| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #ifndef RUNTIME_VM_CONSTANTS_ARM_H_ |
| #define RUNTIME_VM_CONSTANTS_ARM_H_ |
| |
| #include "platform/globals.h" |
| #include "platform/assert.h" |
| |
| namespace dart { |
| |
| // We support both VFPv3-D16 and VFPv3-D32 profiles, but currently only one at |
| // a time. |
| #if defined(__ARM_ARCH_7A__) |
| #define VFPv3_D32 |
| #elif defined(TARGET_ARCH_ARM) && !defined(HOST_ARCH_ARM) |
| // If we're running in the simulator, use all 32. |
| #define VFPv3_D32 |
| #else |
| #define VFPv3_D16 |
| #endif |
| #if defined(VFPv3_D16) == defined(VFPv3_D32) |
| #error "Exactly one of VFPv3_D16 or VFPv3_D32 can be defined at a time." |
| #endif |
| |
| |
| // The Linux/Android ABI and the iOS ABI differ in their choice of frame |
| // pointer, their treatment of R9, and the interproduceral stack alignment. |
| |
| // EABI (Linux, Android) |
| // See "Procedure Call Standard for the ARM Architecture". |
| // R0-R1: Argument / result / volatile |
| // R2-R3: Argument / volatile |
| // R4-R10: Preserved |
| // R11: Frame pointer |
| // R12: Volatile |
| // R13: Stack pointer |
| // R14: Link register |
| // R15: Program counter |
| // Stack alignment: 4 bytes always, 8 bytes at public interfaces |
| |
| // Linux (Debian armhf) and Android also differ in whether floating point |
| // arguments are passed in registers. Linux uses hardfp and Android uses |
| // softfp. See TargetCPUFeatures::hardfp_supported(). |
| |
| // iOS ABI |
| // See "iOS ABI Function Call Guide" |
| // R0-R1: Argument / result / volatile |
| // R2-R3: Argument / volatile |
| // R4-R6: Preserved |
| // R7: Frame pointer |
| // R8-R9: Preserved |
| // R12: Volatile |
| // R13: Stack pointer |
| // R14: Link register |
| // R15: Program counter |
| // Stack alignment: 4 bytes always, 4 bytes at public interfaces |
| |
| // iOS passes floating point arguments in registers (hardfp) |
| |
| |
| enum Register { |
| R0 = 0, |
| R1 = 1, |
| R2 = 2, |
| R3 = 3, |
| R4 = 4, |
| R5 = 5, // PP |
| R6 = 6, // CTX |
| R7 = 7, // iOS FP |
| R8 = 8, |
| R9 = 9, |
| R10 = 10, // THR |
| R11 = 11, // Linux FP |
| R12 = 12, // IP aka TMP |
| R13 = 13, // SP |
| R14 = 14, // LR |
| R15 = 15, // PC |
| kNumberOfCpuRegisters = 16, |
| kNoRegister = -1, // Signals an illegal register. |
| |
| // Aliases. |
| #if defined(TARGET_OS_MACOS) || defined(TARGET_OS_MACOS_IOS) |
| FP = R7, |
| NOTFP = R11, |
| #else |
| FP = R11, |
| NOTFP = R7, |
| #endif |
| IP = R12, |
| SP = R13, |
| LR = R14, |
| PC = R15, |
| }; |
| |
| |
| // Values for single-precision floating point registers. |
| enum SRegister { |
| kNoSRegister = -1, |
| S0 = 0, |
| S1 = 1, |
| S2 = 2, |
| S3 = 3, |
| S4 = 4, |
| S5 = 5, |
| S6 = 6, |
| S7 = 7, |
| S8 = 8, |
| S9 = 9, |
| S10 = 10, |
| S11 = 11, |
| S12 = 12, |
| S13 = 13, |
| S14 = 14, |
| S15 = 15, |
| S16 = 16, |
| S17 = 17, |
| S18 = 18, |
| S19 = 19, |
| S20 = 20, |
| S21 = 21, |
| S22 = 22, |
| S23 = 23, |
| S24 = 24, |
| S25 = 25, |
| S26 = 26, |
| S27 = 27, |
| S28 = 28, |
| S29 = 29, |
| S30 = 30, |
| S31 = 31, |
| kNumberOfSRegisters = 32, |
| }; |
| |
| |
| // Values for double-precision floating point registers. |
| enum DRegister { |
| kNoDRegister = -1, |
| D0 = 0, |
| D1 = 1, |
| D2 = 2, |
| D3 = 3, |
| D4 = 4, |
| D5 = 5, |
| D6 = 6, |
| D7 = 7, |
| D8 = 8, |
| D9 = 9, |
| D10 = 10, |
| D11 = 11, |
| D12 = 12, |
| D13 = 13, |
