| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_ARM) |
| |
| #include "vm/assembler.h" |
| #include "vm/code_generator.h" |
| #include "vm/compiler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/heap.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| |
| DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects."); |
| DEFINE_FLAG(bool, use_slow_path, false, |
| "Set to true for debugging & verifying the slow paths."); |
| DECLARE_FLAG(int, optimization_counter_threshold); |
| DECLARE_FLAG(bool, trace_optimized_ic_calls); |
| |
| |
| // Input parameters: |
| // LR : return address. |
| // SP : address of last argument in argument array. |
| // SP + 4*R4 - 4 : address of first argument in argument array. |
| // SP + 4*R4 : address of return value. |
| // R5 : address of the runtime function to call. |
| // R4 : number of arguments to the call. |
| void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) { |
| const intptr_t isolate_offset = NativeArguments::isolate_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ EnterFrame((1 << FP) | (1 << LR), 0); |
| |
| // Load current Isolate pointer from Context structure into R0. |
| __ ldr(R0, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ StoreToOffset(kStoreWord, SP, R0, Isolate::top_exit_frame_info_offset()); |
| |
| // Save current Context pointer into Isolate structure. |
| __ StoreToOffset(kStoreWord, CTX, R0, Isolate::top_context_offset()); |
| |
| // Cache Isolate pointer into CTX while executing runtime code. |
| __ mov(CTX, ShifterOperand(R0)); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| // NativeArguments are passed in registers. |
| ASSERT(sizeof(NativeArguments) == 4 * kWordSize); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Pass NativeArguments structure by value and call runtime. |
| // Registers R0, R1, R2, and R3 are used. |
| |
| ASSERT(isolate_offset == 0 * kWordSize); |
| // Set isolate in NativeArgs: R0 already contains CTX. |
| |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * kWordSize); |
| __ mov(R1, ShifterOperand(R4)); // Set argc in NativeArguments. |
| |
| ASSERT(argv_offset == 2 * kWordSize); |
| __ add(R2, FP, ShifterOperand(R4, LSL, 2)); // Compute argv. |
| __ AddImmediate(R2, kWordSize); // Set argv in NativeArguments. |
| |
| ASSERT(retval_offset == 3 * kWordSize); |
| __ add(R3, R2, ShifterOperand(kWordSize)); // Retval is next to 1st argument. |
| |
| // Call runtime or redirection via simulator. |
| __ blx(R5); |
| |
| // Reset exit frame information in Isolate structure. |
| __ LoadImmediate(R2, 0); |
| __ StoreToOffset(kStoreWord, R2, CTX, Isolate::top_exit_frame_info_offset()); |
| |
| // Load Context pointer from Isolate structure into R2. |
| __ LoadFromOffset(kLoadWord, R2, CTX, Isolate::top_context_offset()); |
| |
| // Reset Context pointer in Isolate structure. |
| __ LoadImmediate(R3, reinterpret_cast<intptr_t>(Object::null())); |
| __ StoreToOffset(kStoreWord, R3, CTX, Isolate::top_context_offset()); |
| |
| // Cache Context pointer into CTX while executing Dart code. |
| __ mov(CTX, ShifterOperand(R2)); |
| |
| __ LeaveFrame((1 << FP) | (1 << LR)); |
| __ Ret(); |
| } |
| |
| |
| // Print the stop message. |
| DEFINE_LEAF_RUNTIME_ENTRY(void, PrintStopMessage, const char* message) { |
| OS::Print("Stop message: %s\n", message); |
| } |
| END_LEAF_RUNTIME_ENTRY |
| |
| |
| // Input parameters: |
| // R0 : stop message (const char*). |
| // Must preserve all registers. |
| void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) { |
| __ EnterCallRuntimeFrame(0); |
| // Call the runtime leaf function. R0 already contains the parameter. |
| __ CallRuntime(kPrintStopMessageRuntimeEntry); |
| __ LeaveCallRuntimeFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Input parameters: |
| // LR : return address. |
| // SP : address of return value. |
| // R5 : address of the native function to call. |
| // R2 : address of first argument in argument array. |
| // R1 : argc_tag including number of arguments and function kind. |
| void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) { |
| const intptr_t isolate_offset = NativeArguments::isolate_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ EnterFrame((1 << FP) | (1 << LR), 0); |
| |
| // Load current Isolate pointer from Context structure into R0. |
| __ ldr(R0, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ StoreToOffset(kStoreWord, SP, R0, Isolate::top_exit_frame_info_offset()); |
| |
| // Save current Context pointer into Isolate structure. |
| __ StoreToOffset(kStoreWord, CTX, R0, Isolate::top_context_offset()); |
| |
| // Cache Isolate pointer into CTX while executing native code. |
| __ mov(CTX, ShifterOperand(R0)); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // R0) and align frame before entering the C++ world. |
| __ ReserveAlignedFrameSpace(sizeof(NativeArguments)); |
| |
| // Initialize NativeArguments structure and call native function. |
| // Registers R0, R1, R2, and R3 are used. |
| |
| ASSERT(isolate_offset == 0 * kWordSize); |
| // Set isolate in NativeArgs: R0 already contains CTX. |
| |
| // There are no native calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * kWordSize); |
| // Set argc in NativeArguments: R1 already contains argc. |
| |
| ASSERT(argv_offset == 2 * kWordSize); |
| // Set argv in NativeArguments: R2 already contains argv. |
| |
| ASSERT(retval_offset == 3 * kWordSize); |
| __ add(R3, FP, ShifterOperand(2 * kWordSize)); // Set retval in NativeArgs. |
| |
| // TODO(regis): Should we pass the structure by value as in runtime calls? |
| // It would require changing Dart API for native functions. |
| // For now, space is reserved on the stack and we pass a pointer to it. |
| __ stm(IA, SP, (1 << R0) | (1 << R1) | (1 << R2) | (1 << R3)); |
| __ mov(R0, ShifterOperand(SP)); // Pass the pointer to the NativeArguments. |
| |
| // Call native function or redirection via simulator. |
| __ blx(R5); |
| |
| // Reset exit frame information in Isolate structure. |
| __ LoadImmediate(R2, 0); |
| __ StoreToOffset(kStoreWord, R2, CTX, Isolate::top_exit_frame_info_offset()); |
| |
| // Load Context pointer from Isolate structure into R2. |
| __ LoadFromOffset(kLoadWord, R2, CTX, Isolate::top_context_offset()); |
| |
| // Reset Context pointer in Isolate structure. |
| __ LoadImmediate(R3, reinterpret_cast<intptr_t>(Object::null())); |
| __ StoreToOffset(kStoreWord, R3, CTX, Isolate::top_context_offset()); |
| |
| // Cache Context pointer into CTX while executing Dart code. |
| __ mov(CTX, ShifterOperand(R2)); |
| |
| __ LeaveFrame((1 << FP) | (1 << LR)); |
| __ Ret(); |
| } |
| |
| |
| // Input parameters: |
| // R4: arguments descriptor array. |
