blob: b71efb7c5d621feee0f4db87639df32b597bd3af [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/class_table.h"
#include "vm/atomic.h"
#include "vm/flags.h"
#include "vm/freelist.h"
#include "vm/growable_array.h"
#include "vm/heap.h"
#include "vm/object.h"
#include "vm/raw_object.h"
#include "vm/visitor.h"
namespace dart {
DEFINE_FLAG(bool, print_class_table, false, "Print initial class table.");
ClassTable::ClassTable()
: top_(kNumPredefinedCids),
capacity_(0),
table_(NULL),
old_tables_(new MallocGrowableArray<RawClass**>()) {
NOT_IN_PRODUCT(class_heap_stats_table_ = NULL);
NOT_IN_PRODUCT(predefined_class_heap_stats_table_ = NULL);
if (Dart::vm_isolate() == NULL) {
capacity_ = initial_capacity_;
table_ = reinterpret_cast<RawClass**>(
calloc(capacity_, sizeof(RawClass*))); // NOLINT
} else {
// Duplicate the class table from the VM isolate.
ClassTable* vm_class_table = Dart::vm_isolate()->class_table();
capacity_ = vm_class_table->capacity_;
table_ = reinterpret_cast<RawClass**>(
calloc(capacity_, sizeof(RawClass*))); // NOLINT
for (intptr_t i = kObjectCid; i < kInstanceCid; i++) {
table_[i] = vm_class_table->At(i);
}
table_[kFreeListElement] = vm_class_table->At(kFreeListElement);
table_[kForwardingCorpse] = vm_class_table->At(kForwardingCorpse);
table_[kDynamicCid] = vm_class_table->At(kDynamicCid);
table_[kVoidCid] = vm_class_table->At(kVoidCid);
#ifndef PRODUCT
class_heap_stats_table_ = reinterpret_cast<ClassHeapStats*>(
calloc(capacity_, sizeof(ClassHeapStats))); // NOLINT
for (intptr_t i = 0; i < capacity_; i++) {
class_heap_stats_table_[i].Initialize();
}
#endif // !PRODUCT
}
#ifndef PRODUCT
predefined_class_heap_stats_table_ = reinterpret_cast<ClassHeapStats*>(
calloc(kNumPredefinedCids, sizeof(ClassHeapStats))); // NOLINT
for (intptr_t i = 0; i < kNumPredefinedCids; i++) {
predefined_class_heap_stats_table_[i].Initialize();
}
#endif // !PRODUCT
}
ClassTable::ClassTable(ClassTable* original)
: top_(original->top_),
capacity_(original->top_),
table_(original->table_),
old_tables_(NULL) {
NOT_IN_PRODUCT(class_heap_stats_table_ = NULL);
NOT_IN_PRODUCT(predefined_class_heap_stats_table_ = NULL);
}
ClassTable::~ClassTable() {
if (old_tables_ != NULL) {
FreeOldTables();
delete old_tables_;
free(table_);
NOT_IN_PRODUCT(free(predefined_class_heap_stats_table_));
NOT_IN_PRODUCT(free(class_heap_stats_table_));
} else {
// This instance was a shallow copy. It doesn't own any memory.
NOT_IN_PRODUCT(ASSERT(predefined_class_heap_stats_table_ == NULL));
NOT_IN_PRODUCT(ASSERT(class_heap_stats_table_ == NULL));
}
}
void ClassTable::AddOldTable(RawClass** old_table) {
ASSERT(Thread::Current()->IsMutatorThread());
old_tables_->Add(old_table);
}
void ClassTable::FreeOldTables() {
while (old_tables_->length() > 0) {
free(old_tables_->RemoveLast());
}
}
#ifndef PRODUCT
void ClassTable::SetTraceAllocationFor(intptr_t cid, bool trace) {
ClassHeapStats* stats = PreliminaryStatsAt(cid);
stats->set_trace_allocation(trace);
}
bool ClassTable::TraceAllocationFor(intptr_t cid) {
ClassHeapStats* stats = PreliminaryStatsAt(cid);
return stats->trace_allocation();
}
#endif // !PRODUCT
void ClassTable::Register(const Class& cls) {
ASSERT(Thread::Current()->IsMutatorThread());
intptr_t index = cls.id();
if (index != kIllegalCid) {
ASSERT(index > 0);
ASSERT(index < kNumPredefinedCids);
ASSERT(table_[index] == 0);
ASSERT(index < capacity_);
table_[index] = cls.raw();
// Add the vtable for this predefined class into the static vtable registry
// if it has not been setup yet.