| D14 = 14, |
| D15 = 15, |
| #if defined(VFPv3_D16) |
| kNumberOfDRegisters = 16, |
| // Leaving these defined, but marking them as kNoDRegister to avoid polluting |
| // other parts of the code with #ifdef's. Instead, query kNumberOfDRegisters |
| // to see which registers are valid. |
| D16 = kNoDRegister, |
| D17 = kNoDRegister, |
| D18 = kNoDRegister, |
| D19 = kNoDRegister, |
| D20 = kNoDRegister, |
| D21 = kNoDRegister, |
| D22 = kNoDRegister, |
| D23 = kNoDRegister, |
| D24 = kNoDRegister, |
| D25 = kNoDRegister, |
| D26 = kNoDRegister, |
| D27 = kNoDRegister, |
| D28 = kNoDRegister, |
| D29 = kNoDRegister, |
| D30 = kNoDRegister, |
| D31 = kNoDRegister, |
| #else |
| D16 = 16, |
| D17 = 17, |
| D18 = 18, |
| D19 = 19, |
| D20 = 20, |
| D21 = 21, |
| D22 = 22, |
| D23 = 23, |
| D24 = 24, |
| D25 = 25, |
| D26 = 26, |
| D27 = 27, |
| D28 = 28, |
| D29 = 29, |
| D30 = 30, |
| D31 = 31, |
| kNumberOfDRegisters = 32, |
| #endif |
| kNumberOfOverlappingDRegisters = 16, |
| }; |
| |
| |
| enum QRegister { |
| kNoQRegister = -1, |
| Q0 = 0, |
| Q1 = 1, |
| Q2 = 2, |
| Q3 = 3, |
| Q4 = 4, |
| Q5 = 5, |
| Q6 = 6, |
| Q7 = 7, |
| #if defined(VFPv3_D16) |
| kNumberOfQRegisters = 8, |
| Q8 = kNoQRegister, |
| Q9 = kNoQRegister, |
| Q10 = kNoQRegister, |
| Q11 = kNoQRegister, |
| Q12 = kNoQRegister, |
| Q13 = kNoQRegister, |
| Q14 = kNoQRegister, |
| Q15 = kNoQRegister, |
| #else |
| Q8 = 8, |
| Q9 = 9, |
| Q10 = 10, |
| Q11 = 11, |
| Q12 = 12, |
| Q13 = 13, |
| Q14 = 14, |
| Q15 = 15, |
| kNumberOfQRegisters = 16, |
| #endif |
| }; |
| |
| |
| static inline DRegister EvenDRegisterOf(QRegister q) { |
| return static_cast<DRegister>(q * 2); |
| } |
| |
| static inline DRegister OddDRegisterOf(QRegister q) { |
| return static_cast<DRegister>((q * 2) + 1); |
| } |
| |
| |
| static inline SRegister EvenSRegisterOf(DRegister d) { |
| #if defined(VFPv3_D32) |
| // When we have 32 D registers, the S registers only overlap the first 16. |
| // That is, there are only 32 S registers. |
| ASSERT(d < D16); |
| #endif |
| return static_cast<SRegister>(d * 2); |
| } |
| |
| static inline SRegister OddSRegisterOf(DRegister d) { |
| #if defined(VFPv3_D32) |
| ASSERT(d < D16); |
| #endif |
| return static_cast<SRegister>((d * 2) + 1); |
| } |
| |
| |
| // Register aliases for floating point scratch registers. |
| const QRegister QTMP = Q7; // Overlaps with DTMP, STMP. |
| const DRegister DTMP = EvenDRegisterOf(QTMP); // Overlaps with STMP. |
| const SRegister STMP = EvenSRegisterOf(DTMP); |
| |
| // Architecture independent aliases. |
| typedef QRegister FpuRegister; |
| |
| const FpuRegister FpuTMP = QTMP; |
| const int kNumberOfFpuRegisters = kNumberOfQRegisters; |
| const FpuRegister kNoFpuRegister = kNoQRegister; |
| |
| // Register aliases. |
| const Register TMP = IP; // Used as scratch register by assembler. |
| const Register TMP2 = kNoRegister; // There is no second assembler temporary. |
| const Register CTX = R6; // Location of current context at method entry. |
| const Register PP = R5; // Caches object pool pointer in generated code. |
| const Register SPREG = SP; // Stack pointer register. |
| const Register FPREG = FP; // Frame pointer register. |
| const Register LRREG = LR; // Link register. |
| const Register ICREG = R9; // IC data register. |
| const Register ARGS_DESC_REG = R4; |
| const Register CODE_REG = R6; |
| const Register THR = R10; // Caches current thread in generated code. |
