!complete || !is_last_check) {
Label* next_label = is_last_check ? failed : &next_test;
if (cid_start == cid_end) {
__ BranchNotEqual(T2, Immediate(cid_start - bias), next_label);
} else {
__ AddImmediate(T2, T2, bias - cid_start);
bias = cid_start;
// TODO(erikcorry): We should use sltiu instead of the temporary TMP if
// the range is small enough.
__ LoadImmediate(TMP, cid_end - cid_end);
// Reverse comparison so we get 1 if biased cid > tmp ie cid is out of
// range.
__ sltu(TMP, TMP, T2);
__ bne(TMP, ZR, next_label);
}
}
// Do not use the code from the function, but let the code be patched so
// that we can record the outgoing edges to other code.
const Function& function = *sorted[i].target;
GenerateStaticDartCall(deopt_id, token_index,
*StubCode::CallStaticFunction_entry(),
RawPcDescriptors::kOther, locs, function);
__ Drop(argument_count);
if (!is_last_check) {
__ b(match_found);
}
__ Bind(&next_test);
}
if (add_megamorphic_call) {
int try_index = CatchClauseNode::kInvalidTryIndex;
EmitMegamorphicInstanceCall(ic_data, argument_count, deopt_id, token_index,
locs, try_index, argument_count);
}
}
#undef __
#define __ compiler_->assembler()->
void ParallelMoveResolver::EmitMove(int index) {
MoveOperands* move = moves_[index];
const Location source = move->src();
const Location destination = move->dest();
__ Comment("ParallelMoveResolver::EmitMove");
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ mov(destination.reg(), source.reg());
} else {
ASSERT(destination.IsStackSlot());
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ StoreToOffset(source.reg(), destination.base_reg(), dest_offset);
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
const intptr_t source_offset = source.ToStackSlotOffset();
__ LoadFromOffset(destination.reg(), source.base_reg(), source_offset);
} else {
ASSERT(destination.IsStackSlot());
const intptr_t source_offset = source.ToStackSlotOffset();
const intptr_t dest_offset = destination.ToStackSlotOffset();
ScratchRegisterScope tmp(this, kNoRegister);
__ LoadFromOffset(tmp.reg(), source.base_reg(), source_offset);
__ StoreToOffset(tmp.reg(), destination.base_reg(), dest_offset);
}
} else if (source.IsFpuRegister()) {
if (destination.IsFpuRegister()) {
DRegister dst = destination.fpu_reg();
DRegister src = source.fpu_reg();
__ movd(dst, src);
} else {
ASSERT(destination.IsDoubleStackSlot());
const intptr_t dest_offset = destination.ToStackSlotOffset();
DRegister src = source.fpu_reg();
__ StoreDToOffset(src, destination.base_reg(), dest_offset);
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsFpuRegister()) {
const intptr_t source_offset = source.ToStackSlotOffset();
DRegister dst = destination.fpu_reg();
__ LoadDFromOffset(dst, source.base_reg(), source_offset);
} else {
ASSERT(destination.IsDoubleStackSlot());
const intptr_t source_offset = source.ToStackSlotOffset();
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ LoadDFromOffset(DTMP, source.base_reg(), source_offset);
__ StoreDToOffset(DTMP, destination.base_reg(), dest_offset);
}
} else {
ASSERT(source.IsConstant());
const Object& constant = source.constant();
if (destination.IsRegister()) {
if (constant.IsSmi() &&
(source.constant_instruction()->representation() == kUnboxedInt32)) {
__ LoadImmediate(destination.reg(), Smi::Cast(constant).Value());
} else {
__ LoadObject(destination.reg(), constant);
}
} else if (destination.IsFpuRegister()) {
__ LoadObject(TMP, constant);
__ LoadDFromOffset(destination.fpu_reg(), TMP,
Double::value_offset() - kHeapObjectTag);
} else if (destination.IsDoubleStackSlot()) {
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ LoadObject(TMP, constant);
__ LoadDFromOffset(DTMP, TMP, Double::value_offset() - kHeapObjectTag);
__ StoreDToOffset(DTMP, destination.base_reg(), dest_offset);
} else {
ASSERT(destination.IsStackSlot());
const intptr_t dest_offset = destination.ToStackSlotOffset();
ScratchRegisterScope tmp(this, kNoRegister);
if (constant.IsSmi() &&
(source.constant_instruction()->representation() == kUnboxedInt32)) {
__ LoadImmediate(tmp.reg(), Smi::Cast(constant).Value());
} else {
__ LoadObject(tmp.reg(), constant);
}
__ StoreToOffset(tmp.reg(), destination.base_reg(), dest_offset);
}
}
move->Eliminate();
}
void ParallelMoveResolver::EmitSwap(int index) {
MoveOperands* move = moves_[index];
const Location source = move->src();
const Location destination = move->dest();
if (source.IsRegister() && destination.IsRegister()) {
ASSERT(source.reg() != TMP);
ASSERT(destination.reg() != TMP);