| void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| __ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null())); |
| __ PushList((1 << R0) | (1 << R4)); |
| __ CallRuntime(kPatchStaticCallRuntimeEntry); |
| // Get Code object result and restore arguments descriptor array. |
| __ PopList((1 << R0) | (1 << R4)); |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ ldr(R0, FieldAddress(R0, Code::instructions_offset())); |
| __ AddImmediate(R0, R0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ bx(R0); |
| } |
| |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // R4: arguments descriptor array. |
| void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| __ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null())); |
| __ PushList((1 << R0) | (1 << R4)); |
| __ CallRuntime(kFixCallersTargetRuntimeEntry); |
| // Get Code object result and restore arguments descriptor array. |
| __ PopList((1 << R0) | (1 << R4)); |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ ldr(R0, FieldAddress(R0, Code::instructions_offset())); |
| __ AddImmediate(R0, R0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ bx(R0); |
| } |
| |
| |
| // Input parameters: |
| // R2: smi-tagged argument count, may be zero. |
| // FP[kLastParamSlotIndex]: last argument. |
| static void PushArgumentsArray(Assembler* assembler) { |
| // Allocate array to store arguments of caller. |
| __ LoadImmediate(R1, reinterpret_cast<intptr_t>(Object::null())); |
| // R1: null element type for raw Array. |
| // R2: smi-tagged argument count, may be zero. |
| __ BranchLink(&StubCode::AllocateArrayLabel()); |
| // R0: newly allocated array. |
| // R2: smi-tagged argument count, may be zero (was preserved by the stub). |
| __ Push(R0); // Array is in R0 and on top of stack. |
| __ add(R1, FP, ShifterOperand(R2, LSL, 1)); |
| __ AddImmediate(R1, (kLastParamSlotIndex - 1) * kWordSize); |
| __ AddImmediate(R3, R0, Array::data_offset() - kHeapObjectTag); |
| // R1: address of first argument on stack. |
| // R3: address of first argument in array. |
| Label loop; |
| __ Bind(&loop); |
| __ subs(R2, R2, ShifterOperand(Smi::RawValue(1))); // R2 is Smi. |
| __ ldr(IP, Address(R1, 0), PL); |
| __ str(IP, Address(R3, 0), PL); |
| __ AddImmediate(R1, -kWordSize, PL); |
| __ AddImmediate(R3, kWordSize, PL); |
| __ b(&loop, PL); |
| } |
| |
| |
| // Input parameters: |
| // R5: ic-data. |
| // R4: arguments descriptor array. |
| // Note: The receiver object is the first argument to the function being |
| // called, the stub accesses the receiver from this location directly |
| // when trying to resolve the call. |
| void StubCode::GenerateInstanceFunctionLookupStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ ldr(R2, FieldAddress(R4, ArgumentsDescriptor::count_offset())); |
| __ add(IP, FP, ShifterOperand(R2, LSL, 1)); // R2 is Smi. |
| __ ldr(R6, Address(IP, (kLastParamSlotIndex - 1) * kWordSize)); |
| |
| // Push space for the return value. |
| // Push the receiver. |
| // Push IC data object. |
| // Push arguments descriptor array. |
| __ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null())); |
| __ PushList((1 << R4) | (1 << R5) | (1 << R6) | (1 << IP)); |
| |
| // R2: Smi-tagged arguments array length. |
| PushArgumentsArray(assembler); |
| |
| // Stack: |
| // TOS + 0: argument array. |
| // TOS + 1: arguments descriptor array. |
| // TOS + 2: IC data object. |
| // TOS + 3: Receiver. |
| // TOS + 4: place for result from the call. |
| // TOS + 5: saved FP of previous frame. |
| // TOS + 6: dart code return address |
| // TOS + 7: pc marker (0 for stub). |
| // TOS + 8: last argument of caller. |
| // .... |
| __ CallRuntime(kInstanceFunctionLookupRuntimeEntry); |
| // Remove arguments. |
| __ Drop(4); |
| __ Pop(R0); // Get result into R0. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(intptr_t, DeoptimizeCopyFrame, |
| intptr_t deopt_reason, |
| uword saved_registers_address); |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(void, DeoptimizeFillFrame, uword last_fp); |
| |
| |
| // Used by eager and lazy deoptimization. Preserve result in R0 if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterFrame(...) below: |
| // +------------------+ |
| // | Saved FP | <- TOS |
| // +------------------+ |
| // | return-address | (deoptimization point) |
| // +------------------+ |
| // | optimized frame | |
| // | ... | |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| bool preserve_result) { |
| __ EnterFrame((1 << FP) | (1 << LR), 0); |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_r0_offset_from_fp = -(kNumberOfCpuRegisters - R0); |
| // Result in R0 is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| __ PushList(kAllCpuRegistersList); |
| ASSERT(kFpuRegisterSize == 2 * kWordSize); |
| __ vstmd(DB_W, SP, D0, static_cast<DRegister>(kNumberOfDRegisters - 1)); |
| |
| __ mov(R0, ShifterOperand(SP)); // Pass address of saved registers block. |
| __ ReserveAlignedFrameSpace(0); |
| __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry); |
| // Result (R0) is stack-size (FP - SP) in bytes, incl. the return address. |
| |
| if (preserve_result) { |
| // Restore result into R1 temporarily. |
| __ ldr(R1, Address(FP, saved_r0_offset_from_fp * kWordSize)); |
| } |
| |
| __ LeaveFrame((1 << FP) | (1 << LR)); |
| __ sub(SP, FP, ShifterOperand(R0)); |
| |
| __ EnterFrame((1 << FP) | (1 << LR), 0); |
| __ mov(R0, ShifterOperand(SP)); // Get last FP address. |
| if (preserve_result) { |
| __ Push(R1); // Preserve result. |
| } |
| __ ReserveAlignedFrameSpace(0); |
| __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry); // Pass last FP in R0. |
| // Result (R0) is our FP. |
| if (preserve_result) { |
| // Restore result into R1. |
| __ ldr(R1, Address(FP, -1 * kWordSize)); |
| } |
| // Code above cannot cause GC. |
| __ LeaveFrame((1 << FP) | (1 << LR)); |
| __ mov(FP, ShifterOperand(R0)); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| __ EnterStubFrame(); |
| if (preserve_result) { |
| __ Push(R1); // Preserve result, it will be GC-d here. |
| } |
| __ CallRuntime(kDeoptimizeMaterializeDoublesRuntimeEntry); |
| if (preserve_result) { |
| __ Pop(R0); // Restore result. |
| } |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| void StubCode::GenerateDeoptimizeLazyStub(Assembler* assembler) { |
| __ Unimplemented("DeoptimizeLazy stub"); |
| } |
| |
| |
| void StubCode::GenerateDeoptimizeStub(Assembler* assembler) { |
| GenerateDeoptimizationSequence(assembler, false); // Don't preserve R0. |
| } |
| |
| |
| void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) { |
| __ Unimplemented("MegamorphicMiss stub"); |
| } |
| |
| |