cpp_vtable cls_vtable = cls.handle_vtable();
cpp_vtable old_cls_vtable = AtomicOperations::CompareAndSwapWord(
&(Object::builtin_vtables_[index]), 0, cls_vtable);
if (old_cls_vtable != 0) {
ASSERT(old_cls_vtable == cls_vtable);
}
} else {
if (top_ == capacity_) {
// Grow the capacity of the class table.
// TODO(koda): Add ClassTable::Grow to share code.
intptr_t new_capacity = capacity_ + capacity_increment_;
RawClass** new_table = reinterpret_cast<RawClass**>(
malloc(new_capacity * sizeof(RawClass*))); // NOLINT
memmove(new_table, table_, capacity_ * sizeof(RawClass*));
#ifndef PRODUCT
ClassHeapStats* new_stats_table = reinterpret_cast<ClassHeapStats*>(
realloc(class_heap_stats_table_,
new_capacity * sizeof(ClassHeapStats))); // NOLINT
#endif
for (intptr_t i = capacity_; i < new_capacity; i++) {
new_table[i] = NULL;
NOT_IN_PRODUCT(new_stats_table[i].Initialize());
}
capacity_ = new_capacity;
old_tables_->Add(table_);
table_ = new_table; // TODO(koda): This should use atomics.
NOT_IN_PRODUCT(class_heap_stats_table_ = new_stats_table);
}
ASSERT(top_ < capacity_);
if (!Class::is_valid_id(top_)) {
FATAL1("Fatal error in ClassTable::Register: invalid index %" Pd "\n",
top_);
}
cls.set_id(top_);
table_[top_] = cls.raw();
top_++; // Increment next index.
}
}
void ClassTable::AllocateIndex(intptr_t index) {
if (index >= capacity_) {
// Grow the capacity of the class table.
// TODO(koda): Add ClassTable::Grow to share code.
intptr_t new_capacity = index + capacity_increment_;
if (!Class::is_valid_id(index) || new_capacity < capacity_) {
FATAL1("Fatal error in ClassTable::Register: invalid index %" Pd "\n",
index);
}
RawClass** new_table = reinterpret_cast<RawClass**>(
malloc(new_capacity * sizeof(RawClass*))); // NOLINT
memmove(new_table, table_, capacity_ * sizeof(RawClass*));
#ifndef PRODUCT
ClassHeapStats* new_stats_table = reinterpret_cast<ClassHeapStats*>(
realloc(class_heap_stats_table_,
new_capacity * sizeof(ClassHeapStats))); // NOLINT
#endif
for (intptr_t i = capacity_; i < new_capacity; i++) {
new_table[i] = NULL;
NOT_IN_PRODUCT(new_stats_table[i].Initialize());
}
capacity_ = new_capacity;
old_tables_->Add(table_);
table_ = new_table; // TODO(koda): This should use atomics.
NOT_IN_PRODUCT(class_heap_stats_table_ = new_stats_table);
ASSERT(capacity_increment_ >= 1);
}
ASSERT(table_[index] == 0);
if (index >= top_) {
top_ = index + 1;
}
}
void ClassTable::RegisterAt(intptr_t index, const Class& cls) {
ASSERT(Thread::Current()->IsMutatorThread());
ASSERT(index != kIllegalCid);
ASSERT(index >= kNumPredefinedCids);
AllocateIndex(index);
cls.set_id(index);
table_[index] = cls.raw();
}
#if defined(DEBUG)
void ClassTable::Unregister(intptr_t index) {
table_[index] = 0;
}
#endif
void ClassTable::Remap(intptr_t* old_to_new_cid) {
ASSERT(Thread::Current()->no_safepoint_scope_depth() > 0);
intptr_t num_cids = NumCids();
RawClass** cls_by_old_cid = new RawClass*[num_cids];
for (intptr_t i = 0; i < num_cids; i++) {
cls_by_old_cid[i] = table_[i];
}
for (intptr_t i = 0; i < num_cids; i++) {
table_[old_to_new_cid[i]] = cls_by_old_cid[i];
}
delete[] cls_by_old_cid;
}
void ClassTable::VisitObjectPointers(ObjectPointerVisitor* visitor) {
ASSERT(visitor != NULL);
visitor->VisitPointers(reinterpret_cast<RawObject**>(&table_[0]), top_);
}
void ClassTable::Validate() {
Class& cls = Class::Handle();
for (intptr_t cid = kNumPredefinedCids; cid < top_; cid++) {
// Some of the class table entries maybe NULL as we create some
// top level classes but do not add them to the list of anonymous
// classes in a library if there are no top level fields or functions.
