| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_MIPS) |
| |
| #include "vm/assembler.h" |
| #include "vm/code_generator.h" |
| #include "vm/compiler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/heap.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| |
| DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects."); |
| DEFINE_FLAG(bool, use_slow_path, false, |
| "Set to true for debugging & verifying the slow paths."); |
| DECLARE_FLAG(int, optimization_counter_threshold); |
| DECLARE_FLAG(bool, trace_optimized_ic_calls); |
| |
| |
| // Input parameters: |
| // RA : return address. |
| // SP : address of last argument in argument array. |
| // SP + 4*S4 - 4 : address of first argument in argument array. |
| // SP + 4*S4 : address of return value. |
| // S5 : address of the runtime function to call. |
| // S4 : number of arguments to the call. |
| void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) { |
| const intptr_t isolate_offset = NativeArguments::isolate_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ TraceSimMsg("CallToRuntimeStub"); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(RA, Address(SP, 1 * kWordSize)); |
| __ sw(FP, Address(SP, 0 * kWordSize)); |
| __ mov(FP, SP); |
| |
| // Load current Isolate pointer from Context structure into R0. |
| __ lw(A0, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ sw(SP, Address(A0, Isolate::top_exit_frame_info_offset())); |
| |
| // Save current Context pointer into Isolate structure. |
| __ sw(CTX, Address(A0, Isolate::top_context_offset())); |
| |
| // Cache Isolate pointer into CTX while executing runtime code. |
| __ mov(CTX, A0); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| // NativeArguments are passed in registers. |
| ASSERT(sizeof(NativeArguments) == 4 * kWordSize); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Pass NativeArguments structure by value and call runtime. |
| // Registers A0, A1, A2, and A3 are used. |
| |
| ASSERT(isolate_offset == 0 * kWordSize); |
| // Set isolate in NativeArgs: A0 already contains CTX. |
| |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * kWordSize); |
| __ mov(A1, S4); // Set argc in NativeArguments. |
| |
| ASSERT(argv_offset == 2 * kWordSize); |
| __ sll(A2, S4, 2); |
| __ addu(A2, FP, A2); // Compute argv. |
| __ addiu(A2, A2, Immediate(kWordSize)); // Set argv in NativeArguments. |
| |
| ASSERT(retval_offset == 3 * kWordSize); |
| __ addiu(A3, A2, Immediate(kWordSize)); // Retval is next to 1st argument. |
| |
| // Call runtime or redirection via simulator. |
| __ jalr(S5); |
| __ TraceSimMsg("CallToRuntimeStub return"); |
| |
| // Reset exit frame information in Isolate structure. |
| __ sw(ZR, Address(CTX, Isolate::top_exit_frame_info_offset())); |
| |
| // Load Context pointer from Isolate structure into A2. |
| __ lw(A2, Address(CTX, Isolate::top_context_offset())); |
| |
| // Reset Context pointer in Isolate structure. |
| __ LoadImmediate(A3, reinterpret_cast<intptr_t>(Object::null())); |
| __ sw(A3, Address(CTX, Isolate::top_context_offset())); |
| |
| // Cache Context pointer into CTX while executing Dart code. |
| __ mov(CTX, A2); |
| |
| __ mov(SP, FP); |
| __ lw(RA, Address(SP, 1 * kWordSize)); |
| __ lw(FP, Address(SP, 0 * kWordSize)); |
| __ Ret(); |
| __ delay_slot()->addiu(SP, SP, Immediate(2 * kWordSize)); |
| } |
| |
| |
| void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) { |
| __ Unimplemented("PrintStopMessage stub"); |
| } |
| |
| |
| // Input parameters: |
| // RA : return address. |
| // SP : address of return value. |
| // T5 : address of the native function to call. |
| // A2 : address of first argument in argument array. |
| // A1 : argc_tag including number of arguments and function kind. |
| void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) { |
| const intptr_t isolate_offset = NativeArguments::isolate_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ TraceSimMsg("CallNativeCFunctionStub"); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(RA, Address(SP, 1 * kWordSize)); |
| __ sw(FP, Address(SP, 0 * kWordSize)); |
| __ mov(FP, SP); |
| |
| // Load current Isolate pointer from Context structure into A0. |
| __ lw(A0, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ sw(SP, Address(A0, Isolate::top_exit_frame_info_offset())); |
| |
| // Save current Context pointer into Isolate structure. |
| __ sw(CTX, Address(A0, Isolate::top_context_offset())); |
| |
| // Cache Isolate pointer into CTX while executing native code. |
| __ mov(CTX, A0); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // R0) and align frame before entering the C++ world. |
| __ ReserveAlignedFrameSpace(sizeof(NativeArguments)); |
| |
| // Initialize NativeArguments structure and call native function. |
| // Registers A0, A1, A2, and A3 are used. |
| |
| ASSERT(isolate_offset == 0 * kWordSize); |
| // Set isolate in NativeArgs: A0 already contains CTX. |
| |
| // There are no native calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * kWordSize); |
| // Set argc in NativeArguments: T1 already contains argc. |
| |
| ASSERT(argv_offset == 2 * kWordSize); |
| // Set argv in NativeArguments: T2 already contains argv. |
| |
| ASSERT(retval_offset == 3 * kWordSize); |
| __ addiu(A3, FP, Immediate(2 * kWordSize)); // Set retval in NativeArgs. |
| |
| // TODO(regis): Should we pass the structure by value as in runtime calls? |
| // It would require changing Dart API for native functions. |
| // For now, space is reserved on the stack and we pass a pointer to it. |
| __ addiu(SP, SP, Immediate(-4 * kWordSize)); |
| __ sw(A3, Address(SP, 3 * kWordSize)); |
| __ sw(A2, Address(SP, 2 * kWordSize)); |
| __ sw(A1, Address(SP, 1 * kWordSize)); |
| __ sw(A0, Address(SP, 0 * kWordSize)); |
| |
| __ mov(A0, SP); // Pass the pointer to the NativeArguments. |
| |
| // Call native function or redirection via simulator. |
| __ jalr(T5); |
| __ TraceSimMsg("CallNativeCFunctionStub return"); |
| |
| // Reset exit frame information in Isolate structure. |
| __ sw(ZR, Address(CTX, Isolate::top_exit_frame_info_offset())); |
| |
| // Load Context pointer from Isolate structure into A2. |
| __ lw(A2, Address(CTX, Isolate::top_context_offset())); |
| |
| // Reset Context pointer in Isolate structure. |
| __ LoadImmediate(A3, reinterpret_cast<intptr_t>(Object::null())); |
| __ sw(A3, Address(CTX, Isolate::top_context_offset())); |
| |
| // Cache Context pointer into CTX while executing Dart code. |
| __ mov(CTX, A2); |
| |
| __ mov(SP, FP); |
| __ lw(RA, Address(SP, 1 * kWordSize)); |
| __ lw(FP, Address(SP, 0 * kWordSize)); |
| __ Ret(); |
| __ delay_slot()->addiu(SP, SP, Immediate(2 * kWordSize)); |
| } |
| |
| |
| // Input parameters: |
| // S4: arguments descriptor array. |
| void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| __ TraceSimMsg("CallStaticFunctionStub"); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| __ LoadImmediate(T0, reinterpret_cast<intptr_t>(Object::null())); |
| |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S4, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| |
| __ CallRuntime(kPatchStaticCallRuntimeEntry); |
| __ TraceSimMsg("CallStaticFunctionStub return"); |
| |
| // Get Code object result and restore arguments descriptor array. |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(S4, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| |
| // Remove the stub frame as we are about to jump to the dart function. |
| __ LeaveStubFrame(); |
| |
| __ lw(T0, FieldAddress(T0, Code::instructions_offset())); |
| __ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ jr(T0); |
| } |
| |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // S4: arguments descriptor array. |
| void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| __ LoadImmediate(T0, reinterpret_cast<intptr_t>(Object::null())); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S4, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kFixCallersTargetRuntimeEntry); |
| // Get Code object result and restore arguments descriptor array. |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(S4, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ lw(T0, FieldAddress(T0, Code::instructions_offset())); |
| __ AddImmediate(T0, T0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ jr(T0); |
| } |
| |
| |
| // Input parameters: |
| // A1: Smi-tagged argument count, may be zero. |
| // FP[kLastParamSlotIndex]: Last argument. |
| static void PushArgumentsArray(Assembler* assembler) { |
| __ TraceSimMsg("PushArgumentsArray"); |
| // Allocate array to store arguments of caller. |