| // Called for inline allocation of arrays. |
| // Input parameters: |
| // LR: return address. |
| // R2: array length as Smi. |
| // R1: array element type (either NULL or an instantiated type). |
| // NOTE: R2 cannot be clobbered here as the caller relies on it being saved. |
| // The newly allocated object is returned in R0. |
| void StubCode::GenerateAllocateArrayStub(Assembler* assembler) { |
| Label slow_case; |
| if (FLAG_inline_alloc) { |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)). |
| // Assert that length is a Smi. |
| __ tst(R2, ShifterOperand(kSmiTagMask)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ b(&slow_case, NE); |
| } |
| __ ldr(R8, FieldAddress(CTX, Context::isolate_offset())); |
| __ LoadFromOffset(kLoadWord, R8, R8, Isolate::heap_offset()); |
| __ LoadFromOffset(kLoadWord, R8, R8, Heap::new_space_offset()); |
| |
| // Calculate and align allocation size. |
| // Load new object start and calculate next object start. |
| // R1: array element type. |
| // R2: array length as Smi. |
| // R8: points to new space object. |
| __ LoadFromOffset(kLoadWord, R0, R8, Scavenger::top_offset()); |
| intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1; |
| __ LoadImmediate(R3, fixed_size); |
| __ add(R3, R3, ShifterOperand(R2, LSL, 1)); // R2 is Smi. |
| ASSERT(kSmiTagShift == 1); |
| __ bic(R3, R3, ShifterOperand(kObjectAlignment - 1)); |
| __ add(R7, R3, ShifterOperand(R0)); |
| |
| // Check if the allocation fits into the remaining space. |
| // R0: potential new object start. |
| // R1: array element type. |
| // R2: array length as Smi. |
| // R3: array size. |
| // R7: potential next object start. |
| // R8: points to new space object. |
| __ LoadFromOffset(kLoadWord, IP, R8, Scavenger::end_offset()); |
| __ cmp(R7, ShifterOperand(IP)); |
| __ b(&slow_case, CS); // Branch if unsigned higher or equal. |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| // R0: potential new object start. |
| // R7: potential next object start. |
| // R8: Points to new space object. |
| __ StoreToOffset(kStoreWord, R7, R8, Scavenger::top_offset()); |
| __ add(R0, R0, ShifterOperand(kHeapObjectTag)); |
| |
| // R0: new object start as a tagged pointer. |
| // R1: array element type. |
| // R2: array length as Smi. |
| // R3: array size. |
| // R7: new object end address. |
| |
| // Store the type argument field. |
| __ StoreIntoObjectNoBarrier( |
| R0, |
| FieldAddress(R0, Array::type_arguments_offset()), |
| R1); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier( |
| R0, |
| FieldAddress(R0, Array::length_offset()), |
| R2); |
| |
| // Calculate the size tag. |
| // R0: new object start as a tagged pointer. |
| // R2: array length as Smi. |
| // R3: array size. |
| // R7: new object end address. |
| const intptr_t shift = RawObject::kSizeTagBit - kObjectAlignmentLog2; |
| __ CompareImmediate(R3, RawObject::SizeTag::kMaxSizeTag); |
| // If no size tag overflow, shift R1 left, else set R1 to zero. |
| __ mov(R1, ShifterOperand(R3, LSL, shift), LS); |
| __ mov(R1, ShifterOperand(0), HI); |
| |
| // Get the class index and insert it into the tags. |
| __ LoadImmediate(IP, RawObject::ClassIdTag::encode(kArrayCid)); |
| __ orr(R1, R1, ShifterOperand(IP)); |
| __ str(R1, FieldAddress(R0, Array::tags_offset())); |
| |
| // Initialize all array elements to raw_null. |
| // R0: new object start as a tagged pointer. |
| // R7: new object end address. |
| // R2: array length as Smi. |
| __ AddImmediate(R1, R0, Array::data_offset() - kHeapObjectTag); |
| // R1: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| __ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null())); |
| Label loop; |
| __ Bind(&loop); |
| // TODO(cshapiro): StoreIntoObjectNoBarrier |
| __ cmp(R1, ShifterOperand(R7)); |
| __ str(IP, Address(R1, 0), CC); // Store if unsigned lower. |
| __ AddImmediate(R1, kWordSize, CC); |
| __ b(&loop, CS); |
| |
| // Done allocating and initializing the array. |
| // R0: new object. |
| // R2: array length as Smi (preserved for the caller.) |
| __ Ret(); |
| } |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null())); |
| // Setup space on stack for return value. |
| // Push array length as Smi and element type. |
| __ PushList((1 << R1) | (1 << R2) | (1 << IP)); |
| __ CallRuntime(kAllocateArrayRuntimeEntry); |
| // Pop arguments; result is popped in IP. |
| __ PopList((1 << R1) | (1 << R2) | (1 << IP)); // R2 is restored. |
| __ mov(R0, ShifterOperand(IP)); |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Input parameters: |
| // LR: return address. |
| // SP: address of last argument. |
| // R4: arguments descriptor array. |
| // Note: The closure object is the first argument to the function being |
| // called, the stub accesses the closure from this location directly |
| // when trying to resolve the call. |
| void StubCode::GenerateCallClosureFunctionStub(Assembler* assembler) { |
| // Load num_args. |
| __ ldr(R0, FieldAddress(R4, ArgumentsDescriptor::count_offset())); |
| __ sub(R0, R0, ShifterOperand(Smi::RawValue(1))); |
| // Load closure object in R1. |
| __ ldr(R1, Address(SP, R0, LSL, 1)); // R0 (num_args - 1) is a Smi. |
| |
| // Verify that R1 is a closure by checking its class. |
| Label not_closure; |
| __ LoadImmediate(R8, reinterpret_cast<intptr_t>(Object::null())); |
| __ cmp(R1, ShifterOperand(R8)); |
| // Not a closure, but null object. |
| __ b(¬_closure, EQ); |
| __ tst(R1, ShifterOperand(kSmiTagMask)); |
| __ b(¬_closure, EQ); // Not a closure, but a smi. |
| // Verify that the class of the object is a closure class by checking that |
| // class.signature_function() is not null. |
| __ LoadClass(R0, R1, R2); |
| __ ldr(R0, FieldAddress(R0, Class::signature_function_offset())); |
| __ cmp(R0, ShifterOperand(R8)); // R8 is raw null. |
| // Actual class is not a closure class. |
| __ b(¬_closure, EQ); |
| |
| // R0 is just the signature function. Load the actual closure function. |
| __ ldr(R2, FieldAddress(R1, Closure::function_offset())); |
| |
| // Load closure context in CTX; note that CTX has already been preserved. |
| __ ldr(CTX, FieldAddress(R1, Closure::context_offset())); |
| |
| // Load closure function code in R0. |
| __ ldr(R0, FieldAddress(R2, Function::code_offset())); |
| __ cmp(R0, ShifterOperand(R8)); // R8 is raw null. |
| Label function_compiled; |
| __ b(&function_compiled, NE); |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| |
| // Preserve arguments descriptor array and read-only function object argument. |
| __ PushList((1 << R2) | (1 << R4)); |
| __ CallRuntime(kCompileFunctionRuntimeEntry); |
| // Restore arguments descriptor array and read-only function object argument. |
| __ PopList((1 << R2) | (1 << R4)); |
