blob: d0ecc0dbe23952f8f8312101b4f948c6f9025f41 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_ARCH_ARM)
#include "vm/cpu.h"
#include "vm/cpu_arm.h"
#include "vm/assembler.h"
#include "vm/cpuinfo.h"
#include "vm/heap.h"
#include "vm/isolate.h"
#include "vm/object.h"
#include "vm/simulator.h"
#if !defined(USING_SIMULATOR)
#include <sys/syscall.h> /* NOLINT */
#include <unistd.h> /* NOLINT */
#endif
// ARM version differences.
// We support three major 32-bit ARM ISA versions: ARMv5TE, ARMv6 and variants,
// and ARMv7 and variants. For each of these we detect the presence of vfp,
// neon, and integer division instructions. Considering ARMv5TE as the baseline,
// later versions add the following features/instructions that we use:
//
// ARMv6:
// - PC read offset in store instructions is 8 rather than 12, matching the
// offset in read instructions,
// - strex, ldrex, and clrex load/store/clear exclusive instructions,
// - umaal multiplication instruction,
// ARMv7:
// - movw, movt 16-bit immediate load instructions,
// - mls multiplication instruction,
// - vmovs, vmovd floating point immediate load instructions.
//
// If an aarch64 CPU is detected, we generate ARMv7 code.
//
// If an instruction is missing on ARMv5TE or ARMv6, we emulate it, if possible.
// Where we are missing vfp, we do not unbox doubles, or generate intrinsics for
// floating point operations. Where we are missing neon, we do not unbox SIMD
// values, or inline operations on SIMD values. Where we are missing integer
// division, we do not inline division operations, and we do not generate
// intrinsics that do division. See the feature tests in flow_graph_optimizer.cc
// for details.
//
// Alignment:
//
// Before ARMv6, that is only for ARMv5TE, unaligned accesses will cause a
// crash. This includes the ldrd and strd instructions, which must use addresses
// that are 8-byte aligned. Since we don't always guarantee that for our uses
// of ldrd and strd, these instructions are emulated with two load or store
// instructions on ARMv5TE. On ARMv6 and on, we assume that the kernel is
// set up to fixup unaligned accesses. This can be verified by checking
// /proc/cpu/alignment on modern Linux systems.
namespace dart {
#if defined(TARGET_ARCH_ARM_5TE)
DEFINE_FLAG(bool, use_vfp, false, "Use vfp instructions if supported");
DEFINE_FLAG(bool, use_neon, false, "Use neon instructions if supported");
DEFINE_FLAG(bool,
use_integer_division,
false,
"Use integer division instruction if supported");
#elif defined(TARGET_ARCH_ARM_6)
DEFINE_FLAG(bool, use_vfp, true, "Use vfp instructions if supported");
DEFINE_FLAG(bool, use_neon, false, "Use neon instructions if supported");
DEFINE_FLAG(bool,
use_integer_division,
false,
"Use integer division instruction if supported");
#else
DEFINE_FLAG(bool, use_vfp, true, "Use vfp instructions if supported");
DEFINE_FLAG(bool, use_neon, true, "Use neon instructions if supported");
DEFINE_FLAG(bool,
use_integer_division,
true,
"Use integer division instruction if supported");
#endif
#if defined(USING_SIMULATOR)
#if defined(TARGET_ARCH_ARM_5TE) || defined(TARGET_OS_ANDROID)
DEFINE_FLAG(bool, sim_use_hardfp, false, "Use the hardfp ABI.");
#else
DEFINE_FLAG(bool, sim_use_hardfp, true, "Use the hardfp ABI.");
#endif
#endif
void CPU::FlushICache(uword start, uword size) {
#if HOST_OS_IOS
// Precompilation never patches code so there should be no I cache flushes.
UNREACHABLE();
#endif
#if !defined(USING_SIMULATOR) && !HOST_OS_IOS
// Nothing to do. Flushing no instructions.
if (size == 0) {
return;
}
// ARM recommends using the gcc intrinsic __clear_cache on Linux, and the
// library call cacheflush from unistd.h on Android:
// blogs.arm.com/software-enablement/141-caches-and-self-modifying-code/
#if defined(__linux__) && !defined(ANDROID)
extern void __clear_cache(char*, char*);
char* beg = reinterpret_cast<char*>(start);
char* end = reinterpret_cast<char*>(start + size);
::__clear_cache(beg, end);
#elif defined(ANDROID)
cacheflush(start, start + size, 0);
#else
#error FlushICache only tested/supported on Linux and Android
#endif
#endif
}
const char* CPU::Id() {
return
#if defined(USING_SIMULATOR)
"sim"
#endif // defined(USING_SIMULATOR)
"arm";
}
bool HostCPUFeatures::integer_division_supported_ = false;
bool HostCPUFeatures::vfp_supported_ = false;
bool HostCPUFeatures::neon_supported_ = false;
bool HostCPUFeatures::hardfp_supported_ = false;
const char* HostCPUFeatures::hardware_ = NULL;
ARMVersion HostCPUFeatures::arm_version_ = ARMvUnknown;
intptr_t HostCPUFeatures::store_pc_read_offset_ = 8;
#if defined(DEBUG)
bool HostCPUFeatures::initialized_ = false;
#endif
#if !defined(USING_SIMULATOR)
#if HOST_OS_IOS
void HostCPUFeatures::InitOnce() {
// TODO(24743): Actually check the CPU features and fail if we're missing
// something assumed in a precompiled snapshot.
hardware_ = "";
// When the VM is targetted to ARMv7, pretend that the CPU is ARMv7 even if
// the CPU is actually AArch64.
arm_version_ = ARMv7;
// Always assume we have floating point unit since we dont support ARMv6 in
// this path.
vfp_supported_ = FLAG_use_vfp;
integer_division_supported_ = FLAG_use_integer_division;
neon_supported_ = FLAG_use_neon;
hardfp_supported_ = true;
#if defined(DEBUG)
initialized_ = true;
#endif
}
#else // HOST_OS_IOS
void HostCPUFeatures::InitOnce() {
bool is_arm64 = false;
CpuInfo::InitOnce();
hardware_ = CpuInfo::GetCpuModel();
// Check for ARMv5TE, ARMv6, ARMv7, or aarch64.