| __ LoadImmediate(A0, reinterpret_cast<intptr_t>(Object::null())); |
| // A0: Null element type for raw Array. |
| // A1: Smi-tagged argument count, may be zero. |
| __ BranchLink(&StubCode::AllocateArrayLabel()); |
| __ TraceSimMsg("PushArgumentsArray return"); |
| // V0: newly allocated array. |
| // A1: Smi-tagged argument count, may be zero (was preserved by the stub). |
| __ Push(V0); // Array is in V0 and on top of stack. |
| __ sll(T1, A1, 1); |
| __ addu(T1, FP, T1); |
| __ AddImmediate(T1, (kLastParamSlotIndex - 1) * kWordSize); |
| __ AddImmediate(T2, V0, Array::data_offset() - kHeapObjectTag); |
| // T1: address of first argument on stack. |
| // T2: address of first argument in array. |
| Label loop, loop_condition; |
| __ b(&loop_condition); |
| __ Bind(&loop); |
| __ lw(TMP, Address(T1)); |
| __ sw(TMP, Address(T2)); |
| __ AddImmediate(T1, -kWordSize); |
| __ AddImmediate(T2, kWordSize); |
| __ Bind(&loop_condition); |
| __ AddImmediate(A1, -Smi::RawValue(1)); // A1 is Smi. |
| __ BranchGreaterEqual(A1, ZR, &loop); |
| } |
| |
| |
| // Input parameters: |
| // S5: ic-data. |
| // S4: arguments descriptor array. |
| // Note: The receiver object is the first argument to the function being |
| // called, the stub accesses the receiver from this location directly |
| // when trying to resolve the call. |
| void StubCode::GenerateInstanceFunctionLookupStub(Assembler* assembler) { |
| __ TraceSimMsg("InstanceFunctionLookupStub"); |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ sll(TMP1, A1, 1); // A1 is Smi. |
| __ addu(TMP1, FP, TMP1); |
| __ lw(T1, Address(TMP1, (kLastParamSlotIndex - 1) * kWordSize)); |
| |
| // Push space for the return value. |
| // Push the receiver. |
| // Push TMP1 data object. |
| // Push arguments descriptor array. |
| __ LoadImmediate(TMP1, reinterpret_cast<intptr_t>(Object::null())); |
| __ addiu(SP, SP, Immediate(-4 * kWordSize)); |
| __ sw(TMP1, Address(SP, 3 * kWordSize)); |
| __ sw(T1, Address(SP, 2 * kWordSize)); |
| __ sw(S5, Address(SP, 1 * kWordSize)); |
| __ sw(S4, Address(SP, 0 * kWordSize)); |
| |
| // A1: Smi-tagged arguments array length. |
| PushArgumentsArray(assembler); |
| __ TraceSimMsg("InstanceFunctionLookupStub return"); |
| |
| // Stack: |
| // TOS + 0: argument array. |
| // TOS + 1: arguments descriptor array. |
| // TOS + 2: IC data object. |
| // TOS + 3: Receiver. |
| // TOS + 4: place for result from the call. |
| // TOS + 5: saved FP of previous frame. |
| // TOS + 6: dart code return address |
| // TOS + 7: pc marker (0 for stub). |
| // TOS + 8: last argument of caller. |
| // .... |
| __ CallRuntime(kInstanceFunctionLookupRuntimeEntry); |
| // Remove arguments. |
| __ lw(V0, Address(SP, 4 * kWordSize)); |
| __ addiu(SP, SP, Immediate(5 * kWordSize)); // Get result into V0. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| void StubCode::GenerateDeoptimizeLazyStub(Assembler* assembler) { |
| __ Unimplemented("DeoptimizeLazy stub"); |
| } |
| |
| |
| void StubCode::GenerateDeoptimizeStub(Assembler* assembler) { |
| __ Unimplemented("Deoptimize stub"); |
| } |
| |
| |
| void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) { |
| __ Unimplemented("MegamorphicMiss stub"); |
| } |
| |
| |
| // Called for inline allocation of arrays. |
| // Input parameters: |
| // RA: return address. |
| // A1: Array length as Smi. |
| // A0: array element type (either NULL or an instantiated type). |
| // NOTE: A1 cannot be clobbered here as the caller relies on it being saved. |
| // The newly allocated object is returned in V0. |
| void StubCode::GenerateAllocateArrayStub(Assembler* assembler) { |
| __ TraceSimMsg("AllocateArrayStub"); |
| Label slow_case; |
| if (FLAG_inline_alloc) { |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)). |
| // Assert that length is a Smi. |
| __ andi(CMPRES, A1, Immediate(kSmiTagMask)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ bne(CMPRES, ZR, &slow_case); |
| } |
| __ lw(T0, FieldAddress(CTX, Context::isolate_offset())); |
| __ lw(T0, Address(T0, Isolate::heap_offset())); |
| __ lw(T0, Address(T0, Heap::new_space_offset())); |
| |
| // Calculate and align allocation size. |
| // Load new object start and calculate next object start. |
| // A0: array element type. |
| // A1: Array length as Smi. |
| // T0: Points to new space object. |
| __ lw(V0, Address(T0, Scavenger::top_offset())); |
| intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1; |
| __ LoadImmediate(T3, fixed_size); |
| __ sll(TMP1, A1, 1); // A1 is Smi. |
| __ addu(T3, T3, TMP1); |
| ASSERT(kSmiTagShift == 1); |
| __ LoadImmediate(TMP1, ~(kObjectAlignment - 1)); |
| __ and_(T3, T3, TMP1); |
| __ addu(T2, T3, V0); |
| |
| // Check if the allocation fits into the remaining space. |
| // V0: potential new object start. |
| // A0: array element type. |
| // A1: array length as Smi. |
| // T0: points to new space object. |
| // T2: potential next object start. |
| // T3: array size. |
| __ lw(TMP1, Address(T0, Scavenger::end_offset())); |
| __ BranchGreaterEqual(T2, TMP1, &slow_case); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| // V0: potential new object start. |
| // T2: potential next object start. |
| // T0: Points to new space object. |
| __ sw(T2, Address(T0, Scavenger::top_offset())); |
| __ addiu(V0, V0, Immediate(kHeapObjectTag)); |
| |
| // V0: new object start as a tagged pointer. |
| // A0: array element type. |
| // A1: Array length as Smi. |
| // T2: new object end address. |
| |
| // Store the type argument field. |
| __ StoreIntoObjectNoBarrier( |
| V0, |
| FieldAddress(V0, Array::type_arguments_offset()), |
| A0); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier( |
| V0, |
| FieldAddress(V0, Array::length_offset()), |
| A1); |
| |
| // Calculate the size tag. |
| // V0: new object start as a tagged pointer. |
| // A1: Array length as Smi. |
| // T2: new object end address. |
| // T3: array size. |
| const intptr_t shift = RawObject::kSizeTagBit - kObjectAlignmentLog2; |
| // If no size tag overflow, shift T3 left, else set T3 to zero. |
| __ LoadImmediate(TMP2, RawObject::SizeTag::kMaxSizeTag); |
| __ sltu(CMPRES, TMP2, T3); // CMPRES = TMP2 < T3 ? 1 : 0 |
| __ sll(TMP1, T3, shift); // TMP1 = T3 << shift; |
| __ movz(T3, TMP1, CMPRES); // T3 = TMP2 >= T3 ? 0 : T3 |
| __ movn(T3, ZR, CMPRES); // T3 = TMP2 < T3 ? TMP1 : T3 |
| |
| // Get the class index and insert it into the tags. |
| __ LoadImmediate(TMP1, RawObject::ClassIdTag::encode(kArrayCid)); |
| __ or_(T3, T3, TMP1); |
| __ sw(T3, FieldAddress(V0, Array::tags_offset())); |
| |
| // Initialize all array elements to raw_null. |
| // V0: new object start as a tagged pointer. |
| // T2: new object end address. |
| // A1: Array length as Smi. |
| __ AddImmediate(T3, V0, Array::data_offset() - kHeapObjectTag); |
| // R1: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| __ LoadImmediate(TMP1, reinterpret_cast<intptr_t>(Object::null())); |
| Label loop, test; |
| __ b(&test); |
| __ Bind(&loop); |
| // TODO(cshapiro): StoreIntoObjectNoBarrier |
| __ sw(TMP1, Address(T3, 0)); |
| __ AddImmediate(T3, kWordSize); |
| __ Bind(&test); |
| __ bne(T3, T2, &loop); |
| |
| // Done allocating and initializing the array. |
| // V0: new object. |
| // A1: Array length as Smi (preserved for the caller.) |
| __ Ret(); |
| } |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(TMP1, reinterpret_cast<intptr_t>(Object::null())); |
| // Setup space on stack for return value. |
| // Push array length as Smi and element type. |
| __ addiu(SP, SP, Immediate(-3 * kWordSize)); |
| __ sw(TMP1, Address(SP, 2 * kWordSize)); |
| __ sw(A1, Address(SP, 1 * kWordSize)); |
| __ sw(T3, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kAllocateArrayRuntimeEntry); |
| __ TraceSimMsg("AllocateArrayStub return"); |
| // Pop arguments; result is popped in IP. |
| __ lw(TMP1, Address(SP, 2 * kWordSize)); |
| __ lw(A1, Address(SP, 1 * kWordSize)); |
| __ lw(T3, Address(SP, 0 * kWordSize)); |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); |
| __ mov(V0, TMP1); |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Input parameters: |
| // RA: return address. |
| // SP: address of last argument. |
| // S4: Arguments descriptor array. |
| // Return: V0. |
| // Note: The closure object is the first argument to the function being |
| // called, the stub accesses the closure from this location directly |
| // when trying to resolve the call. |
| void StubCode::GenerateCallClosureFunctionStub(Assembler* assembler) { |
| // Load num_args. |
| __ TraceSimMsg("GenerateCallClosureFunctionStub"); |