| // Restore R0. |
| __ ldr(R0, FieldAddress(R2, Function::code_offset())); |
| |
| // Remove the stub frame as we are about to jump to the closure function. |
| __ LeaveStubFrame(); |
| |
| __ Bind(&function_compiled); |
| // R0: code. |
| // R4: arguments descriptor array. |
| __ ldr(R0, FieldAddress(R0, Code::instructions_offset())); |
| __ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ bx(R0); |
| |
| __ Bind(¬_closure); |
| // Call runtime to attempt to resolve and invoke a call method on a |
| // non-closure object, passing the non-closure object and its arguments array, |
| // returning here. |
| // If no call method exists, throw a NoSuchMethodError. |
| // R1: non-closure object. |
| // R4: arguments descriptor array. |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| |
| // Setup space on stack for result from error reporting. |
| __ PushList((1 << R4) | (1 << R8)); // Arguments descriptor and raw null. |
| |
| // Load smi-tagged arguments array length, including the non-closure. |
| __ ldr(R2, FieldAddress(R4, ArgumentsDescriptor::count_offset())); |
| PushArgumentsArray(assembler); |
| |
| // Stack: |
| // TOS + 0: argument array. |
| // TOS + 1: arguments descriptor array. |
| // TOS + 2: place for result from the call. |
| // TOS + 3: saved FP of previous frame. |
| // TOS + 4: dart code return address |
| // TOS + 5: pc marker (0 for stub). |
| // TOS + 6: last argument of caller. |
| // .... |
| __ CallRuntime(kInvokeNonClosureRuntimeEntry); |
| // Remove arguments. |
| __ Drop(2); |
| __ Pop(R0); // Get result into R0. |
| |
| // Remove the stub frame as we are about to return. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // LR : points to return address. |
| // R0 : entrypoint of the Dart function to call. |
| // R1 : arguments descriptor array. |
| // R2 : arguments array. |
| // R3 : new context containing the current isolate pointer. |
| void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| // Save frame pointer coming in. |
| __ EnterStubFrame(); |
| |
| // Save new context and C++ ABI callee-saved registers. |
| const intptr_t kNewContextOffset = |
| -(1 + kAbiPreservedCpuRegCount) * kWordSize; |
| __ PushList((1 << R3) | kAbiPreservedCpuRegs); |
| |
| // The new Context structure contains a pointer to the current Isolate |
| // structure. Cache the Context pointer in the CTX register so that it is |
| // available in generated code and calls to Isolate::Current() need not be |
| // done. The assumption is that this register will never be clobbered by |
| // compiled or runtime stub code. |
| |
| // Cache the new Context pointer into CTX while executing Dart code. |
| __ ldr(CTX, Address(R3, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load Isolate pointer from Context structure into temporary register R8. |
| __ ldr(R8, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save the top exit frame info. Use R5 as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ LoadFromOffset(kLoadWord, R5, R8, Isolate::top_exit_frame_info_offset()); |
| __ LoadImmediate(R6, 0); |
| __ StoreToOffset(kStoreWord, R6, R8, Isolate::top_exit_frame_info_offset()); |
| |
| // Save the old Context pointer. Use R4 as a temporary register. |
| // Note that VisitObjectPointers will find this saved Context pointer during |
| // GC marking, since it traverses any information between SP and |
| // FP - kExitLinkOffsetInEntryFrame. |
| // EntryFrame::SavedContext reads the context saved in this frame. |
| __ LoadFromOffset(kLoadWord, R4, R8, Isolate::top_context_offset()); |
| |
| // The constants kSavedContextOffsetInEntryFrame and |
| // kExitLinkOffsetInEntryFrame must be kept in sync with the code below. |
| __ PushList((1 << R4) | (1 << R5)); |
| |
| // The stack pointer is restored after the call to this location. |
| const intptr_t kSavedContextOffsetInEntryFrame = -10 * kWordSize; |
| |
| // Load arguments descriptor array into R4, which is passed to Dart code. |
| __ ldr(R4, Address(R1, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load number of arguments into R5. |
| __ ldr(R5, FieldAddress(R4, ArgumentsDescriptor::count_offset())); |
| __ SmiUntag(R5); |
| |
| // Compute address of 'arguments array' data area into R2. |
| __ ldr(R2, Address(R2, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ AddImmediate(R2, R2, Array::data_offset() - kHeapObjectTag); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ CompareImmediate(R5, 0); // check if there are arguments. |
| __ b(&done_push_arguments, EQ); |
| __ LoadImmediate(R1, 0); |
| __ Bind(&push_arguments); |
| __ ldr(R3, Address(R2)); |
| __ Push(R3); |
| __ AddImmediate(R2, kWordSize); |
| __ AddImmediate(R1, 1); |
| __ cmp(R1, ShifterOperand(R5)); |
| __ b(&push_arguments, LT); |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| __ blx(R0); // R4 is the arguments descriptor array. |
| |
| // Read the saved new Context pointer. |
| __ ldr(CTX, Address(FP, kNewContextOffset)); |
| __ ldr(CTX, Address(CTX, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Get rid of arguments pushed on the stack. |
| __ AddImmediate(SP, FP, kSavedContextOffsetInEntryFrame); |
| |
| // Load Isolate pointer from Context structure into CTX. Drop Context. |
| __ ldr(CTX, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Restore the saved Context pointer into the Isolate structure. |
| // Uses R4 as a temporary register for this. |
| // Restore the saved top exit frame info back into the Isolate structure. |
| // Uses R5 as a temporary register for this. |
| __ PopList((1 << R4) | (1 << R5)); |
| __ StoreToOffset(kStoreWord, R4, CTX, Isolate::top_context_offset()); |
| __ StoreToOffset(kStoreWord, R5, CTX, Isolate::top_exit_frame_info_offset()); |
| |
| // Restore C++ ABI callee-saved registers. |
| __ PopList((1 << R3) | kAbiPreservedCpuRegs); // Ignore restored R3. |
| |
| // Restore the frame pointer and return. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // R1: number of context variables. |
| // Output: |
| // R0: new allocated RawContext object. |
| void StubCode::GenerateAllocateContextStub(Assembler* assembler) { |
| if (FLAG_inline_alloc) { |
| const Class& context_class = Class::ZoneHandle(Object::context_class()); |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| // First compute the rounded instance size. |
| // R1: number of context variables. |
| intptr_t fixed_size = sizeof(RawContext) + kObjectAlignment - 1; |
| __ LoadImmediate(R2, fixed_size); |
| __ add(R2, R2, ShifterOperand(R1, LSL, 2)); |
| ASSERT(kSmiTagShift == 1); |
| __ bic(R2, R2, ShifterOperand(kObjectAlignment - 1)); |
| |
| // Now allocate the object. |
| // R1: number of context variables. |