| const Register CALLEE_SAVED_TEMP = R8; |
| |
| // R15 encodes APSR in the vmrs instruction. |
| const Register APSR = R15; |
| |
| // Exception object is passed in this register to the catch handlers when an |
| // exception is thrown. |
| const Register kExceptionObjectReg = R0; |
| |
| // Stack trace object is passed in this register to the catch handlers when |
| // an exception is thrown. |
| const Register kStackTraceObjectReg = R1; |
| |
| |
| // List of registers used in load/store multiple. |
| typedef uint16_t RegList; |
| const RegList kAllCpuRegistersList = 0xFFFF; |
| |
| |
| // C++ ABI call registers. |
| const RegList kAbiArgumentCpuRegs = |
| (1 << R0) | (1 << R1) | (1 << R2) | (1 << R3); |
| #if defined(TARGET_OS_MACOS) || defined(TARGET_OS_MACOS_IOS) |
| const RegList kAbiPreservedCpuRegs = |
| (1 << R4) | (1 << R5) | (1 << R6) | (1 << R8) | (1 << R10) | (1 << R11); |
| const int kAbiPreservedCpuRegCount = 6; |
| #else |
| const RegList kAbiPreservedCpuRegs = (1 << R4) | (1 << R5) | (1 << R6) | |
| (1 << R7) | (1 << R8) | (1 << R9) | |
| (1 << R10); |
| const int kAbiPreservedCpuRegCount = 7; |
| #endif |
| const QRegister kAbiFirstPreservedFpuReg = Q4; |
| const QRegister kAbiLastPreservedFpuReg = Q7; |
| const int kAbiPreservedFpuRegCount = 4; |
| |
| const RegList kReservedCpuRegisters = (1 << SPREG) | (1 << FPREG) | (1 << TMP) | |
| (1 << PP) | (1 << THR) | (1 << PC); |
| // CPU registers available to Dart allocator. |
| const RegList kDartAvailableCpuRegs = |
| kAllCpuRegistersList & ~kReservedCpuRegisters; |
| // Registers available to Dart that are not preserved by runtime calls. |
| const RegList kDartVolatileCpuRegs = |
| kDartAvailableCpuRegs & ~kAbiPreservedCpuRegs; |
| #if defined(TARGET_OS_MACOS) || defined(TARGET_OS_MACOS_IOS) |
| const int kDartVolatileCpuRegCount = 6; |
| #else |
| const int kDartVolatileCpuRegCount = 5; |
| #endif |
| const QRegister kDartFirstVolatileFpuReg = Q0; |
| const QRegister kDartLastVolatileFpuReg = Q3; |
| const int kDartVolatileFpuRegCount = 4; |
| |
| |
| // Values for the condition field as defined in section A3.2. |
| enum Condition { |
| kNoCondition = -1, |
| EQ = 0, // equal |
| NE = 1, // not equal |
| CS = 2, // carry set/unsigned higher or same |
| CC = 3, // carry clear/unsigned lower |
| MI = 4, // minus/negative |
| PL = 5, // plus/positive or zero |
| VS = 6, // overflow |
| VC = 7, // no overflow |
| HI = 8, // unsigned higher |
| LS = 9, // unsigned lower or same |
| GE = 10, // signed greater than or equal |
| LT = 11, // signed less than |
| GT = 12, // signed greater than |
| LE = 13, // signed less than or equal |
| AL = 14, // always (unconditional) |
| kSpecialCondition = 15, // special condition (refer to section A3.2.1) |
| kMaxCondition = 16, |
| }; |
| |
| |
| // Opcodes for Data-processing instructions (instructions with a type 0 and 1) |
| // as defined in section A3.4 |
| enum Opcode { |
| kNoOperand = -1, |
| AND = 0, // Logical AND |
| EOR = 1, // Logical Exclusive OR |
| SUB = 2, // Subtract |
| RSB = 3, // Reverse Subtract |
| ADD = 4, // Add |
| ADC = 5, // Add with Carry |
| SBC = 6, // Subtract with Carry |
| RSC = 7, // Reverse Subtract with Carry |
| TST = 8, // Test |
| TEQ = 9, // Test Equivalence |
| CMP = 10, // Compare |
| CMN = 11, // Compare Negated |
| ORR = 12, // Logical (inclusive) OR |
| MOV = 13, // Move |
| BIC = 14, // Bit Clear |