| __ lw(T0, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ LoadImmediate(TMP1, Smi::RawValue(1)); |
| __ subu(T0, T0, TMP1); |
| |
| // Load closure object in T1. |
| __ sll(T1, T0, 1); // T0 (num_args - 1) is a Smi. |
| __ addu(T1, SP, T1); |
| __ lw(T1, Address(T1)); |
| |
| // Verify that T1 is a closure by checking its class. |
| Label not_closure; |
| |
| __ LoadImmediate(T7, reinterpret_cast<intptr_t>(Object::null())); |
| // See if it is not a closure, but null object. |
| __ beq(T1, T7, ¬_closure); |
| |
| __ andi(CMPRES, T1, Immediate(kSmiTagMask)); |
| __ beq(CMPRES, ZR, ¬_closure); // Not a closure, but a smi. |
| |
| // Verify that the class of the object is a closure class by checking that |
| // class.signature_function() is not null. |
| __ LoadClass(T0, T1); |
| __ lw(T0, FieldAddress(T0, Class::signature_function_offset())); |
| |
| // See if actual class is not a closure class. |
| __ beq(T0, T7, ¬_closure); |
| |
| // T0 is just the signature function. Load the actual closure function. |
| __ lw(T2, FieldAddress(T1, Closure::function_offset())); |
| |
| // Load closure context in CTX; note that CTX has already been preserved. |
| __ lw(CTX, FieldAddress(T1, Closure::context_offset())); |
| |
| Label function_compiled; |
| // Load closure function code in T0. |
| __ lw(T0, FieldAddress(T2, Function::code_offset())); |
| __ bne(T0, T7, &function_compiled); |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| |
| // Preserve arguments descriptor array and read-only function object argument. |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S4, Address(SP, 1 * kWordSize)); |
| __ sw(T2, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kCompileFunctionRuntimeEntry); |
| __ TraceSimMsg("GenerateCallClosureFunctionStub return"); |
| // Restore arguments descriptor array and read-only function object argument. |
| __ lw(T2, Address(SP, 0 * kWordSize)); |
| __ lw(S4, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| // Restore T0. |
| __ lw(T0, FieldAddress(T2, Function::code_offset())); |
| |
| // Remove the stub frame as we are about to jump to the closure function. |
| __ LeaveStubFrame(); |
| |
| __ Bind(&function_compiled); |
| // T0: Code. |
| // S4: Arguments descriptor array. |
| __ lw(T0, FieldAddress(T0, Code::instructions_offset())); |
| __ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ jr(T0); |
| |
| __ Bind(¬_closure); |
| // Call runtime to attempt to resolve and invoke a call method on a |
| // non-closure object, passing the non-closure object and its arguments array, |
| // returning here. |
| // If no call method exists, throw a NoSuchMethodError. |
| // T1: non-closure object. |
| // S4: arguments descriptor array. |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| |
| // Setup space on stack for result from error reporting. |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| __ sw(T7, Address(SP, 1 * kWordSize)); // Arguments descriptor and raw null. |
| __ sw(S4, Address(SP, 0 * kWordSize)); |
| |
| // Load smi-tagged arguments array length, including the non-closure. |
| __ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| PushArgumentsArray(assembler); |
| |
| // Stack: |
| // TOS + 0: Argument array. |
| // TOS + 1: Arguments descriptor array. |
| // TOS + 2: Place for result from the call. |
| // TOS + 3: Saved FP of previous frame. |
| // TOS + 4: Dart code return address. |
| // TOS + 5: PC marker (0 for stub). |
| // TOS + 6: Last argument of caller. |
| // .... |
| __ CallRuntime(kInvokeNonClosureRuntimeEntry); |
| __ lw(V0, Address(SP, 2 * kWordSize)); // Get result into V0. |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); // Remove arguments. |
| |
| // Remove the stub frame as we are about to return. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // RA : points to return address. |
| // A0 : entrypoint of the Dart function to call. |
| // A1 : arguments descriptor array. |
| // A2 : arguments array. |
| // A3 : new context containing the current isolate pointer. |
| void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| // Save frame pointer coming in. |
| __ TraceSimMsg("InvokeDartCodeStub"); |
| __ EnterStubFrame(); |
| |
| // Save new context and C++ ABI callee-saved registers. |
| const intptr_t kNewContextOffset = |
| -(1 + kAbiPreservedCpuRegCount) * kWordSize; |
| |
| __ addiu(SP, SP, Immediate(-(3 + kAbiPreservedCpuRegCount) * kWordSize)); |
| for (int i = S0; i <= S7; i++) { |
| Register r = static_cast<Register>(i); |
| __ sw(r, Address(SP, (i - S0 + 3) * kWordSize)); |
| } |
| __ sw(A3, Address(SP, 2 * kWordSize)); |
| |
| // The new Context structure contains a pointer to the current Isolate |
| // structure. Cache the Context pointer in the CTX register so that it is |
| // available in generated code and calls to Isolate::Current() need not be |
| // done. The assumption is that this register will never be clobbered by |
| // compiled or runtime stub code. |
| |
| // Cache the new Context pointer into CTX while executing Dart code. |
| __ lw(CTX, Address(A3, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load Isolate pointer from Context structure into temporary register R8. |
| __ lw(T2, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save the top exit frame info. Use T0 as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ lw(T0, Address(T2, Isolate::top_exit_frame_info_offset())); |
| __ sw(ZR, Address(T2, Isolate::top_exit_frame_info_offset())); |
| |
| // Save the old Context pointer. Use T1 as a temporary register. |
| // Note that VisitObjectPointers will find this saved Context pointer during |
| // GC marking, since it traverses any information between SP and |
| // FP - kExitLinkOffsetInEntryFrame. |
| // EntryFrame::SavedContext reads the context saved in this frame. |
| __ lw(T1, Address(T2, Isolate::top_context_offset())); |
| |
| // The constants kSavedContextOffsetInEntryFrame and |
| // kExitLinkOffsetInEntryFrame must be kept in sync with the code below. |
| __ sw(T0, Address(SP, 1 * kWordSize)); |
| __ sw(T1, Address(SP, 0 * kWordSize)); |
| |
| // After the call, The stack pointer is restored to this location. |
| // Pushed A3, S0-7, T0, T1 = 11. |
| const intptr_t kSavedContextOffsetInEntryFrame = -11 * kWordSize; |
| |
| // Load arguments descriptor array into S4, which is passed to Dart code. |
| __ lw(S4, Address(A1, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load number of arguments into S5. |
| __ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ SmiUntag(T1); |
| |
| // Compute address of 'arguments array' data area into A2. |
| __ lw(A2, Address(A2, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ AddImmediate(A2, Array::data_offset() - kHeapObjectTag); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ beq(T1, ZR, &done_push_arguments); // check if there are arguments. |
| __ mov(A1, ZR); |
| __ Bind(&push_arguments); |
| __ lw(A3, Address(A2)); |
| __ Push(A3); |
| __ addiu(A1, A1, Immediate(1)); |
| __ BranchLess(A1, T1, &push_arguments); |
| __ delay_slot()->addiu(A2, A2, Immediate(kWordSize)); |
| |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| __ jalr(A0); // S4 is the arguments descriptor array. |
| __ TraceSimMsg("InvokeDartCodeStub return"); |
| |
| // Read the saved new Context pointer. |
| __ lw(CTX, Address(FP, kNewContextOffset)); |
| __ lw(CTX, Address(CTX, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Get rid of arguments pushed on the stack. |
| __ AddImmediate(SP, FP, kSavedContextOffsetInEntryFrame); |
| |
| // Load Isolate pointer from Context structure into CTX. Drop Context. |
| __ lw(CTX, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Restore the saved Context pointer into the Isolate structure. |
| // Uses T1 as a temporary register for this. |
| // Restore the saved top exit frame info back into the Isolate structure. |
| // Uses T0 as a temporary register for this. |
| __ lw(T1, Address(SP, 0 * kWordSize)); |
| __ lw(T0, Address(SP, 1 * kWordSize)); |
| __ sw(T1, Address(CTX, Isolate::top_context_offset())); |
| __ sw(T0, Address(CTX, Isolate::top_exit_frame_info_offset())); |
| |
| // Restore C++ ABI callee-saved registers. |
| for (int i = S0; i <= S7; i++) { |
| Register r = static_cast<Register>(i); |
| __ lw(r, Address(SP, (i - S0 + 3) * kWordSize)); |
| } |
| __ lw(A3, Address(SP, 2 * kWordSize)); |
| __ addiu(SP, SP, Immediate((3 + kAbiPreservedCpuRegCount) * kWordSize)); |
| |
| // Restore the frame pointer and return. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // T1: number of context variables. |
| // Output: |
| // V0: new allocated RawContext object. |