| // R2: object size. |
| __ LoadImmediate(R5, heap->TopAddress()); |
| __ ldr(R0, Address(R5, 0)); |
| __ add(R3, R2, ShifterOperand(R0)); |
| // Check if the allocation fits into the remaining space. |
| // R0: potential new object. |
| // R1: number of context variables. |
| // R2: object size. |
| // R3: potential next object start. |
| __ LoadImmediate(IP, heap->EndAddress()); |
| __ ldr(IP, Address(IP, 0)); |
| __ cmp(R3, ShifterOperand(IP)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ b(&slow_case, CS); // Branch if unsigned higher or equal. |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // R0: new object. |
| // R1: number of context variables. |
| // R2: object size. |
| // R3: next object start. |
| __ str(R3, Address(R5, 0)); |
| __ add(R0, R0, ShifterOperand(kHeapObjectTag)); |
| |
| // Calculate the size tag. |
| // R0: new object. |
| // R1: number of context variables. |
| // R2: object size. |
| const intptr_t shift = RawObject::kSizeTagBit - kObjectAlignmentLog2; |
| __ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag); |
| // If no size tag overflow, shift R2 left, else set R2 to zero. |
| __ mov(R2, ShifterOperand(R2, LSL, shift), LS); |
| __ mov(R2, ShifterOperand(0), HI); |
| |
| // Get the class index and insert it into the tags. |
| // R2: size and bit tags. |
| __ LoadImmediate(IP, RawObject::ClassIdTag::encode(context_class.id())); |
| __ orr(R2, R2, ShifterOperand(IP)); |
| __ str(R2, FieldAddress(R0, Context::tags_offset())); |
| |
| // Setup up number of context variables field. |
| // R0: new object. |
| // R1: number of context variables as integer value (not object). |
| __ str(R1, FieldAddress(R0, Context::num_variables_offset())); |
| |
| // Setup isolate field. |
| // Load Isolate pointer from Context structure into R2. |
| // R0: new object. |
| // R1: number of context variables. |
| __ ldr(R2, FieldAddress(CTX, Context::isolate_offset())); |
| // R2: isolate, not an object. |
| __ str(R2, FieldAddress(R0, Context::isolate_offset())); |
| |
| // Setup the parent field. |
| // R0: new object. |
| // R1: number of context variables. |
| __ LoadImmediate(R2, reinterpret_cast<intptr_t>(Object::null())); |
| __ str(R2, FieldAddress(R0, Context::parent_offset())); |
| |
| // Initialize the context variables. |
| // R0: new object. |
| // R1: number of context variables. |
| // R2: raw null. |
| Label loop; |
| __ AddImmediate(R3, R0, Context::variable_offset(0) - kHeapObjectTag); |
| __ Bind(&loop); |
| __ subs(R1, R1, ShifterOperand(1)); |
| __ str(R2, Address(R3, R1, LSL, 2), PL); // Store if R1 positive or zero. |
| __ b(&loop, NE); // Loop if R1 not zero. |
| |
| // Done allocating and initializing the context. |
| // R0: new object. |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ LoadImmediate(R2, reinterpret_cast<intptr_t>(Object::null())); |
| __ SmiTag(R1); |
| __ PushList((1 << R1) | (1 << R2)); |
| __ CallRuntime(kAllocateContextRuntimeEntry); // Allocate context. |
| __ Drop(1); // Pop number of context variables argument. |
| __ Pop(R0); // Pop the new context object. |
| // R0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(void, StoreBufferBlockProcess, Isolate* isolate); |
| |
| // Helper stub to implement Assembler::StoreIntoObject. |
| // Input parameters: |
| // R0: address (i.e. object) being stored into. |
| void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) { |
| // Save values being destroyed. |
| __ PushList((1 << R1) | (1 << R2) | (1 << R3)); |
| |
| // Load the isolate out of the context. |
| // Spilled: R1, R2, R3. |
| // R0: address being stored. |
| __ ldr(R1, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Load top_ out of the StoreBufferBlock and add the address to the pointers_. |
| // R1: isolate. |
| intptr_t store_buffer_offset = Isolate::store_buffer_block_offset(); |
| __ LoadFromOffset(kLoadWord, R2, R1, |
| store_buffer_offset + StoreBufferBlock::top_offset()); |
| __ add(R3, R1, ShifterOperand(R2, LSL, 2)); |
| __ StoreToOffset(kStoreWord, R0, R3, |
| store_buffer_offset + StoreBufferBlock::pointers_offset()); |
| |
| // Increment top_ and check for overflow. |
| // R2: top_. |
| // R1: isolate. |
| Label L; |
| __ add(R2, R2, ShifterOperand(1)); |
| __ StoreToOffset(kStoreWord, R2, R1, |
| store_buffer_offset + StoreBufferBlock::top_offset()); |
| __ CompareImmediate(R2, StoreBufferBlock::kSize); |
| // Restore values. |
| __ PopList((1 << R1) | (1 << R2) | (1 << R3)); |
| __ b(&L, EQ); |
| __ Ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&L); |
| // Setup frame, push callee-saved registers. |
| |
| __ EnterCallRuntimeFrame(0 * kWordSize); |
| __ ldr(R0, FieldAddress(CTX, Context::isolate_offset())); |
| __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry); |
| // Restore callee-saved registers, tear down frame. |
| __ LeaveCallRuntimeFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Called for inline allocation of objects. |
| // Input parameters: |
| // LR : return address. |
| // SP + 4 : type arguments object (only if class is parameterized). |
| // SP + 0 : type arguments of instantiator (only if class is parameterized). |
| void StubCode::GenerateAllocationStubForClass(Assembler* assembler, |
| const Class& cls) { |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = |
| cls.type_arguments_field_offset() != Class::kNoTypeArguments; |
| // kInlineInstanceSize is a constant used as a threshold for determining |
| // when the object initialization should be done as a loop or as |
| // straight line code. |
| const int kInlineInstanceSize = 12; |
| const intptr_t instance_size = cls.instance_size(); |
| ASSERT(instance_size > 0); |
| const intptr_t type_args_size = InstantiatedTypeArguments::InstanceSize(); |
| if (FLAG_inline_alloc && |
| Heap::IsAllocatableInNewSpace(instance_size + type_args_size)) { |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| __ LoadImmediate(R5, heap->TopAddress()); |
| __ ldr(R2, Address(R5, 0)); |
| __ AddImmediate(R3, R2, instance_size); |
| if (is_cls_parameterized) { |
| __ ldm(IA, SP, (1 << R0) | (1 << R1)); |
| __ mov(R4, ShifterOperand(R3)); |
| // A new InstantiatedTypeArguments object only needs to be allocated if |
| // the instantiator is provided (not kNoInstantiator, but may be null). |
| __ CompareImmediate(R0, Smi::RawValue(StubCode::kNoInstantiator)); |
| __ AddImmediate(R3, type_args_size, NE); |
| // R4: potential new object end and, if R4 != R3, potential new |
| // InstantiatedTypeArguments object start. |
| } |
| // Check if the allocation fits into the remaining space. |
| // R2: potential new object start. |
| // R3: potential next object start. |
| __ LoadImmediate(IP, heap->EndAddress()); |