// It can be in either the Processor or Model information fields.
if (CpuInfo::FieldContains(kCpuInfoProcessor, "aarch64") ||
CpuInfo::FieldContains(kCpuInfoModel, "aarch64") ||
CpuInfo::FieldContains(kCpuInfoArchitecture, "8") ||
CpuInfo::FieldContains(kCpuInfoArchitecture, "AArch64")) {
// pretend that this arm64 cpu is really an ARMv7
arm_version_ = ARMv7;
is_arm64 = true;
} else if (CpuInfo::FieldContains(kCpuInfoProcessor, "ARM926EJ-S") ||
CpuInfo::FieldContains(kCpuInfoModel, "ARM926EJ-S")) {
// Lego Mindstorm EV3.
arm_version_ = ARMv5TE;
// On ARMv5, the PC read offset in an STR or STM instruction is either 8 or
// 12 bytes depending on the implementation. On the Mindstorm EV3 it is 12
// bytes.
store_pc_read_offset_ = 12;
} else if (CpuInfo::FieldContains(kCpuInfoProcessor, "Feroceon 88FR131") ||
CpuInfo::FieldContains(kCpuInfoModel, "Feroceon 88FR131")) {
// This is for the DGBox. For the time-being, assume it is similar to the
// Lego Mindstorm.
arm_version_ = ARMv5TE;
store_pc_read_offset_ = 12;
} else if (CpuInfo::FieldContains(kCpuInfoProcessor, "ARMv6") ||
CpuInfo::FieldContains(kCpuInfoModel, "ARMv6")) {
// Raspberry Pi, etc.
arm_version_ = ARMv6;
} else {
ASSERT(CpuInfo::FieldContains(kCpuInfoProcessor, "ARMv7") ||
CpuInfo::FieldContains(kCpuInfoModel, "ARMv7"));
arm_version_ = ARMv7;
}
// Has floating point unit.
vfp_supported_ =
(CpuInfo::FieldContains(kCpuInfoFeatures, "vfp") || is_arm64) &&
FLAG_use_vfp;
// Has integer division.
// Special cases:
// - Qualcomm Krait CPUs (QCT APQ8064) in Nexus 4 and 7 incorrectly report
// that they lack integer division.
// - Marvell Armada 370/XP incorrectly reports that it has integer division.
// - Qualcomm Snapdragon 820/821 CPUs (MSM 8996 and MSM8996pro) in Xiaomi MI5
// and Pixel lack integer division even though ARMv8 requires it in A32.
bool is_krait = CpuInfo::FieldContains(kCpuInfoHardware, "QCT APQ8064");
bool is_armada_370xp =
CpuInfo::FieldContains(kCpuInfoHardware, "Marvell Armada 370/XP");
bool is_snapdragon = CpuInfo::FieldContains(kCpuInfoHardware, "MSM8996");
if (is_krait) {
integer_division_supported_ = FLAG_use_integer_division;
} else if (is_armada_370xp || is_snapdragon) {
integer_division_supported_ = false;
} else {
integer_division_supported_ =
(CpuInfo::FieldContains(kCpuInfoFeatures, "idiva") || is_arm64) &&
FLAG_use_integer_division;
}
neon_supported_ =
(CpuInfo::FieldContains(kCpuInfoFeatures, "neon") || is_arm64) &&
FLAG_use_vfp && FLAG_use_neon;
// Use the cross-compiler's predefined macros to determine whether we should
// use the hard or soft float ABI.
#if defined(__ARM_PCS_VFP)
hardfp_supported_ = true;
#else
hardfp_supported_ = false;
#endif
#if defined(DEBUG)
initialized_ = true;
#endif
}
#endif // HOST_OS_IOS
void HostCPUFeatures::Cleanup() {
DEBUG_ASSERT(initialized_);
#if defined(DEBUG)
initialized_ = false;
#endif
ASSERT(hardware_ != NULL);
free(const_cast<char*>(hardware_));
hardware_ = NULL;
CpuInfo::Cleanup();
}
#else
void HostCPUFeatures::InitOnce() {
CpuInfo::InitOnce();
hardware_ = CpuInfo::GetCpuModel();
#if defined(TARGET_ARCH_ARM_5TE)
arm_version_ = ARMv5TE;
#elif defined(TARGET_ARCH_ARM_6)
arm_version_ = ARMv6;
#else
arm_version_ = ARMv7;
#endif
integer_division_supported_ = FLAG_use_integer_division;
vfp_supported_ = FLAG_use_vfp;
neon_supported_ = FLAG_use_vfp && FLAG_use_neon;
hardfp_supported_ = FLAG_sim_use_hardfp;
#if defined(DEBUG)
initialized_ = true;
#endif
}
void HostCPUFeatures::Cleanup() {
DEBUG_ASSERT(initialized_);
#if defined(DEBUG)
initialized_ = false;
#endif
ASSERT(hardware_ != NULL);
free(const_cast<char*>(hardware_));
hardware_ = NULL;
CpuInfo::Cleanup();
}
#endif // !defined(USING_SIMULATOR)
} // namespace dart
#endif // defined TARGET_ARCH_ARM