| void StubCode::GenerateAllocateContextStub(Assembler* assembler) { |
| if (FLAG_inline_alloc) { |
| const Class& context_class = Class::ZoneHandle(Object::context_class()); |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| // First compute the rounded instance size. |
| // T1: number of context variables. |
| intptr_t fixed_size = sizeof(RawContext) + kObjectAlignment - 1; |
| __ LoadImmediate(T2, fixed_size); |
| __ sll(T0, T1, 2); |
| __ addu(T2, T2, T0); |
| ASSERT(kSmiTagShift == 1); |
| __ LoadImmediate(T0, ~((kObjectAlignment) - 1)); |
| __ and_(T2, T2, T0); |
| |
| // Now allocate the object. |
| // T1: number of context variables. |
| // T2: object size. |
| __ LoadImmediate(T5, heap->TopAddress()); |
| __ lw(V0, Address(T5, 0)); |
| __ addu(T3, T2, V0); |
| |
| // Check if the allocation fits into the remaining space. |
| // V0: potential new object. |
| // T1: number of context variables. |
| // T2: object size. |
| // T3: potential next object start. |
| __ LoadImmediate(TMP1, heap->EndAddress()); |
| __ lw(TMP1, Address(TMP1, 0)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ BranchGreaterEqual(T3, TMP1, &slow_case); |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // V0: new object. |
| // T1: number of context variables. |
| // T2: object size. |
| // T3: next object start. |
| __ sw(T3, Address(T5, 0)); |
| __ addiu(V0, V0, Immediate(kHeapObjectTag)); |
| |
| // Calculate the size tag. |
| // V0: new object. |
| // T1: number of context variables. |
| // T2: object size. |
| const intptr_t shift = RawObject::kSizeTagBit - kObjectAlignmentLog2; |
| __ LoadImmediate(TMP1, RawObject::SizeTag::kMaxSizeTag); |
| __ sltu(CMPRES, TMP1, T2); // CMPRES = T2 > TMP1 ? 1 : 0. |
| __ movn(T2, ZR, CMPRES); // T2 = CMPRES != 0 ? 0 : T2. |
| __ sll(TMP1, T2, shift); // TMP2 = T2 << shift. |
| __ movz(T2, TMP1, CMPRES); // T2 = CMPRES == 0 ? TMP1 : T2. |
| |
| // Get the class index and insert it into the tags. |
| // T2: size and bit tags. |
| __ LoadImmediate(TMP1, RawObject::ClassIdTag::encode(context_class.id())); |
| __ or_(T2, T2, TMP1); |
| __ sw(T2, FieldAddress(V0, Context::tags_offset())); |
| |
| // Setup up number of context variables field. |
| // V0: new object. |
| // T1: number of context variables as integer value (not object). |
| __ sw(T1, FieldAddress(V0, Context::num_variables_offset())); |
| |
| // Setup isolate field. |
| // Load Isolate pointer from Context structure into R2. |
| // V0: new object. |
| // T1: number of context variables. |
| __ lw(T2, FieldAddress(CTX, Context::isolate_offset())); |
| // T2: isolate, not an object. |
| __ sw(T2, FieldAddress(V0, Context::isolate_offset())); |
| |
| // Setup the parent field. |
| // V0: new object. |
| // T1: number of context variables. |
| __ LoadImmediate(T2, reinterpret_cast<intptr_t>(Object::null())); |
| __ sw(T2, FieldAddress(V0, Context::parent_offset())); |
| |
| // Initialize the context variables. |
| // V0: new object. |
| // T1: number of context variables. |
| // T2: raw null. |
| Label loop, loop_test; |
| __ AddImmediate(T3, V0, Context::variable_offset(0) - kHeapObjectTag); |
| __ b(&loop_test); |
| __ delay_slot()->sll(T1, T1, 2); |
| __ Bind(&loop); |
| __ addu(TMP1, T3, T1); |
| __ sw(T2, Address(TMP1)); |
| __ Bind(&loop_test); |
| __ addiu(T1, T1, Immediate(-kWordSize)); |
| __ bne(T1, ZR, &loop); // Loop if R1 not zero. |
| |
| // Done allocating and initializing the context. |
| // V0: new object. |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ LoadImmediate(T2, reinterpret_cast<intptr_t>(Object::null())); |
| __ SmiTag(T1); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(T2, Address(SP, 1 * kWordSize)); |
| __ sw(T1, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kAllocateContextRuntimeEntry); // Allocate context. |
| __ lw(V0, Address(SP, 1 * kWordSize)); // Get the new context. |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); // Pop argument and return. |
| |
| // V0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(void, StoreBufferBlockProcess, Isolate* isolate); |
| |
| |
| // Helper stub to implement Assembler::StoreIntoObject. |
| // Input parameters: |
| // T0: Address (i.e. object) being stored into. |
| void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) { |
| // Save values being destroyed. |
| __ TraceSimMsg("UpdateStoreBufferStub"); |
| __ addiu(SP, SP, Immediate(-3 * kWordSize)); |
| __ sw(T3, Address(SP, 2 * kWordSize)); |
| __ sw(T2, Address(SP, 1 * kWordSize)); |
| __ sw(T1, Address(SP, 0 * kWordSize)); |
| |
| // Load the isolate out of the context. |
| // Spilled: T1, T2, T3. |
| // T0: Address being stored. |
| __ lw(T1, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Load top_ out of the StoreBufferBlock and add the address to the pointers_. |
| // T1: Isolate. |
| intptr_t store_buffer_offset = Isolate::store_buffer_block_offset(); |
| __ lw(T2, Address(T1, store_buffer_offset + StoreBufferBlock::top_offset())); |
| __ sll(T3, T2, 2); |
| __ addu(T3, T1, T3); |
| __ sw(T0, |
| Address(T3, store_buffer_offset + StoreBufferBlock::pointers_offset())); |
| |
| // Increment top_ and check for overflow. |
| // T2: top_ |
| // T1: Isolate |
| Label L; |
| __ AddImmediate(T2, 1); |
| __ sw(T2, Address(T1, store_buffer_offset + StoreBufferBlock::top_offset())); |
| __ addiu(CMPRES, T2, Immediate(-StoreBufferBlock::kSize)); |
| // Restore values. |
| __ lw(T1, Address(SP, 0 * kWordSize)); |
| __ lw(T2, Address(SP, 1 * kWordSize)); |
| __ lw(T3, Address(SP, 2 * kWordSize)); |
| __ beq(CMPRES, ZR, &L); |
| __ delay_slot()->addiu(SP, SP, Immediate(3 * kWordSize)); |
| __ Ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&L); |
| // Setup frame, push callee-saved registers. |
| |
| __ EnterCallRuntimeFrame(0 * kWordSize); |
| __ lw(T0, FieldAddress(CTX, Context::isolate_offset())); |
| __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry); |
| __ TraceSimMsg("UpdateStoreBufferStub return"); |
| // Restore callee-saved registers, tear down frame. |
| __ LeaveCallRuntimeFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Called for inline allocation of objects. |
| // Input parameters: |
| // RA : return address. |
| // SP + 4 : type arguments object (only if class is parameterized). |
| // SP + 0 : type arguments of instantiator (only if class is parameterized). |
| void StubCode::GenerateAllocationStubForClass(Assembler* assembler, |
| const Class& cls) { |
| __ TraceSimMsg("AllocationStubForClass"); |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = |
| cls.type_arguments_field_offset() != Class::kNoTypeArguments; |
| // kInlineInstanceSize is a constant used as a threshold for determining |
| // when the object initialization should be done as a loop or as |
| // straight line code. |
| const int kInlineInstanceSize = 12; |
| const intptr_t instance_size = cls.instance_size(); |
| ASSERT(instance_size > 0); |
| const intptr_t type_args_size = InstantiatedTypeArguments::InstanceSize(); |
| if (FLAG_inline_alloc && |
| Heap::IsAllocatableInNewSpace(instance_size + type_args_size)) { |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| __ LoadImmediate(T5, heap->TopAddress()); |
| __ lw(T2, Address(T5)); |
| __ LoadImmediate(T4, instance_size); |
| __ addu(T3, T2, T4); |
| if (is_cls_parameterized) { |
| Label no_instantiator; |
| __ lw(T1, Address(SP, 1 * kWordSize)); |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| // A new InstantiatedTypeArguments object only needs to be allocated if |
| // the instantiator is provided (not kNoInstantiator, but may be null). |
| __ BranchEqual(T0, Smi::RawValue(StubCode::kNoInstantiator), |
| &no_instantiator); |
| __ delay_slot()->mov(T4, T3); |
| __ AddImmediate(T3, type_args_size); |
| __ Bind(&no_instantiator); |
| // T4: potential new object end and, if T4 != T3, potential new |
| // InstantiatedTypeArguments object start. |
| } |
| // Check if the allocation fits into the remaining space. |
| // T2: potential new object start. |
| // T3: potential next object start. |
| __ LoadImmediate(TMP1, heap->EndAddress()); |
| __ lw(TMP1, Address(TMP1)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ BranchGreaterEqual(T3, TMP1, &slow_case); |
| } |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ sw(T3, Address(T5)); |
| |
| if (is_cls_parameterized) { |
| // Initialize the type arguments field in the object. |
| // T2: new object start. |
| // T4: potential new object end and, if T4 != T3, potential new |
| // InstantiatedTypeArguments object start. |
| // T3: next object start. |
| Label type_arguments_ready; |