| __ ldr(IP, Address(IP, 0)); |
| __ cmp(R3, ShifterOperand(IP)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ b(&slow_case, CS); // Branch if unsigned higher or equal. |
| } |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ str(R3, Address(R5, 0)); |
| |
| if (is_cls_parameterized) { |
| // Initialize the type arguments field in the object. |
| // R2: new object start. |
| // R4: potential new object end and, if R4 != R3, potential new |
| // InstantiatedTypeArguments object start. |
| // R3: next object start. |
| Label type_arguments_ready; |
| __ cmp(R4, ShifterOperand(R3)); |
| __ b(&type_arguments_ready, EQ); |
| // Initialize InstantiatedTypeArguments object at R4. |
| __ str(R1, Address(R4, |
| InstantiatedTypeArguments::uninstantiated_type_arguments_offset())); |
| __ str(R0, Address(R4, |
| InstantiatedTypeArguments::instantiator_type_arguments_offset())); |
| const Class& ita_cls = |
| Class::ZoneHandle(Object::instantiated_type_arguments_class()); |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(type_args_size, tags); |
| tags = RawObject::ClassIdTag::update(ita_cls.id(), tags); |
| __ LoadImmediate(R0, tags); |
| __ str(R0, Address(R4, Instance::tags_offset())); |
| // Set the new InstantiatedTypeArguments object (R4) as the type |
| // arguments (R1) of the new object (R2). |
| __ add(R1, R4, ShifterOperand(kHeapObjectTag)); |
| // Set R3 to new object end. |
| __ mov(R3, ShifterOperand(R4)); |
| __ Bind(&type_arguments_ready); |
| // R2: new object. |
| // R1: new object type arguments. |
| } |
| |
| // R2: new object start. |
| // R3: next object start. |
| // R1: new object type arguments (if is_cls_parameterized). |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(instance_size, tags); |
| ASSERT(cls.id() != kIllegalCid); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ LoadImmediate(R0, tags); |
| __ str(R0, Address(R2, Instance::tags_offset())); |
| |
| // Initialize the remaining words of the object. |
| __ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null())); |
| |
| // R0: raw null. |
| // R2: new object start. |
| // R3: next object start. |
| // R1: new object type arguments (if is_cls_parameterized). |
| // First try inlining the initialization without a loop. |
| if (instance_size < (kInlineInstanceSize * kWordSize)) { |
| // Check if the object contains any non-header fields. |
| // Small objects are initialized using a consecutive set of writes. |
| for (intptr_t current_offset = sizeof(RawObject); |
| current_offset < instance_size; |
| current_offset += kWordSize) { |
| __ StoreToOffset(kStoreWord, R0, R2, current_offset); |
| } |
| } else { |
| __ add(R4, R2, ShifterOperand(sizeof(RawObject))); |
| // Loop until the whole object is initialized. |
| // R0: raw null. |
| // R2: new object. |
| // R3: next object start. |
| // R4: next word to be initialized. |
| // R1: new object type arguments (if is_cls_parameterized). |
| Label init_loop; |
| Label done; |
| __ Bind(&init_loop); |
| __ cmp(R4, ShifterOperand(R3)); |
| __ b(&done, CS); |
| __ str(R0, Address(R4, 0)); |
| __ AddImmediate(R4, kWordSize); |
| __ b(&init_loop); |
| __ Bind(&done); |
| } |
| if (is_cls_parameterized) { |
| // R1: new object type arguments. |
| // Set the type arguments in the new object. |
| __ StoreToOffset(kStoreWord, R1, R2, cls.type_arguments_field_offset()); |
| } |
| // Done allocating and initializing the instance. |
| // R2: new object still missing its heap tag. |
| __ add(R0, R2, ShifterOperand(kHeapObjectTag)); |
| // R0: new object. |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| if (is_cls_parameterized) { |
| __ ldm(IA, SP, (1 << R0) | (1 << R1)); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(true); // Uses pool pointer to pass cls to runtime. |
| __ LoadImmediate(R2, reinterpret_cast<intptr_t>(Object::null())); |
| __ Push(R2); // Setup space on stack for return value. |
| __ PushObject(cls); // Push class of object to be allocated. |
| if (is_cls_parameterized) { |
| // Push type arguments of object to be allocated and of instantiator. |
| __ PushList((1 << R0) | (1 << R1)); |
| } else { |
| // Push null type arguments and kNoInstantiator. |
| __ LoadImmediate(R1, Smi::RawValue(StubCode::kNoInstantiator)); |
| __ PushList((1 << R1) | (1 << R2)); |
| } |
| __ CallRuntime(kAllocateObjectRuntimeEntry); // Allocate object. |
| __ Drop(3); // Pop arguments. |
| __ Pop(R0); // Pop result (newly allocated object). |
| // R0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(true); |
| __ Ret(); |
| } |
| |
| |
| // Called for inline allocation of closures. |
| // Input parameters: |
| // LR : return address. |
| // SP + 4 : receiver (null if not an implicit instance closure). |
| // SP + 0 : type arguments object (null if class is no parameterized). |
| void StubCode::GenerateAllocationStubForClosure(Assembler* assembler, |
| const Function& func) { |
| ASSERT(func.IsClosureFunction()); |
| const bool is_implicit_static_closure = |
| func.IsImplicitStaticClosureFunction(); |
| const bool is_implicit_instance_closure = |
| func.IsImplicitInstanceClosureFunction(); |
| const Class& cls = Class::ZoneHandle(func.signature_class()); |
| const bool has_type_arguments = cls.HasTypeArguments(); |
| |
| __ EnterStubFrame(true); // Uses pool pointer to refer to function. |
| const intptr_t kTypeArgumentsFPOffset = 3 * kWordSize; |
| const intptr_t kReceiverFPOffset = 4 * kWordSize; |
| const intptr_t closure_size = Closure::InstanceSize(); |
| const intptr_t context_size = Context::InstanceSize(1); // Captured receiver. |
| if (FLAG_inline_alloc && |
| Heap::IsAllocatableInNewSpace(closure_size + context_size)) { |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| __ LoadImmediate(R5, heap->TopAddress()); |
| __ ldr(R2, Address(R5, 0)); |
| __ AddImmediate(R3, R2, closure_size); |
| if (is_implicit_instance_closure) { |
| __ mov(R4, ShifterOperand(R3)); // R4: new context address. |
| __ AddImmediate(R3, context_size); |
| } |
| // Check if the allocation fits into the remaining space. |
| // R2: potential new closure object. |
| // R3: potential next object start. |
| // R4: potential new context object (only if is_implicit_closure). |
| __ LoadImmediate(IP, heap->EndAddress()); |
| __ ldr(IP, Address(IP, 0)); |
| __ cmp(R3, ShifterOperand(IP)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ b(&slow_case, CS); // Branch if unsigned higher or equal. |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| __ str(R3, Address(R5, 0)); |
| |
| // R2: new closure object. |
| // R4: new context object (only if is_implicit_closure). |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(closure_size, tags); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ LoadImmediate(R0, tags); |