| MVN = 15, // Move Not |
| kMaxOperand = 16 |
| }; |
| |
| |
| // Shifter types for Data-processing operands as defined in section A5.1.2. |
| enum Shift { |
| kNoShift = -1, |
| LSL = 0, // Logical shift left |
| LSR = 1, // Logical shift right |
| ASR = 2, // Arithmetic shift right |
| ROR = 3, // Rotate right |
| kMaxShift = 4 |
| }; |
| |
| |
| // Constants used for the decoding or encoding of the individual fields of |
| // instructions. Based on the "Figure 3-1 ARM instruction set summary". |
| enum InstructionFields { |
| kConditionShift = 28, |
| kConditionBits = 4, |
| kTypeShift = 25, |
| kTypeBits = 3, |
| kLinkShift = 24, |
| kLinkBits = 1, |
| kUShift = 23, |
| kUBits = 1, |
| kOpcodeShift = 21, |
| kOpcodeBits = 4, |
| kSShift = 20, |
| kSBits = 1, |
| kRnShift = 16, |
| kRnBits = 4, |
| kRdShift = 12, |
| kRdBits = 4, |
| kRsShift = 8, |
| kRsBits = 4, |
| kRmShift = 0, |
| kRmBits = 4, |
| |
| // Immediate instruction fields encoding. |
| kRotateShift = 8, |
| kRotateBits = 4, |
| kImmed8Shift = 0, |
| kImmed8Bits = 8, |
| |
| // Shift instruction register fields encodings. |
| kShiftImmShift = 7, |
| kShiftRegisterShift = 8, |
| kShiftImmBits = 5, |
| kShiftShift = 5, |
| kShiftBits = 2, |
| |
| // Load/store instruction offset field encoding. |
| kOffset12Shift = 0, |
| kOffset12Bits = 12, |
| kOffset12Mask = 0x00000fff, |
| |
| // Mul instruction register field encodings. |
| kMulRdShift = 16, |
| kMulRdBits = 4, |
| kMulRnShift = 12, |
| kMulRnBits = 4, |
| |
| // Div instruction register field encodings. |
| kDivRdShift = 16, |
| kDivRdBits = 4, |
| kDivRmShift = 8, |
| kDivRmBits = 4, |
| kDivRnShift = 0, |
| kDivRnBits = 4, |
| |
| // ldrex/strex register field encodings. |
| kLdExRnShift = 16, |
| kLdExRtShift = 12, |
| kStrExRnShift = 16, |
| kStrExRdShift = 12, |
| kStrExRtShift = 0, |
| |
| // MRC instruction offset field encoding. |
| kCRmShift = 0, |
| kCRmBits = 4, |
| kOpc2Shift = 5, |
| kOpc2Bits = 3, |
| kCoprocShift = 8, |
| kCoprocBits = 4, |
| kCRnShift = 16, |
| kCRnBits = 4, |
| kOpc1Shift = 21, |
| kOpc1Bits = 3, |
| |
| kBranchOffsetMask = 0x00ffffff |
| }; |
| |
| |
| // The class Instr enables access to individual fields defined in the ARM |
| // architecture instruction set encoding as described in figure A3-1. |
| // |
| // Example: Test whether the instruction at ptr sets the condition code bits. |
| // |
| // bool InstructionSetsConditionCodes(byte* ptr) { |
| // Instr* instr = Instr::At(ptr); |
| // int type = instr->TypeField(); |
| // return ((type == 0) || (type == 1)) && instr->HasS(); |
| // } |
| // |
| class Instr { |
| public: |
| enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 }; |
| |
| static const int32_t kNopInstruction = // nop |
| ((AL << kConditionShift) | (0x32 << 20) | (0xf << 12)); |
| |
| static const int32_t kBreakPointCode = 0xdeb0; // For breakpoint. |
| static const int32_t kStopMessageCode = 0xdeb1; // For Stop(message). |
| static const int32_t kSimulatorBreakCode = 0xdeb2; // For breakpoint in sim. |
| static const int32_t kSimulatorRedirectCode = 0xca11; // For redirection. |
| |
| // Breakpoint instruction filling assembler code buffers in debug mode. |
| static const int32_t kBreakPointInstruction = // bkpt(0xdeb0) |
| ((AL << kConditionShift) | (0x12 << 20) | (0xdeb << 8) | (0x7 << 4)); |
| |
| // Breakpoint instruction used by the simulator. |