__ mov(TMP, source.reg());
__ mov(source.reg(), destination.reg());
__ mov(destination.reg(), TMP);
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange(source.reg(), destination.base_reg(),
destination.ToStackSlotOffset());
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange(destination.reg(), source.base_reg(), source.ToStackSlotOffset());
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange(source.base_reg(), source.ToStackSlotOffset(),
destination.base_reg(), destination.ToStackSlotOffset());
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
DRegister dst = destination.fpu_reg();
DRegister src = source.fpu_reg();
__ movd(DTMP, src);
__ movd(src, dst);
__ movd(dst, DTMP);
} else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
ASSERT(destination.IsDoubleStackSlot() || source.IsDoubleStackSlot());
DRegister reg =
source.IsFpuRegister() ? source.fpu_reg() : destination.fpu_reg();
Register base_reg =
source.IsFpuRegister() ? destination.base_reg() : source.base_reg();
const intptr_t slot_offset = source.IsFpuRegister()
? destination.ToStackSlotOffset()
: source.ToStackSlotOffset();
__ LoadDFromOffset(DTMP, base_reg, slot_offset);
__ StoreDToOffset(reg, base_reg, slot_offset);
__ movd(reg, DTMP);
} else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
const intptr_t source_offset = source.ToStackSlotOffset();
const intptr_t dest_offset = destination.ToStackSlotOffset();
ScratchFpuRegisterScope ensure_scratch(this, DTMP);
DRegister scratch = ensure_scratch.reg();
__ LoadDFromOffset(DTMP, source.base_reg(), source_offset);
__ LoadDFromOffset(scratch, destination.base_reg(), dest_offset);
__ StoreDToOffset(DTMP, destination.base_reg(), dest_offset);
__ StoreDToOffset(scratch, source.base_reg(), source_offset);
} else {
UNREACHABLE();
}
// The swap of source and destination has executed a move from source to
// destination.
move->Eliminate();
// Any unperformed (including pending) move with a source of either
// this move's source or destination needs to have their source
// changed to reflect the state of affairs after the swap.
for (int i = 0; i < moves_.length(); ++i) {
const MoveOperands& other_move = *moves_[i];
if (other_move.Blocks(source)) {
moves_[i]->set_src(destination);
} else if (other_move.Blocks(destination)) {
moves_[i]->set_src(source);
}
}
}
void ParallelMoveResolver::MoveMemoryToMemory(const Address& dst,
const Address& src) {
__ Comment("ParallelMoveResolver::MoveMemoryToMemory");
__ lw(TMP, src);
__ sw(TMP, dst);
}
void ParallelMoveResolver::StoreObject(const Address& dst, const Object& obj) {
__ Comment("ParallelMoveResolver::StoreObject");
__ LoadObject(TMP, obj);
__ sw(TMP, dst);
}
// Do not call or implement this function. Instead, use the form below that
// uses an offset from the frame pointer instead of an Address.
void ParallelMoveResolver::Exchange(Register reg, const Address& mem) {
UNREACHABLE();
}
// Do not call or implement this function. Instead, use the form below that
// uses offsets from the frame pointer instead of Addresses.
void ParallelMoveResolver::Exchange(const Address& mem1, const Address& mem2) {
UNREACHABLE();
}
void ParallelMoveResolver::Exchange(Register reg,
Register base_reg,
intptr_t stack_offset) {
ScratchRegisterScope tmp(this, reg);
__ mov(tmp.reg(), reg);
__ LoadFromOffset(reg, base_reg, stack_offset);
__ StoreToOffset(tmp.reg(), base_reg, stack_offset);
}
void ParallelMoveResolver::Exchange(Register base_reg1,
intptr_t stack_offset1,
Register base_reg2,
intptr_t stack_offset2) {
ScratchRegisterScope tmp1(this, kNoRegister);
ScratchRegisterScope tmp2(this, tmp1.reg());
__ LoadFromOffset(tmp1.reg(), base_reg1, stack_offset1);
__ LoadFromOffset(tmp2.reg(), base_reg2, stack_offset2);
__ StoreToOffset(tmp1.reg(), base_reg1, stack_offset2);
__ StoreToOffset(tmp2.reg(), base_reg2, stack_offset1);
}
void ParallelMoveResolver::SpillScratch(Register reg) {
__ Comment("ParallelMoveResolver::SpillScratch");
__ Push(reg);
}
void ParallelMoveResolver::RestoreScratch(Register reg) {
__ Comment("ParallelMoveResolver::RestoreScratch");
__ Pop(reg);
}
void ParallelMoveResolver::SpillFpuScratch(FpuRegister reg) {
__ Comment("ParallelMoveResolver::SpillFpuScratch");
__ AddImmediate(SP, -kDoubleSize);
__ StoreDToOffset(reg, SP, 0);
}
void ParallelMoveResolver::RestoreFpuScratch(FpuRegister reg) {
__ Comment("ParallelMoveResolver::RestoreFpuScratch");
__ LoadDFromOffset(reg, SP, 0);
__ AddImmediate(SP, kDoubleSize);
}
#undef __
} // namespace dart
#endif // defined TARGET_ARCH_MIPS