| __ str(R0, Address(R2, Instance::tags_offset())); |
| |
| // Initialize the function field in the object. |
| // R2: new closure object. |
| // R4: new context object (only if is_implicit_closure). |
| __ LoadObject(R0, func); // Load function of closure to be allocated. |
| __ str(R0, Address(R2, Closure::function_offset())); |
| |
| // Setup the context for this closure. |
| if (is_implicit_static_closure) { |
| ObjectStore* object_store = Isolate::Current()->object_store(); |
| ASSERT(object_store != NULL); |
| const Context& empty_context = |
| Context::ZoneHandle(object_store->empty_context()); |
| __ LoadObject(R0, empty_context); |
| __ str(R0, Address(R2, Closure::context_offset())); |
| } else if (is_implicit_instance_closure) { |
| // Initialize the new context capturing the receiver. |
| const Class& context_class = Class::ZoneHandle(Object::context_class()); |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(context_size, tags); |
| tags = RawObject::ClassIdTag::update(context_class.id(), tags); |
| __ LoadImmediate(R0, tags); |
| __ str(R0, Address(R4, Context::tags_offset())); |
| |
| // Set number of variables field to 1 (for captured receiver). |
| __ LoadImmediate(R0, 1); |
| __ str(R0, Address(R4, Context::num_variables_offset())); |
| |
| // Set isolate field to isolate of current context. |
| __ ldr(R0, FieldAddress(CTX, Context::isolate_offset())); |
| __ str(R0, Address(R4, Context::isolate_offset())); |
| |
| // Set the parent to null. |
| __ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null())); |
| __ str(R0, Address(R4, Context::parent_offset())); |
| |
| // Initialize the context variable to the receiver. |
| __ ldr(R0, Address(FP, kReceiverFPOffset)); |
| __ str(R0, Address(R4, Context::variable_offset(0))); |
| |
| // Set the newly allocated context in the newly allocated closure. |
| __ add(R1, R4, ShifterOperand(kHeapObjectTag)); |
| __ str(R1, Address(R2, Closure::context_offset())); |
| } else { |
| __ str(CTX, Address(R2, Closure::context_offset())); |
| } |
| |
| // Set the type arguments field in the newly allocated closure. |
| __ ldr(R0, Address(FP, kTypeArgumentsFPOffset)); |
| __ str(R0, Address(R2, Closure::type_arguments_offset())); |
| |
| // Done allocating and initializing the instance. |
| // R2: new object still missing its heap tag. |
| __ add(R0, R2, ShifterOperand(kHeapObjectTag)); |
| // R0: new object. |
| __ LeaveStubFrame(true); |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| __ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null())); |
| __ Push(R0); // Setup space on stack for return value. |
| __ PushObject(func); |
| if (is_implicit_static_closure) { |
| __ CallRuntime(kAllocateImplicitStaticClosureRuntimeEntry); |
| } else { |
| if (is_implicit_instance_closure) { |
| __ ldr(R1, Address(FP, kReceiverFPOffset)); |
| __ Push(R1); // Receiver. |
| } |
| // R0: raw null. |
| if (has_type_arguments) { |
| __ ldr(R0, Address(FP, kTypeArgumentsFPOffset)); |
| } |
| __ Push(R0); // Push type arguments of closure to be allocated or null. |
| |
| if (is_implicit_instance_closure) { |
| __ CallRuntime(kAllocateImplicitInstanceClosureRuntimeEntry); |
| __ Drop(2); // Pop arguments (type arguments of object and receiver). |
| } else { |
| ASSERT(func.IsNonImplicitClosureFunction()); |
| __ CallRuntime(kAllocateClosureRuntimeEntry); |
| __ Drop(1); // Pop argument (type arguments of object). |
| } |
| } |
| __ Drop(1); // Pop function object. |
| __ Pop(R0); |
| // R0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(true); |
| __ Ret(); |
| } |
| |
| |
| void StubCode::GenerateCallNoSuchMethodFunctionStub(Assembler* assembler) { |
| __ Unimplemented("CallNoSuchMethodFunction stub"); |
| } |
| |
| |
| // R6: function object. |
| // R5: inline cache data object. |
| // R4: arguments descriptor array. |
| void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) { |
| Register ic_reg = R5; |
| Register func_reg = R6; |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ PushList((1 << R4) | (1 << R5) | (1 << R6)); // Preserve. |
| __ Push(ic_reg); // Argument. |
| __ Push(func_reg); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry); |
| __ Drop(2); // Discard argument; |
| __ PushList((1 << R4) | (1 << R5) | (1 << R6)); // Restore. |
| __ LeaveStubFrame(); |
| } |
| __ ldr(R7, FieldAddress(func_reg, Function::usage_counter_offset())); |
| Label is_hot; |
| if (FlowGraphCompiler::CanOptimize()) { |
| ASSERT(FLAG_optimization_counter_threshold > 1); |
| __ CompareImmediate(R7, FLAG_optimization_counter_threshold); |
| __ b(&is_hot, GE); |
| // As long as VM has no OSR do not optimize in the middle of the function |
| // but only at exit so that we have collected all type feedback before |
| // optimizing. |
| } |
| __ add(R7, R7, ShifterOperand(1)); |
| __ str(R7, FieldAddress(func_reg, Function::usage_counter_offset())); |
| __ Bind(&is_hot); |
| } |
| |
| |
| // Loads function into 'temp_reg'. |
| void StubCode::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register temp_reg) { |
| Register ic_reg = R5; |
| Register func_reg = temp_reg; |
| ASSERT(temp_reg == R6); |
| __ ldr(func_reg, FieldAddress(ic_reg, ICData::function_offset())); |
| __ ldr(R7, FieldAddress(func_reg, Function::usage_counter_offset())); |
| Label is_hot; |
| if (FlowGraphCompiler::CanOptimize()) { |
| ASSERT(FLAG_optimization_counter_threshold > 1); |
| // The usage_counter is always less than FLAG_optimization_counter_threshold |
| // except when the function gets optimized. |
| __ CompareImmediate(R7, FLAG_optimization_counter_threshold); |
| __ b(&is_hot, EQ); |
| // As long as VM has no OSR do not optimize in the middle of the function |
| // but only at exit so that we have collected all type feedback before |
| // optimizing. |
| } |
| __ add(R7, R7, ShifterOperand(1)); |
| __ str(R7, FieldAddress(func_reg, Function::usage_counter_offset())); |
| __ Bind(&is_hot); |
| } |
| |
| |
| // Generate inline cache check for 'num_args'. |
| // LR: return address. |
| // R5: inline cache data object. |
| // R4: arguments descriptor array. |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCode::GenerateNArgsCheckInlineCacheStub(Assembler* assembler, |
| intptr_t num_args) { |
| ASSERT(num_args > 0); |
| #if defined(DEBUG) |
| { Label ok; |
| // Check that the IC data array has NumberOfArgumentsChecked() == num_args. |
| // 'num_args_tested' is stored as an untagged int. |
| __ ldr(R6, FieldAddress(R5, ICData::num_args_tested_offset())); |
| __ CompareImmediate(R6, num_args); |