// Since there are no references to these top level classes they are
// not written into a full snapshot and will not be recreated when
// we read back the full snapshot. These class slots end up with NULL
// entries.
if (HasValidClassAt(cid)) {
cls = At(cid);
ASSERT(cls.IsClass());
ASSERT(cls.id() == cid);
}
}
}
void ClassTable::Print() {
Class& cls = Class::Handle();
String& name = String::Handle();
for (intptr_t i = 1; i < top_; i++) {
if (!HasValidClassAt(i)) {
continue;
}
cls = At(i);
if (cls.raw() != reinterpret_cast<RawClass*>(0)) {
name = cls.Name();
OS::Print("%" Pd ": %s\n", i, name.ToCString());
}
}
}
#ifndef PRODUCT
void ClassTable::PrintToJSONObject(JSONObject* object) {
if (!FLAG_support_service) {
return;
}
Class& cls = Class::Handle();
object->AddProperty("type", "ClassList");
{
JSONArray members(object, "classes");
for (intptr_t i = 1; i < top_; i++) {
if (HasValidClassAt(i)) {
cls = At(i);
members.AddValue(cls);
}
}
}
}
void ClassHeapStats::Initialize() {
pre_gc.Reset();
post_gc.Reset();
recent.Reset();
accumulated.Reset();
last_reset.Reset();
promoted_count = 0;
promoted_size = 0;
state_ = 0;
USE(align_);
}
void ClassHeapStats::ResetAtNewGC() {
Verify();
pre_gc.new_count = post_gc.new_count + recent.new_count;
pre_gc.new_size = post_gc.new_size + recent.new_size;
// Accumulate allocations.
accumulated.new_count += recent.new_count - last_reset.new_count;
accumulated.new_size += recent.new_size - last_reset.new_size;
last_reset.ResetNew();
post_gc.ResetNew();
recent.ResetNew();
old_pre_new_gc_count_ = recent.old_count;
old_pre_new_gc_size_ = recent.old_size;
}
void ClassHeapStats::ResetAtOldGC() {
Verify();
pre_gc.old_count = post_gc.old_count + recent.old_count;
pre_gc.old_size = post_gc.old_size + recent.old_size;
// Accumulate allocations.
accumulated.old_count += recent.old_count - last_reset.old_count;
accumulated.old_size += recent.old_size - last_reset.old_size;
last_reset.ResetOld();
post_gc.ResetOld();
recent.ResetOld();
}
void ClassHeapStats::Verify() {
pre_gc.Verify();
post_gc.Verify();
recent.Verify();
accumulated.Verify();
last_reset.Verify();
}
void ClassHeapStats::UpdateSize(intptr_t instance_size) {
pre_gc.UpdateSize(instance_size);
post_gc.UpdateSize(instance_size);
recent.UpdateSize(instance_size);
accumulated.UpdateSize(instance_size);
last_reset.UpdateSize(instance_size);
promoted_size = promoted_count * instance_size;
old_pre_new_gc_size_ = old_pre_new_gc_count_ * instance_size;
}
void ClassHeapStats::ResetAccumulator() {
// Remember how much was allocated so we can subtract this from the result
// when printing.