| __ beq(T4, T3, &type_arguments_ready); |
| // Initialize InstantiatedTypeArguments object at T4. |
| __ sw(T1, Address(T4, |
| InstantiatedTypeArguments::uninstantiated_type_arguments_offset())); |
| __ sw(T0, Address(T4, |
| InstantiatedTypeArguments::instantiator_type_arguments_offset())); |
| const Class& ita_cls = |
| Class::ZoneHandle(Object::instantiated_type_arguments_class()); |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(type_args_size, tags); |
| tags = RawObject::ClassIdTag::update(ita_cls.id(), tags); |
| __ LoadImmediate(T0, tags); |
| __ sw(T0, Address(T4, Instance::tags_offset())); |
| // Set the new InstantiatedTypeArguments object (T4) as the type |
| // arguments (T1) of the new object (T2). |
| __ addiu(T1, T4, Immediate(kHeapObjectTag)); |
| // Set T3 to new object end. |
| __ mov(T3, T4); |
| __ Bind(&type_arguments_ready); |
| // T2: new object. |
| // T1: new object type arguments. |
| } |
| |
| // T2: new object start. |
| // T3: next object start. |
| // T1: new object type arguments (if is_cls_parameterized). |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(instance_size, tags); |
| ASSERT(cls.id() != kIllegalCid); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ LoadImmediate(T0, tags); |
| __ sw(T0, Address(T2, Instance::tags_offset())); |
| |
| // Initialize the remaining words of the object. |
| __ LoadImmediate(T0, reinterpret_cast<intptr_t>(Object::null())); |
| |
| // T0: raw null. |
| // T2: new object start. |
| // T3: next object start. |
| // T1: new object type arguments (if is_cls_parameterized). |
| // First try inlining the initialization without a loop. |
| if (instance_size < (kInlineInstanceSize * kWordSize)) { |
| // Check if the object contains any non-header fields. |
| // Small objects are initialized using a consecutive set of writes. |
| for (intptr_t current_offset = sizeof(RawObject); |
| current_offset < instance_size; |
| current_offset += kWordSize) { |
| __ sw(T0, Address(T2, current_offset)); |
| } |
| } else { |
| __ addiu(T4, T2, Immediate(sizeof(RawObject))); |
| // Loop until the whole object is initialized. |
| // T0: raw null. |
| // T2: new object. |
| // T3: next object start. |
| // T4: next word to be initialized. |
| // T1: new object type arguments (if is_cls_parameterized). |
| Label init_loop; |
| Label done; |
| __ Bind(&init_loop); |
| __ BranchGreaterEqual(T4, T3, &done); // Done if T4 >= T3. |
| __ sw(T0, Address(T4)); |
| __ AddImmediate(T4, kWordSize); |
| __ b(&init_loop); |
| __ Bind(&done); |
| } |
| if (is_cls_parameterized) { |
| // R1: new object type arguments. |
| // Set the type arguments in the new object. |
| __ sw(T1, Address(T2, cls.type_arguments_field_offset())); |
| } |
| // Done allocating and initializing the instance. |
| // T2: new object still missing its heap tag. |
| __ Ret(); |
| __ delay_slot()->addiu(V0, T2, Immediate(kHeapObjectTag)); |
| |
| __ Bind(&slow_case); |
| } |
| if (is_cls_parameterized) { |
| __ lw(T1, Address(SP, 1 * kWordSize)); |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(true); // Uses pool pointer to pass cls to runtime. |
| __ LoadImmediate(T2, reinterpret_cast<intptr_t>(Object::null())); |
| __ LoadObject(TMP1, cls); |
| |
| __ addiu(SP, SP, Immediate(-4 * kWordSize)); |
| __ sw(T2, Address(SP, 3 * kWordSize)); // Space on stack for return value. |
| __ sw(TMP1, Address(SP, 2 * kWordSize)); // Class of object to be allocated. |
| |
| if (is_cls_parameterized) { |
| // Push type arguments of object to be allocated and of instantiator. |
| __ sw(T1, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| } else { |
| // Push null type arguments and kNoInstantiator. |
| __ LoadImmediate(T1, Smi::RawValue(StubCode::kNoInstantiator)); |
| __ sw(T2, Address(SP, 1 * kWordSize)); |
| __ sw(T1, Address(SP, 0 * kWordSize)); |
| } |
| __ CallRuntime(kAllocateObjectRuntimeEntry); // Allocate object. |
| __ TraceSimMsg("AllocationStubForClass return"); |
| // Pop result (newly allocated object). |
| __ lw(V0, Address(SP, 3 * kWordSize)); |
| __ addiu(SP, SP, Immediate(4 * kWordSize)); // Pop arguments. |
| // V0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(true); |
| __ Ret(); |
| } |
| |
| |
| // Called for inline allocation of closures. |
| // Input parameters: |
| // RA: return address. |
| // SP + 4 : receiver (null if not an implicit instance closure). |
| // SP + 0 : type arguments object (null if class is no parameterized). |
| void StubCode::GenerateAllocationStubForClosure(Assembler* assembler, |
| const Function& func) { |
| ASSERT(func.IsClosureFunction()); |
| const bool is_implicit_static_closure = |
| func.IsImplicitStaticClosureFunction(); |
| const bool is_implicit_instance_closure = |
| func.IsImplicitInstanceClosureFunction(); |
| const Class& cls = Class::ZoneHandle(func.signature_class()); |
| const bool has_type_arguments = cls.HasTypeArguments(); |
| |
| __ TraceSimMsg("AllocationStubForClosure"); |
| __ EnterStubFrame(true); // Uses pool pointer to refer to function. |
| const intptr_t kTypeArgumentsFPOffset = 4 * kWordSize; |
| const intptr_t kReceiverFPOffset = 5 * kWordSize; |
| const intptr_t closure_size = Closure::InstanceSize(); |
| const intptr_t context_size = Context::InstanceSize(1); // Captured receiver. |
| if (FLAG_inline_alloc && |
| Heap::IsAllocatableInNewSpace(closure_size + context_size)) { |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| __ LoadImmediate(T5, heap->TopAddress()); |
| __ lw(T2, Address(T5)); |
| __ AddImmediate(T3, T2, closure_size); |
| if (is_implicit_instance_closure) { |
| __ mov(T4, T3); // T4: new context address. |
| __ AddImmediate(T3, context_size); |
| } |
| // Check if the allocation fits into the remaining space. |
| // T2: potential new closure object. |
| // T3: address of top of heap. |
| // T4: potential new context object (only if is_implicit_closure). |
| __ LoadImmediate(TMP1, heap->EndAddress()); |
| __ lw(TMP1, Address(TMP1)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ BranchGreaterEqual(T3, TMP1, &slow_case); |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| __ sw(T3, Address(T5)); |
| |
| // T2: new closure object. |
| // T4: new context object (only if is_implicit_closure). |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(closure_size, tags); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ LoadImmediate(T0, tags); |
| __ sw(T0, Address(T2, Instance::tags_offset())); |
| |
| // Initialize the function field in the object. |
| // T2: new closure object. |
| // T4: new context object (only if is_implicit_closure). |
| __ LoadObject(T0, func); // Load function of closure to be allocated. |
| __ sw(T0, Address(T2, Closure::function_offset())); |
| |
| // Setup the context for this closure. |
| if (is_implicit_static_closure) { |
| ObjectStore* object_store = Isolate::Current()->object_store(); |
| ASSERT(object_store != NULL); |
| const Context& empty_context = |
| Context::ZoneHandle(object_store->empty_context()); |
| __ LoadObject(T0, empty_context); |
| __ sw(T0, Address(T0, Closure::context_offset())); |
| } else if (is_implicit_instance_closure) { |
| // Initialize the new context capturing the receiver. |
| const Class& context_class = Class::ZoneHandle(Object::context_class()); |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(context_size, tags); |
| tags = RawObject::ClassIdTag::update(context_class.id(), tags); |
| __ LoadImmediate(T0, tags); |
| __ sw(T0, Address(T4, Context::tags_offset())); |
| |
| // Set number of variables field to 1 (for captured receiver). |
| __ LoadImmediate(T0, 1); |
| __ sw(T0, Address(T4, Context::num_variables_offset())); |
| |
| // Set isolate field to isolate of current context. |
| __ lw(T0, FieldAddress(CTX, Context::isolate_offset())); |
| __ sw(T0, Address(T4, Context::isolate_offset())); |
| |
| // Set the parent to null. |
| __ LoadImmediate(T0, reinterpret_cast<intptr_t>(Object::null())); |
| __ sw(T0, Address(T4, Context::parent_offset())); |
| |
| // Initialize the context variable to the receiver. |
| __ lw(T0, Address(FP, kReceiverFPOffset)); |
| __ sw(T0, Address(T4, Context::variable_offset(0))); |
| |
| // Set the newly allocated context in the newly allocated closure. |
| __ AddImmediate(T1, T4, kHeapObjectTag); |
| __ sw(T1, Address(T2, Closure::context_offset())); |
| } else { |
| __ sw(CTX, Address(T2, Closure::context_offset())); |
| } |
| |
| // Set the type arguments field in the newly allocated closure. |
| __ lw(T0, Address(FP, kTypeArgumentsFPOffset)); |
| __ sw(T0, Address(T2, Closure::type_arguments_offset())); |
| |