| // Should be distinct from kBreakPointInstruction and from a typical user |
| // breakpoint inserted in generated code for debugging, e.g. bkpt(0). |
| static const int32_t kSimulatorBreakpointInstruction = |
| // svc #kBreakpointSvcCode |
| ((AL << kConditionShift) | (0xf << 24) | kSimulatorBreakCode); |
| |
| // Runtime call redirection instruction used by the simulator. |
| static const int32_t kSimulatorRedirectInstruction = |
| ((AL << kConditionShift) | (0xf << 24) | kSimulatorRedirectCode); |
| |
| // Get the raw instruction bits. |
| inline int32_t InstructionBits() const { |
| return *reinterpret_cast<const int32_t*>(this); |
| } |
| |
| // Set the raw instruction bits to value. |
| inline void SetInstructionBits(int32_t value) { |
| *reinterpret_cast<int32_t*>(this) = value; |
| } |
| |
| // Read one particular bit out of the instruction bits. |
| inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } |
| |
| // Read a bit field out of the instruction bits. |
| inline int Bits(int shift, int count) const { |
| return (InstructionBits() >> shift) & ((1 << count) - 1); |
| } |
| |
| |
| // Accessors for the different named fields used in the ARM encoding. |
| // The naming of these accessor corresponds to figure A3-1. |
| // Generally applicable fields |
| inline Condition ConditionField() const { |
| return static_cast<Condition>(Bits(kConditionShift, kConditionBits)); |
| } |
| inline int TypeField() const { return Bits(kTypeShift, kTypeBits); } |
| |
| inline Register RnField() const { |
| return static_cast<Register>(Bits(kRnShift, kRnBits)); |
| } |
| inline Register RdField() const { |
| return static_cast<Register>(Bits(kRdShift, kRdBits)); |
| } |
| |
| // Fields used in Data processing instructions |
| inline Opcode OpcodeField() const { |
| return static_cast<Opcode>(Bits(kOpcodeShift, kOpcodeBits)); |
| } |
| inline int SField() const { return Bits(kSShift, kSBits); } |
| // with register |
| inline Register RmField() const { |
| return static_cast<Register>(Bits(kRmShift, kRmBits)); |
| } |
| inline Shift ShiftField() const { |
| return static_cast<Shift>(Bits(kShiftShift, kShiftBits)); |
| } |
| inline int RegShiftField() const { return Bit(4); } |
| inline Register RsField() const { |
| return static_cast<Register>(Bits(kRsShift, kRsBits)); |
| } |
| inline int ShiftAmountField() const { |
| return Bits(kShiftImmShift, kShiftImmBits); |
| } |
| // with immediate |
| inline int RotateField() const { return Bits(kRotateShift, kRotateBits); } |
| inline int Immed8Field() const { return Bits(kImmed8Shift, kImmed8Bits); } |
| |
| // Fields used in Load/Store instructions |
| inline int PUField() const { return Bits(23, 2); } |
| inline int BField() const { return Bit(22); } |
| inline int WField() const { return Bit(21); } |
| inline int LField() const { return Bit(20); } |
| // with register uses same fields as Data processing instructions above |
| // with immediate |
| inline int Offset12Field() const { |
| return Bits(kOffset12Shift, kOffset12Bits); |
| } |
| // multiple |
| inline int RlistField() const { return Bits(0, 16); } |
| // extra loads and stores |
| inline int SignField() const { return Bit(6); } |
| inline int HField() const { return Bit(5); } |
| inline int ImmedHField() const { return Bits(8, 4); } |
| inline int ImmedLField() const { return Bits(0, 4); } |
| |
| // Fields used in Branch instructions |
| inline int LinkField() const { return Bits(kLinkShift, kLinkBits); } |