last_reset.new_count = recent.new_count;
last_reset.new_size = recent.new_size;
last_reset.old_count = recent.old_count;
last_reset.old_size = recent.old_size;
accumulated.Reset();
}
void ClassHeapStats::UpdatePromotedAfterNewGC() {
promoted_count = recent.old_count - old_pre_new_gc_count_;
promoted_size = recent.old_size - old_pre_new_gc_size_;
}
void ClassHeapStats::PrintToJSONObject(const Class& cls,
JSONObject* obj) const {
if (!FLAG_support_service) {
return;
}
obj->AddProperty("type", "ClassHeapStats");
obj->AddProperty("class", cls);
{
JSONArray new_stats(obj, "new");
new_stats.AddValue(pre_gc.new_count);
new_stats.AddValue(pre_gc.new_size);
new_stats.AddValue(post_gc.new_count);
new_stats.AddValue(post_gc.new_size);
new_stats.AddValue(recent.new_count);
new_stats.AddValue(recent.new_size);
new_stats.AddValue64(accumulated.new_count + recent.new_count -
last_reset.new_count);
new_stats.AddValue64(accumulated.new_size + recent.new_size -
last_reset.new_size);
}
{
JSONArray old_stats(obj, "old");
old_stats.AddValue(pre_gc.old_count);
old_stats.AddValue(pre_gc.old_size);
old_stats.AddValue(post_gc.old_count);
old_stats.AddValue(post_gc.old_size);
old_stats.AddValue(recent.old_count);
old_stats.AddValue(recent.old_size);
old_stats.AddValue64(accumulated.old_count + recent.old_count -
last_reset.old_count);
old_stats.AddValue64(accumulated.old_size + recent.old_size -
last_reset.old_size);
}
obj->AddProperty("promotedInstances", promoted_count);
obj->AddProperty("promotedBytes", promoted_size);
}
void ClassTable::UpdateAllocatedNew(intptr_t cid, intptr_t size) {
ClassHeapStats* stats = PreliminaryStatsAt(cid);
ASSERT(stats != NULL);
ASSERT(size != 0);
stats->recent.AddNew(size);
}
void ClassTable::UpdateAllocatedOld(intptr_t cid, intptr_t size) {
ClassHeapStats* stats = PreliminaryStatsAt(cid);
ASSERT(stats != NULL);
ASSERT(size != 0);
stats->recent.AddOld(size);
}
bool ClassTable::ShouldUpdateSizeForClassId(intptr_t cid) {
return !RawObject::IsVariableSizeClassId(cid);
}
ClassHeapStats* ClassTable::PreliminaryStatsAt(intptr_t cid) {
ASSERT(cid > 0);
if (cid < kNumPredefinedCids) {
return &predefined_class_heap_stats_table_[cid];
}
ASSERT(cid < top_);
return &class_heap_stats_table_[cid];
}
ClassHeapStats* ClassTable::StatsWithUpdatedSize(intptr_t cid) {
if (!HasValidClassAt(cid) || (cid == kFreeListElement) ||
(cid == kForwardingCorpse) || (cid == kSmiCid)) {
return NULL;
}
Class& cls = Class::Handle(At(cid));
if (!(cls.is_finalized() || cls.is_prefinalized())) {
// Not finalized.