| // Done allocating and initializing the instance. |
| // V0: new object. |
| __ addiu(V0, T2, Immediate(kHeapObjectTag)); |
| __ LeaveStubFrame(true); |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| |
| // If it's an implicit static closure we need 2 stack slots. Otherwise, |
| // If it's an implicit instance closure we need 4 stack slots, o/w only 3. |
| int num_slots = 2; |
| if (!is_implicit_static_closure) { |
| num_slots = is_implicit_instance_closure ? 4 : 3; |
| } |
| __ addiu(SP, SP, Immediate(-num_slots * kWordSize)); |
| __ LoadImmediate(V0, reinterpret_cast<intptr_t>(Object::null())); |
| __ LoadObject(TMP1, func); |
| // Setup space on stack for return value. |
| __ sw(V0, Address(SP, (num_slots - 1) * kWordSize)); |
| __ sw(TMP1, Address(SP, (num_slots - 2) * kWordSize)); |
| if (is_implicit_static_closure) { |
| __ CallRuntime(kAllocateImplicitStaticClosureRuntimeEntry); |
| __ TraceSimMsg("AllocationStubForClosure return"); |
| } else { |
| if (is_implicit_instance_closure) { |
| __ lw(T1, Address(FP, kReceiverFPOffset)); |
| __ sw(T1, Address(SP, (num_slots - 3) * kWordSize)); // Receiver. |
| __ sw(V0, Address(SP, (num_slots - 4) * kWordSize)); // Push null. |
| } |
| if (has_type_arguments) { |
| __ lw(V0, Address(FP, kTypeArgumentsFPOffset)); |
| // Push type arguments of closure. |
| __ sw(V0, Address(SP, (num_slots - 3) * kWordSize)); |
| } |
| |
| if (is_implicit_instance_closure) { |
| __ CallRuntime(kAllocateImplicitInstanceClosureRuntimeEntry); |
| __ TraceSimMsg("AllocationStubForClosure return"); |
| } else { |
| ASSERT(func.IsNonImplicitClosureFunction()); |
| __ CallRuntime(kAllocateClosureRuntimeEntry); |
| __ TraceSimMsg("AllocationStubForClosure return"); |
| } |
| } |
| __ lw(V0, Address(SP, (num_slots - 1) * kWordSize)); // Pop function object. |
| __ addiu(SP, SP, Immediate(num_slots * kWordSize)); |
| |
| // V0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(true); |
| __ Ret(); |
| } |
| |
| |
| void StubCode::GenerateCallNoSuchMethodFunctionStub(Assembler* assembler) { |
| __ Unimplemented("CallNoSuchMethodFunction stub"); |
| } |
| |
| |
| void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) { |
| __ Unimplemented("OptimizedUsageCounterIncrement stub"); |
| } |
| |
| |
| // Loads function into 'temp_reg'. |
| void StubCode::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register temp_reg) { |
| __ TraceSimMsg("UsageCounterIncrement"); |
| Register ic_reg = S5; |
| Register func_reg = temp_reg; |
| ASSERT(temp_reg == T0); |
| __ lw(func_reg, FieldAddress(ic_reg, ICData::function_offset())); |
| __ lw(T1, FieldAddress(func_reg, Function::usage_counter_offset())); |
| Label is_hot; |
| if (FlowGraphCompiler::CanOptimize()) { |
| ASSERT(FLAG_optimization_counter_threshold > 1); |
| // The usage_counter is always less than FLAG_optimization_counter_threshold |
| // except when the function gets optimized. |
| __ BranchEqual(T1, FLAG_optimization_counter_threshold, &is_hot); |
| // As long as VM has no OSR do not optimize in the middle of the function |
| // but only at exit so that we have collected all type feedback before |
| // optimizing. |
| } |
| __ addiu(T1, T1, Immediate(1)); |
| __ sw(T1, FieldAddress(func_reg, Function::usage_counter_offset())); |
| __ Bind(&is_hot); |
| } |
| |
| |
| // Generate inline cache check for 'num_args'. |
| // AR: return address |
| // S5: Inline cache data object. |
| // S4: Arguments descriptor array. |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCode::GenerateNArgsCheckInlineCacheStub(Assembler* assembler, |
| intptr_t num_args) { |
| __ TraceSimMsg("NArgsCheckInlineCacheStub"); |
| ASSERT(num_args > 0); |
| #if defined(DEBUG) |
| { Label ok; |
| // Check that the IC data array has NumberOfArgumentsChecked() == num_args. |
| // 'num_args_tested' is stored as an untagged int. |
| __ lw(T0, FieldAddress(S5, ICData::num_args_tested_offset())); |
| __ BranchEqual(T0, num_args, &ok); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| // Preserve return address, since RA is needed for subroutine call. |
| __ mov(T2, RA); |
| // Loop that checks if there is an IC data match. |
| Label loop, update, test, found, get_class_id_as_smi; |
| // S5: IC data object (preserved). |
| __ lw(T0, FieldAddress(S5, ICData::ic_data_offset())); |
| // T0: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(T0, Array::data_offset() - kHeapObjectTag); |
| // T0: points directly to the first ic data array element. |
| |
| // Get the receiver's class ID (first read number of arguments from |
| // arguments descriptor array and then access the receiver from the stack). |
| __ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ LoadImmediate(TMP1, Smi::RawValue(1)); |
| __ subu(T1, T1, TMP1); |
| __ sll(T3, T1, 1); // T1 (argument_count - 1) is smi. |
| __ addu(T3, T3, SP); |
| __ bal(&get_class_id_as_smi); |
| __ delay_slot()->lw(T3, Address(T3)); |
| // T1: argument_count - 1 (smi). |
| // T3: receiver's class ID (smi). |
| __ b(&test); |
| __ delay_slot()->lw(T4, Address(T0)); // First class id (smi) to check. |
| |
| __ Bind(&loop); |
| for (int i = 0; i < num_args; i++) { |
| if (i > 0) { |
| // If not the first, load the next argument's class ID. |
| __ LoadImmediate(T3, Smi::RawValue(-i)); |
| __ addu(T3, T1, T3); |
| __ sll(T3, T3, 1); |
| __ addu(T3, SP, T3); |
| __ bal(&get_class_id_as_smi); |
| __ delay_slot()->lw(T3, Address(T3)); |
| // T3: next argument class ID (smi). |
| __ lw(T4, Address(T0, i * kWordSize)); |
| // T4: next class ID to check (smi). |
| } |
| if (i < (num_args - 1)) { |
| __ bne(T3, T4, &update); // Continue. |
| } else { |
| // Last check, all checks before matched. |
| Label skip; |
| __ bne(T3, T4, &skip); |
| __ b(&found); // Break. |
| __ delay_slot()->mov(RA, T2); // Restore return address if found. |
| __ Bind(&skip); |
| } |
| } |
| __ Bind(&update); |
| // Reload receiver class ID. It has not been destroyed when num_args == 1. |
| if (num_args > 1) { |
| __ sll(T3, T1, 1); |
| __ addu(T3, T3, SP); |
| __ bal(&get_class_id_as_smi); |
| __ delay_slot()->lw(T3, Address(T3)); |
| } |
| |
| const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize; |
| __ AddImmediate(T0, entry_size); // Next entry. |
| __ lw(T4, Address(T0)); // Next class ID. |
| |
| __ Bind(&test); |
| __ BranchNotEqual(T4, Smi::RawValue(kIllegalCid), &loop); // Done? |
| |
| // IC miss. |
| // Restore return address. |
| __ mov(RA, T2); |
| |
| // Compute address of arguments (first read number of arguments from |
| // arguments descriptor array and then compute address on the stack). |
| // T1: argument_count - 1 (smi). |
| __ sll(T1, T1, 1); // T1 is Smi. |
| __ addu(T1, SP, T1); |
| // T1: address of receiver. |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(T3, reinterpret_cast<intptr_t>(Object::null())); |
| // Preserve IC data object and arguments descriptor array and |
| // setup space on stack for result (target code object). |
| int num_slots = num_args + 5; |
| __ addiu(SP, SP, Immediate(-num_slots * kWordSize)); |
| __ sw(S5, Address(SP, (num_slots - 1) * kWordSize)); |
| __ sw(S4, Address(SP, (num_slots - 2) * kWordSize)); |
| __ sw(T3, Address(SP, (num_slots - 3) * kWordSize)); |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ lw(TMP1, Address(T1, -i * kWordSize)); |
| __ sw(TMP1, Address(SP, (num_slots - i - 4) * kWordSize)); |
| } |
| // Pass IC data object and arguments descriptor array. |
| __ sw(S5, Address(SP, (num_slots - num_args - 4) * kWordSize)); |
| __ sw(S4, Address(SP, (num_slots - num_args - 5) * kWordSize)); |
| |
| if (num_args == 1) { |
| __ CallRuntime(kInlineCacheMissHandlerOneArgRuntimeEntry); |
| } else if (num_args == 2) { |
| __ CallRuntime(kInlineCacheMissHandlerTwoArgsRuntimeEntry); |
| } else if (num_args == 3) { |
| __ CallRuntime(kInlineCacheMissHandlerThreeArgsRuntimeEntry); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| __ TraceSimMsg("NArgsCheckInlineCacheStub return"); |
| // Pop returned code object into T3 (null if not found). |
| // Restore arguments descriptor array and IC data array. |
| __ lw(T3, Address(SP, (num_slots - 3) * kWordSize)); |
| __ lw(S4, Address(SP, (num_slots - 2) * kWordSize)); |
| __ lw(S5, Address(SP, (num_slots - 1) * kWordSize)); |
| // Remove the call arguments pushed earlier, including the IC data object |
| // and the arguments descriptor array. |
| __ addiu(SP, SP, Immediate(num_slots * kWordSize)); |
| __ LeaveStubFrame(); |
| Label call_target_function; |
| __ BranchNotEqual(T3, reinterpret_cast<intptr_t>(Object::null()), |
| &call_target_function); |
| // NoSuchMethod or closure. |