| inline int SImmed24Field() const { return ((InstructionBits() << 8) >> 8); } |
| |
| // Fields used in Supervisor Call instructions |
| inline uint32_t SvcField() const { return Bits(0, 24); } |
| |
| // Field used in Breakpoint instruction |
| inline uint16_t BkptField() const { |
| return ((Bits(8, 12) << 4) | Bits(0, 4)); |
| } |
| |
| // Field used in 16-bit immediate move instructions |
| inline uint16_t MovwField() const { |
| return ((Bits(16, 4) << 12) | Bits(0, 12)); |
| } |
| |
| // Field used in VFP float immediate move instruction |
| inline float ImmFloatField() const { |
| uint32_t imm32 = (Bit(19) << 31) | (((1 << 5) - Bit(18)) << 25) | |
| (Bits(16, 2) << 23) | (Bits(0, 4) << 19); |
| return bit_cast<float, uint32_t>(imm32); |
| } |
| |
| // Field used in VFP double immediate move instruction |
| inline double ImmDoubleField() const { |
| uint64_t imm64 = (Bit(19) * (1LL << 63)) | (((1LL << 8) - Bit(18)) << 54) | |
| (Bits(16, 2) * (1LL << 52)) | (Bits(0, 4) * (1LL << 48)); |
| return bit_cast<double, uint64_t>(imm64); |
| } |
| |
| inline Register DivRdField() const { |
| return static_cast<Register>(Bits(kDivRdShift, kDivRdBits)); |
| } |
| inline Register DivRmField() const { |
| return static_cast<Register>(Bits(kDivRmShift, kDivRmBits)); |
| } |
| inline Register DivRnField() const { |
| return static_cast<Register>(Bits(kDivRnShift, kDivRnBits)); |
| } |
| |
| // Test for data processing instructions of type 0 or 1. |
| // See "ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition", |
| // section A5.1 "ARM instruction set encoding". |
| inline bool IsDataProcessing() const { |
| ASSERT(ConditionField() != kSpecialCondition); |
| ASSERT(Bits(26, 2) == 0); // Type 0 or 1. |
| return ((Bits(20, 5) & 0x19) != 0x10) && |
| ((Bit(25) == 1) || // Data processing immediate. |
| (Bit(4) == 0) || // Data processing register. |
| (Bit(7) == 0)); // Data processing register-shifted register. |
| } |
| |
| // Tests for special encodings of type 0 instructions (extra loads and stores, |
| // as well as multiplications, synchronization primitives, and miscellaneous). |
| // Can only be called for a type 0 or 1 instruction. |
| inline bool IsMiscellaneous() const { |
| ASSERT(Bits(26, 2) == 0); // Type 0 or 1. |
| return ((Bit(25) == 0) && ((Bits(20, 5) & 0x19) == 0x10) && (Bit(7) == 0)); |
| } |
| inline bool IsMultiplyOrSyncPrimitive() const { |
| ASSERT(Bits(26, 2) == 0); // Type 0 or 1. |
| return ((Bit(25) == 0) && (Bits(4, 4) == 9)); |
| } |
| |
| // Test for Supervisor Call instruction. |
| inline bool IsSvc() const { |
| return ((InstructionBits() & 0x0f000000) == 0x0f000000); |
| } |
| |
| // Test for Breakpoint instruction. |
| inline bool IsBkpt() const { |
| return ((InstructionBits() & 0x0ff000f0) == 0x01200070); |
| } |
| |
| // VFP register fields. |
| inline SRegister SnField() const { |
| return static_cast<SRegister>((Bits(kRnShift, kRnBits) << 1) + Bit(7)); |
| } |
| inline SRegister SdField() const { |
| return static_cast<SRegister>((Bits(kRdShift, kRdBits) << 1) + Bit(22)); |
| } |
| inline SRegister SmField() const { |
| return static_cast<SRegister>((Bits(kRmShift, kRmBits) << 1) + Bit(5)); |
| } |
| inline DRegister DnField() const { |
| return static_cast<DRegister>(Bits(kRnShift, kRnBits) + (Bit(7) << 4)); |
| } |
| inline DRegister DdField() const { |
| return static_cast<DRegister>(Bits(kRdShift, kRdBits) + (Bit(22) << 4)); |