return NULL;
}
ClassHeapStats* stats = PreliminaryStatsAt(cid);
if (ShouldUpdateSizeForClassId(cid)) {
stats->UpdateSize(cls.instance_size());
}
stats->Verify();
return stats;
}
void ClassTable::ResetCountersOld() {
for (intptr_t i = 0; i < kNumPredefinedCids; i++) {
predefined_class_heap_stats_table_[i].ResetAtOldGC();
}
for (intptr_t i = kNumPredefinedCids; i < top_; i++) {
class_heap_stats_table_[i].ResetAtOldGC();
}
}
void ClassTable::ResetCountersNew() {
for (intptr_t i = 0; i < kNumPredefinedCids; i++) {
predefined_class_heap_stats_table_[i].ResetAtNewGC();
}
for (intptr_t i = kNumPredefinedCids; i < top_; i++) {
class_heap_stats_table_[i].ResetAtNewGC();
}
}
void ClassTable::UpdatePromoted() {
for (intptr_t i = 0; i < kNumPredefinedCids; i++) {
predefined_class_heap_stats_table_[i].UpdatePromotedAfterNewGC();
}
for (intptr_t i = kNumPredefinedCids; i < top_; i++) {
class_heap_stats_table_[i].UpdatePromotedAfterNewGC();
}
}
ClassHeapStats** ClassTable::TableAddressFor(intptr_t cid) {
return (cid < kNumPredefinedCids) ? &predefined_class_heap_stats_table_
: &class_heap_stats_table_;
}
intptr_t ClassTable::TableOffsetFor(intptr_t cid) {
return (cid < kNumPredefinedCids)
? OFFSET_OF(ClassTable, predefined_class_heap_stats_table_)
: OFFSET_OF(ClassTable, class_heap_stats_table_);
}
intptr_t ClassTable::ClassOffsetFor(intptr_t cid) {
return cid * sizeof(ClassHeapStats); // NOLINT
}
intptr_t ClassTable::CounterOffsetFor(intptr_t cid, bool is_new_space) {
const intptr_t class_offset = ClassOffsetFor(cid);
const intptr_t count_field_offset =
is_new_space ? ClassHeapStats::allocated_since_gc_new_space_offset()
: ClassHeapStats::allocated_since_gc_old_space_offset();
return class_offset + count_field_offset;
}
intptr_t ClassTable::StateOffsetFor(intptr_t cid) {
return ClassOffsetFor(cid) + ClassHeapStats::state_offset();
}
intptr_t ClassTable::SizeOffsetFor(intptr_t cid, bool is_new_space) {
const uword class_offset = ClassOffsetFor(cid);
const uword size_field_offset =
is_new_space ? ClassHeapStats::allocated_size_since_gc_new_space_offset()
: ClassHeapStats::allocated_size_since_gc_old_space_offset();
return class_offset + size_field_offset;
}
void ClassTable::AllocationProfilePrintJSON(JSONStream* stream) {
if (!FLAG_support_service) {
return;
}
Isolate* isolate = Isolate::Current();
ASSERT(isolate != NULL);
Heap* heap = isolate->heap();
ASSERT(heap != NULL);
JSONObject obj(stream);
obj.AddProperty("type", "AllocationProfile");
if (isolate->last_allocationprofile_accumulator_reset_timestamp() != 0) {
obj.AddPropertyF(
"dateLastAccumulatorReset", "%" Pd64 "",
isolate->last_allocationprofile_accumulator_reset_timestamp());
}
if (isolate->last_allocationprofile_gc_timestamp() != 0) {
obj.AddPropertyF("dateLastServiceGC", "%" Pd64 "",
isolate->last_allocationprofile_gc_timestamp());
}
{
JSONObject heaps(&obj, "heaps");
{ heap->PrintToJSONObject(Heap::kNew, &heaps); }
{ heap->PrintToJSONObject(Heap::kOld, &heaps); }
}
{
JSONArray arr(&obj, "members");
Class& cls = Class::Handle();
for (intptr_t i = 1; i < top_; i++) {
const ClassHeapStats* stats = StatsWithUpdatedSize(i);
if (stats != NULL) {
JSONObject obj(&arr);
cls = At(i);
stats->PrintToJSONObject(cls, &obj);
}
}
}
}
void ClassTable::ResetAllocationAccumulators() {
for (intptr_t i = 1; i < top_; i++) {
ClassHeapStats* stats = StatsWithUpdatedSize(i);
if (stats != NULL) {
stats->ResetAccumulator();
}
}
}
void ClassTable::UpdateLiveOld(intptr_t cid, intptr_t size, intptr_t count) {
ClassHeapStats* stats = PreliminaryStatsAt(cid);
ASSERT(stats != NULL);
ASSERT(size >= 0);
ASSERT(count >= 0);
stats->post_gc.AddOld(size, count);
}
void ClassTable::UpdateLiveNew(intptr_t cid, intptr_t size) {
ClassHeapStats* stats = PreliminaryStatsAt(cid);
ASSERT(stats != NULL);
ASSERT(size >= 0);
stats->post_gc.AddNew(size);
}
#endif // !PRODUCT
} // namespace dart