| // Mark IC call that it may be a closure call that does not collect |
| // type feedback. |
| __ LoadImmediate(TMP2, 1); |
| __ Branch(&StubCode::InstanceFunctionLookupLabel()); |
| __ delay_slot()->sb(TMP2, FieldAddress(S5, ICData::is_closure_call_offset())); |
| |
| __ Bind(&found); |
| // T0: Pointer to an IC data check group. |
| const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize; |
| const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize; |
| __ lw(T3, Address(T0, target_offset)); |
| __ lw(T4, Address(T0, count_offset)); |
| |
| __ AddImmediateDetectOverflow(T4, T4, Smi::RawValue(1), T5); |
| |
| __ bgez(T5, &call_target_function); // No overflow. |
| __ delay_slot()->sw(T4, Address(T0, count_offset)); |
| |
| __ LoadImmediate(T1, Smi::RawValue(Smi::kMaxValue)); |
| __ sw(T1, Address(T0, count_offset)); |
| |
| __ Bind(&call_target_function); |
| // T3: Target function. |
| __ lw(T3, FieldAddress(T3, Function::code_offset())); |
| __ lw(T3, FieldAddress(T3, Code::instructions_offset())); |
| __ AddImmediate(T3, Instructions::HeaderSize() - kHeapObjectTag); |
| __ jr(T3); |
| |
| // Instance in T3, return its class-id in T3 as Smi. |
| __ Bind(&get_class_id_as_smi); |
| Label not_smi; |
| // Test if Smi -> load Smi class for comparison. |
| __ andi(TMP1, T3, Immediate(kSmiTagMask)); |
| __ bne(TMP1, ZR, ¬_smi); |
| __ LoadImmediate(T3, Smi::RawValue(kSmiCid)); |
| __ jr(RA); |
| |
| __ Bind(¬_smi); |
| __ LoadClassId(T3, T3); |
| __ SmiTag(T3); |
| __ jr(RA); |
| } |
| |
| |
| // Use inline cache data array to invoke the target or continue in inline |
| // cache miss handler. Stub for 1-argument check (receiver class). |
| // RA: Return address. |
| // S5: Inline cache data object. |
| // S4: Arguments descriptor array. |
| // Inline cache data object structure: |
| // 0: function-name |
| // 1: N, number of arguments checked. |
| // 2 .. (length - 1): group of checks, each check containing: |
| // - N classes. |
| // - 1 target function. |
| void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2); |
| } |
| |
| |
| void StubCode::GenerateThreeArgsCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub(assembler, 3); |
| } |
| |
| |
| void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2); |
| } |
| |
| |
| void StubCode::GenerateThreeArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 3); |
| } |
| |
| |
| void StubCode::GenerateClosureCallInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| // RA: return address (Dart code). |
| // S4: Arguments descriptor array. |
| void StubCode::GenerateBreakpointStaticStub(Assembler* assembler) { |
| __ TraceSimMsg("BreakpointStaticStub"); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(T0, reinterpret_cast<intptr_t>(Object::null())); |
| // Preserve arguments descriptor and make room for result. |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S4, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kBreakpointStaticHandlerRuntimeEntry); |
| // Pop code object result and restore arguments descriptor. |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(S4, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| __ LeaveStubFrame(); |
| |
| // Now call the static function. The breakpoint handler function |
| // ensures that the call target is compiled. |
| __ lw(T0, FieldAddress(T0, Code::instructions_offset())); |
| __ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ jr(T0); |
| } |
| |
| |
| // V0: return value. |
| void StubCode::GenerateBreakpointReturnStub(Assembler* assembler) { |
| __ TraceSimMsg("BreakpoingReturnStub"); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ Push(V0); |
| __ CallRuntime(kBreakpointReturnHandlerRuntimeEntry); |
| __ Pop(V0); |
| __ LeaveStubFrame(); |
| |
| // Instead of returning to the patched Dart function, emulate the |
| // smashed return code pattern and return to the function's caller. |
| __ LeaveDartFrame(); |
| __ Ret(); |
| } |
| |
| |
| // RA: return address (Dart code). |
| // S5: Inline cache data array. |
| // S4: Arguments descriptor array. |
| void StubCode::GenerateBreakpointDynamicStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S5, Address(SP, 1 * kWordSize)); |
| __ sw(S4, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kBreakpointDynamicHandlerRuntimeEntry); |
| __ lw(S4, Address(SP, 0 * kWordSize)); |
| __ lw(S5, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| __ LeaveStubFrame(); |
| |
| // Find out which dispatch stub to call. |
| __ lw(TMP1, FieldAddress(S5, ICData::num_args_tested_offset())); |
| |
| Label one_arg, two_args, three_args; |
| __ BranchEqual(TMP1, 1, &one_arg); |
| __ BranchEqual(TMP1, 2, &two_args); |
| __ BranchEqual(TMP1, 3, &three_args); |
| __ Stop("Unsupported number of arguments tested."); |
| |
| __ Bind(&one_arg); |
| __ Branch(&StubCode::OneArgCheckInlineCacheLabel()); |
| __ Bind(&two_args); |
| __ Branch(&StubCode::TwoArgsCheckInlineCacheLabel()); |
| __ Bind(&three_args); |
| __ Branch(&StubCode::ThreeArgsCheckInlineCacheLabel()); |
| __ break_(0); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // RA: return address. |
| // A0: instance (must be preserved). |
| // A1: instantiator type arguments or NULL. |
| // A2: cache array. |
| // Result in V0: null -> not found, otherwise result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| __ TraceSimMsg("SubtypeNTestCacheStub"); |
| ASSERT((1 <= n) && (n <= 3)); |
| if (n > 1) { |
| // Get instance type arguments. |
| __ LoadClass(T0, A0); |
| // Compute instance type arguments into R4. |
| Label has_no_type_arguments; |
| __ LoadImmediate(T1, reinterpret_cast<intptr_t>(Object::null())); |
| __ lw(T2, FieldAddress(T0, |
| Class::type_arguments_field_offset_in_words_offset())); |
| __ BranchEqual(T2, Class::kNoTypeArguments, &has_no_type_arguments); |
| __ sll(T2, T2, 2); |
| __ addu(T2, A0, T2); // T2 <- A0 + T2 * 4 |
| __ lw(T1, FieldAddress(T2, 0)); |
| __ Bind(&has_no_type_arguments); |
| } |
| __ LoadClassId(T0, A0); |
| // A0: instance. |
| // A1: instantiator type arguments or NULL. |
| // A2: SubtypeTestCache. |
| // T0: instance class id. |
| // T1: instance type arguments (null if none), used only if n > 1. |
| __ lw(T2, FieldAddress(A2, SubtypeTestCache::cache_offset())); |
| __ AddImmediate(T2, Array::data_offset() - kHeapObjectTag); |
| |
| Label loop, found, not_found, next_iteration; |
| // T0: instance class id. |
| // T1: instance type arguments. |
| // T2: Entry start. |
| __ SmiTag(T0); |
| __ Bind(&loop); |
| __ lw(T3, Address(T2, kWordSize * SubtypeTestCache::kInstanceClassId)); |
| __ BranchEqual(T3, reinterpret_cast<intptr_t>(Object::null()), ¬_found); |
| |
| if (n == 1) { |
| __ beq(T3, T0, &found); |
| } else { |
| __ bne(T3, T0, &next_iteration); |
| __ lw(T3, |
| Address(T2, kWordSize * SubtypeTestCache::kInstanceTypeArguments)); |
| if (n == 2) { |
| __ beq(T3, T1, &found); |
| } else { |
| __ bne(T3, T1, &next_iteration); |
| __ lw(T3, Address(T2, kWordSize * |
| SubtypeTestCache::kInstantiatorTypeArguments)); |
| __ beq(T3, A1, &found); |
| } |
| } |
| __ Bind(&next_iteration); |
| __ AddImmediate(T2, kWordSize * SubtypeTestCache::kTestEntryLength); |
| __ b(&loop); |
| // Fall through to not found. |
| __ Bind(¬_found); |
| __ LoadImmediate(V0, reinterpret_cast<intptr_t>(Object::null())); |
| __ Ret(); |
| |
| __ Bind(&found); |
| __ Ret(); |
| __ delay_slot()->lw(V0, |
| Address(T2, kWordSize * SubtypeTestCache::kTestResult)); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // RA: return address. |
| // A0: instance (must be preserved). |
| // A1: instantiator type arguments or NULL. |
| // A2: cache array. |
| // Result in V0: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // RA: return address. |
| // A0: instance (must be preserved). |
| // A1: instantiator type arguments or NULL. |
| // A2: cache array. |
| // Result in V0: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 2); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // RA: return address. |
| // A0: instance (must be preserved). |
| // A1: instantiator type arguments or NULL. |
| // A2: cache array. |
| // Result in V0: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 3); |
| } |
| |
| |
| // Return the current stack pointer address, used to stack alignment |
| // checks. |
| void StubCode::GenerateGetStackPointerStub(Assembler* assembler) { |
| __ Unimplemented("GetStackPointer Stub"); |
| } |
| |
| |
| // Jump to the exception or error handler. |
| // RA: return address. |
| // A0: program_counter. |
| // A1: stack_pointer. |
| // A2: frame_pointer. |
| // A3: error object. |