| } |
| inline DRegister DmField() const { |
| return static_cast<DRegister>(Bits(kRmShift, kRmBits) + (Bit(5) << 4)); |
| } |
| inline QRegister QnField() const { |
| const intptr_t bits = Bits(kRnShift, kRnBits) + (Bit(7) << 4); |
| return static_cast<QRegister>(bits >> 1); |
| } |
| inline QRegister QdField() const { |
| const intptr_t bits = Bits(kRdShift, kRdBits) + (Bit(22) << 4); |
| return static_cast<QRegister>(bits >> 1); |
| } |
| inline QRegister QmField() const { |
| const intptr_t bits = Bits(kRmShift, kRmBits) + (Bit(5) << 4); |
| return static_cast<QRegister>(bits >> 1); |
| } |
| |
| inline bool IsDivision() const { |
| ASSERT(ConditionField() != kSpecialCondition); |
| ASSERT(TypeField() == 3); |
| return ((Bit(4) == 1) && (Bits(5, 3) == 0) && (Bit(20) == 1) && |
| (Bits(22, 3) == 4)); |
| } |
| |
| // Test for VFP data processing or single transfer instructions of type 7. |
| inline bool IsVFPDataProcessingOrSingleTransfer() const { |
| ASSERT(ConditionField() != kSpecialCondition); |
| ASSERT(TypeField() == 7); |
| return ((Bit(24) == 0) && (Bits(9, 3) == 5)); |
| // Bit(4) == 0: Data Processing |
| // Bit(4) == 1: 8, 16, or 32-bit Transfer between ARM Core and VFP |
| } |
| |
| // Test for VFP 64-bit transfer instructions of type 6. |
| inline bool IsVFPDoubleTransfer() const { |
| ASSERT(ConditionField() != kSpecialCondition); |
| ASSERT(TypeField() == 6); |
| return ((Bits(21, 4) == 2) && (Bits(9, 3) == 5) && |
| ((Bits(4, 4) & 0xd) == 1)); |
| } |
| |
| // Test for VFP load and store instructions of type 6. |
| inline bool IsVFPLoadStore() const { |
| ASSERT(ConditionField() != kSpecialCondition); |
| ASSERT(TypeField() == 6); |
| return ((Bits(20, 5) & 0x12) == 0x10) && (Bits(9, 3) == 5); |
| } |
| |
| // Test for VFP multiple load and store instructions of type 6. |
| inline bool IsVFPMultipleLoadStore() const { |
| ASSERT(ConditionField() != kSpecialCondition); |
| ASSERT(TypeField() == 6); |
| int32_t puw = (PUField() << 1) | Bit(21); // don't care about D bit |
| return (Bits(9, 3) == 5) && ((puw == 2) || (puw == 3) || (puw == 5)); |
| } |
| |
| inline bool IsSIMDDataProcessing() const { |
| ASSERT(ConditionField() == kSpecialCondition); |
| return (Bits(25, 3) == 1); |
| } |
| |
| inline bool IsSIMDLoadStore() const { |
| ASSERT(ConditionField() == kSpecialCondition); |
| return (Bits(24, 4) == 4) && (Bit(20) == 0); |
| } |
| |
| // Special accessors that test for existence of a value. |
| inline bool HasS() const { return SField() == 1; } |
| inline bool HasB() const { return BField() == 1; } |
| inline bool HasW() const { return WField() == 1; } |
| inline bool HasL() const { return LField() == 1; } |
| inline bool HasSign() const { return SignField() == 1; } |
| inline bool HasH() const { return HField() == 1; } |
| inline bool HasLink() const { return LinkField() == 1; } |
| |
| // Instructions are read out of a code stream. The only way to get a |
| // reference to an instruction is to convert a pointer. There is no way |
| // to allocate or create instances of class Instr. |
| // Use the At(pc) function to create references to Instr. |
| static Instr* At(uword pc) { return reinterpret_cast<Instr*>(pc); } |
| |
| private: |
| DISALLOW_ALLOCATION(); |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Instr); |
| }; |
| |
| } // namespace dart |
| |
| #endif // RUNTIME_VM_CONSTANTS_ARM_H_ |