| // SP: address of stacktrace object. |
| // Does not return. |
| void StubCode::GenerateJumpToExceptionHandlerStub(Assembler* assembler) { |
| ASSERT(kExceptionObjectReg == V0); |
| ASSERT(kStackTraceObjectReg == V1); |
| __ mov(V0, A3); // Exception object. |
| __ lw(V1, Address(SP, 0)); // StackTrace object. |
| __ mov(FP, A2); // Frame_pointer. |
| __ mov(SP, A1); // Stack pointer. |
| __ jr(A0); // Jump to the exception handler code. |
| } |
| |
| |
| // Implements equality operator when one of the arguments is null |
| // (identity check) and updates ICData if necessary. |
| // RA: return address. |
| // A1: left argument. |
| // A0: right argument. |
| // T0: ICData. |
| // V0: result. |
| // TODO(srdjan): Move to VM stubs once Boolean objects become VM objects. |
| void StubCode::GenerateEqualityWithNullArgStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| static const intptr_t kNumArgsTested = 2; |
| #if defined(DEBUG) |
| { Label ok; |
| __ lw(TMP1, FieldAddress(T0, ICData::num_args_tested_offset())); |
| __ BranchEqual(TMP1, kNumArgsTested, &ok); |
| __ Stop("Incorrect ICData for equality"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| // Check IC data, update if needed. |
| // T0: IC data object (preserved). |
| __ lw(T6, FieldAddress(T0, ICData::ic_data_offset())); |
| // T6: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(T6, Array::data_offset() - kHeapObjectTag); |
| // T6: points directly to the first ic data array element. |
| |
| Label get_class_id_as_smi, no_match, loop, found; |
| __ Bind(&loop); |
| // Check left. |
| __ bal(&get_class_id_as_smi); |
| __ delay_slot()->mov(T2, A1); |
| __ lw(T3, Address(T6, 0 * kWordSize)); |
| __ bne(T2, T3, &no_match); // Class id match? |
| |
| // Check right. |
| __ bal(&get_class_id_as_smi); |
| __ delay_slot()->mov(T2, A0); |
| __ lw(T3, Address(T6, 1 * kWordSize)); |
| __ beq(T2, T3, &found); // Class id match? |
| __ Bind(&no_match); |
| // Next check group. |
| __ AddImmediate(T6, kWordSize * ICData::TestEntryLengthFor(kNumArgsTested)); |
| __ BranchNotEqual(T3, Smi::RawValue(kIllegalCid), &loop); // Done? |
| |
| Label update_ic_data; |
| __ b(&update_ic_data); |
| |
| __ Bind(&found); |
| const intptr_t count_offset = |
| ICData::CountIndexFor(kNumArgsTested) * kWordSize; |
| Label no_overflow; |
| __ lw(T1, Address(T6, count_offset)); |
| __ AddImmediateDetectOverflow(T1, T1, Smi::RawValue(1), CMPRES); |
| __ bgez(CMPRES, &no_overflow); |
| __ LoadImmediate(TMP1, Smi::RawValue(Smi::kMaxValue)); |
| __ sw(TMP1, Address(T6, count_offset)); // If overflow. |
| __ Bind(&no_overflow); |
| |
| Label compute_result; |
| __ Bind(&compute_result); |
| __ LoadObject(TMP1, Bool::True()); |
| __ LoadObject(TMP2, Bool::False()); |
| __ subu(CMPRES, A0, A1); |
| __ movz(V0, TMP1, CMPRES); |
| __ movn(V0, TMP2, CMPRES); |
| __ LeaveStubFrame(); |
| __ Ret(); |
| |
| __ Bind(&get_class_id_as_smi); |
| // Test if Smi -> load Smi class for comparison. |
| Label not_smi; |
| __ andi(CMPRES, T2, Immediate(kSmiTagMask)); |
| __ bne(CMPRES, ZR, ¬_smi); |
| __ jr(RA); |
| __ delay_slot()->addiu(T2, ZR, Immediate(Smi::RawValue(kSmiCid))); |
| __ Bind(¬_smi); |
| __ LoadClassId(T2, T2); |
| __ jr(RA); |
| __ delay_slot()->SmiTag(T2); |
| |
| __ Bind(&update_ic_data); |
| // T0: ICData |
| __ addiu(SP, SP, Immediate(-4 * kWordSize)); |
| __ sw(A1, Address(SP, 3 * kWordSize)); |
| __ sw(A0, Address(SP, 2 * kWordSize)); |
| __ LoadObject(TMP1, Symbols::EqualOperator()); // Target's name. |
| __ sw(TMP1, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); // ICData. |
| __ CallRuntime(kUpdateICDataTwoArgsRuntimeEntry); |
| __ lw(A0, Address(SP, 2 * kWordSize)); |
| __ lw(A1, Address(SP, 3 * kWordSize)); |
| __ b(&compute_result); |
| __ delay_slot()->addiu(SP, SP, Immediate(4 * kWordSize)); |
| } |
| |
| |
| // Calls to the runtime to optimize the given function. |
| // T0: function to be reoptimized. |
| // S4: argument descriptor (preserved). |
| void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) { |
| __ TraceSimMsg("OptimizeFunctionStub"); |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-3 * kWordSize)); |
| __ sw(S4, Address(SP, 2 * kWordSize)); |
| // Setup space on stack for return value. |
| __ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null())); |
| __ sw(TMP1, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry); |
| __ TraceSimMsg("OptimizeFunctionStub return"); |
| __ lw(T0, Address(SP, 1 * kWordSize)); // Get Code object |
| __ lw(S4, Address(SP, 2 * kWordSize)); // Restore argument descriptor. |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); // Discard argument. |
| |
| __ lw(T0, FieldAddress(T0, Code::instructions_offset())); |
| __ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ LeaveStubFrame(); |
| __ jr(T0); |
| __ break_(0); |
| } |
| |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(intptr_t, |
| BigintCompare, |
| RawBigint* left, |
| RawBigint* right); |
| |
| |
| // Does identical check (object references are equal or not equal) with special |
| // checks for boxed numbers. |
| // RA: return address. |
| // SP + 4: left operand. |
| // SP + 0: right operand. |
| // Return: CMPRES is zero if equal, non-zero otherwise. |
| // Note: A Mint cannot contain a value that would fit in Smi, a Bigint |
| // cannot contain a value that fits in Mint or Smi. |
| void StubCode::GenerateIdenticalWithNumberCheckStub(Assembler* assembler) { |
| __ TraceSimMsg("IdenticalWithNumberCheckStub"); |
| const Register ret = CMPRES; |
| const Register temp1 = TMP1; |
| const Register temp2 = TMP2; |
| const Register left = T1; |
| const Register right = T0; |
| // Preserve left, right. |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(T1, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| // TOS + 3: left argument. |
| // TOS + 2: right argument. |
| // TOS + 1: saved left |
| // TOS + 0: saved right |
| __ lw(left, Address(SP, 3 * kWordSize)); |
| __ lw(right, Address(SP, 2 * kWordSize)); |
| Label reference_compare, done, check_mint, check_bigint; |
| // If any of the arguments is Smi do reference compare. |
| __ andi(temp1, left, Immediate(kSmiTagMask)); |
| __ beq(temp1, ZR, &reference_compare); |
| __ andi(temp1, right, Immediate(kSmiTagMask)); |
| __ beq(temp1, ZR, &reference_compare); |
| |
| // Value compare for two doubles. |
| __ LoadImmediate(temp1, kDoubleCid); |
| __ LoadClassId(temp2, left); |
| __ bne(temp1, temp2, &check_mint); |
| __ LoadClassId(temp2, right); |
| __ subu(ret, temp1, temp2); |
| __ bne(ret, ZR, &done); |
| |
| // Double values bitwise compare. |
| __ lw(temp1, FieldAddress(left, Double::value_offset() + 0 * kWordSize)); |
| __ lw(temp1, FieldAddress(right, Double::value_offset() + 0 * kWordSize)); |
| __ subu(ret, temp1, temp2); |
| __ bne(ret, ZR, &done); |
| __ lw(temp1, FieldAddress(left, Double::value_offset() + 1 * kWordSize)); |
| __ lw(temp2, FieldAddress(right, Double::value_offset() + 1 * kWordSize)); |
| __ b(&done); |
| __ delay_slot()->subu(ret, temp1, temp2); |
| |
| __ Bind(&check_mint); |
| __ LoadImmediate(temp1, kMintCid); |
| __ LoadClassId(temp2, left); |
| __ bne(temp1, temp2, &check_bigint); |
| __ LoadClassId(temp2, right); |
| __ subu(ret, temp1, temp2); |
| __ bne(ret, ZR, &done); |
| |
| __ lw(temp1, FieldAddress(left, Mint::value_offset() + 0 * kWordSize)); |
| __ lw(temp2, FieldAddress(right, Mint::value_offset() + 0 * kWordSize)); |
| __ subu(ret, temp1, temp2); |
| __ bne(ret, ZR, &done); |
| __ lw(temp1, FieldAddress(left, Mint::value_offset() + 1 * kWordSize)); |
| __ lw(temp2, FieldAddress(right, Mint::value_offset() + 1 * kWordSize)); |
| __ b(&done); |
| __ delay_slot()->subu(ret, temp1, temp2); |
| |
| __ Bind(&check_bigint); |
| __ LoadImmediate(temp1, kBigintCid); |
| __ LoadClassId(temp2, left); |
| __ bne(temp1, temp2, &reference_compare); |
| __ LoadClassId(temp2, right); |
| __ subu(ret, temp1, temp2); |
| __ bne(ret, ZR, &done); |
| |
| __ EnterStubFrame(0); |
| __ ReserveAlignedFrameSpace(2 * kWordSize); |
| __ sw(T1, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kBigintCompareRuntimeEntry); |
| __ TraceSimMsg("IdenticalWithNumberCheckStub return"); |
| // Result in V0, 0 means equal. |
| __ LeaveStubFrame(); |
| __ b(&done); |
| __ delay_slot()->mov(CMPRES, V0); |
| |
| __ Bind(&reference_compare); |
| __ subu(ret, left, right); |
| __ Bind(&done); |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(T1, Address(SP, 1 * kWordSize)); |
| __ Ret(); |
| __ delay_slot()->addiu(SP, SP, Immediate(2 * kWordSize)); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_MIPS |