| __ b(&ok, EQ); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| // Preserve return address, since LR is needed for subroutine call. |
| __ mov(R8, ShifterOperand(LR)); |
| // Loop that checks if there is an IC data match. |
| Label loop, update, test, found, get_class_id_as_smi; |
| // R5: IC data object (preserved). |
| __ ldr(R6, FieldAddress(R5, ICData::ic_data_offset())); |
| // R6: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(R6, R6, Array::data_offset() - kHeapObjectTag); |
| // R6: points directly to the first ic data array element. |
| |
| // Get the receiver's class ID (first read number of arguments from |
| // arguments descriptor array and then access the receiver from the stack). |
| __ ldr(R7, FieldAddress(R4, ArgumentsDescriptor::count_offset())); |
| __ sub(R7, R7, ShifterOperand(Smi::RawValue(1))); |
| __ ldr(R0, Address(SP, R7, LSL, 1)); // R7 (argument_count - 1) is smi. |
| __ bl(&get_class_id_as_smi); |
| // R7: argument_count - 1 (smi). |
| // R0: receiver's class ID (smi). |
| __ ldr(R1, Address(R6, 0)); // First class id (smi) to check. |
| __ b(&test); |
| |
| __ Bind(&loop); |
| for (int i = 0; i < num_args; i++) { |
| if (i > 0) { |
| // If not the first, load the next argument's class ID. |
| __ AddImmediate(R0, R7, Smi::RawValue(-i)); |
| __ ldr(R0, Address(SP, R0, LSL, 1)); |
| __ bl(&get_class_id_as_smi); |
| // R0: next argument class ID (smi). |
| __ LoadFromOffset(kLoadWord, R1, R6, i * kWordSize); |
| // R1: next class ID to check (smi). |
| } |
| __ cmp(R0, ShifterOperand(R1)); // Class id match? |
| if (i < (num_args - 1)) { |
| __ b(&update, NE); // Continue. |
| } else { |
| // Last check, all checks before matched. |
| __ mov(LR, ShifterOperand(R8), EQ); // Restore return address if found. |
| __ b(&found, EQ); // Break. |
| } |
| } |
| __ Bind(&update); |
| // Reload receiver class ID. It has not been destroyed when num_args == 1. |
| if (num_args > 1) { |
| __ ldr(R0, Address(SP, R7, LSL, 1)); |
| __ bl(&get_class_id_as_smi); |
| } |
| |
| const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize; |
| __ AddImmediate(R6, entry_size); // Next entry. |
| __ ldr(R1, Address(R6, 0)); // Next class ID. |
| |
| __ Bind(&test); |
| __ CompareImmediate(R1, Smi::RawValue(kIllegalCid)); // Done? |
| __ b(&loop, NE); |
| |
| // IC miss. |
| // Restore return address. |
| __ mov(LR, ShifterOperand(R8)); |
| |
| // Compute address of arguments. |
| // R7: argument_count - 1 (smi). |
| __ add(R7, SP, ShifterOperand(R7, LSL, 1)); // R7 is Smi. |
| // R7: address of receiver. |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null())); |
| // Preserve IC data object and arguments descriptor array and |
| // setup space on stack for result (target code object). |
| __ PushList((1 << R0) | (1 << R4) | (1 << R5)); |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ LoadFromOffset(kLoadWord, IP, R7, -i * kWordSize); |
| __ Push(IP); |
| } |
| // Pass IC data object and arguments descriptor array. |
| __ PushList((1 << R4) | (1 << R5)); |
| |
| if (num_args == 1) { |
| __ CallRuntime(kInlineCacheMissHandlerOneArgRuntimeEntry); |
| } else if (num_args == 2) { |
| __ CallRuntime(kInlineCacheMissHandlerTwoArgsRuntimeEntry); |
| } else if (num_args == 3) { |
| __ CallRuntime(kInlineCacheMissHandlerThreeArgsRuntimeEntry); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| // Remove the call arguments pushed earlier, including the IC data object |
| // and the arguments descriptor array. |
| __ Drop(num_args + 2); |
| // Pop returned code object into R0 (null if not found). |
| // Restore arguments descriptor array and IC data array. |
| __ PopList((1 << R0) | (1 << R4) | (1 << R5)); |
| __ LeaveStubFrame(); |
| Label call_target_function; |
| __ CompareImmediate(R0, reinterpret_cast<intptr_t>(Object::null())); |
| __ b(&call_target_function, NE); |
| // NoSuchMethod or closure. |
| // Mark IC call that it may be a closure call that does not collect |
| // type feedback. |
| __ mov(IP, ShifterOperand(1)); |
| __ strb(IP, FieldAddress(R5, ICData::is_closure_call_offset())); |
| __ Branch(&StubCode::InstanceFunctionLookupLabel()); |
| |
| __ Bind(&found); |
| // R6: pointer to an IC data check group. |
| const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize; |
| const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize; |
| __ LoadFromOffset(kLoadWord, R0, R6, target_offset); |
| __ LoadFromOffset(kLoadWord, R1, R6, count_offset); |
| __ adds(R1, R1, ShifterOperand(Smi::RawValue(1))); |
| __ StoreToOffset(kStoreWord, R1, R6, count_offset); |
| __ b(&call_target_function, VC); // No overflow. |
| __ LoadImmediate(R1, Smi::RawValue(Smi::kMaxValue)); |
| __ StoreToOffset(kStoreWord, R1, R6, count_offset); |
| |
| __ Bind(&call_target_function); |
| // R0: target function. |
| __ ldr(R0, FieldAddress(R0, Function::code_offset())); |
| __ ldr(R0, FieldAddress(R0, Code::instructions_offset())); |
| __ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ bx(R0); |
| |
| // Instance in R0, return its class-id in R0 as Smi. |
| __ Bind(&get_class_id_as_smi); |
| |
| // Test if Smi -> load Smi class for comparison. |
| __ tst(R0, ShifterOperand(kSmiTagMask)); |
| __ mov(R0, ShifterOperand(Smi::RawValue(kSmiCid)), EQ); |
| __ bx(LR, EQ); |
| __ LoadClassId(R0, R0); |
| __ SmiTag(R0); |
| __ bx(LR); |
| } |
| |
| |
| // Use inline cache data array to invoke the target or continue in inline |
| // cache miss handler. Stub for 1-argument check (receiver class). |
| // LR: return address. |
| // R5: inline cache data object. |
| // R4: arguments descriptor array. |
| // Inline cache data object structure: |
| // 0: function-name |
| // 1: N, number of arguments checked. |
| // 2 .. (length - 1): group of checks, each check containing: |
| // - N classes. |
| // - 1 target function. |
| void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, R6); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, R6); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2); |
| } |
| |
| |
| void StubCode::GenerateThreeArgsCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, R6); |
| GenerateNArgsCheckInlineCacheStub(assembler, 3); |
| } |
| |
| |
| void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2); |
| } |
| |
| |
| void StubCode::GenerateThreeArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 3); |
| } |
| |
| |
| void StubCode::GenerateClosureCallInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| // LR: return address (Dart code). |
| // R4: arguments descriptor array. |
| void StubCode::GenerateBreakpointStaticStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null())); |
| // Preserve arguments descriptor and make room for result. |
| __ PushList((1 << R0) | (1 << R4)); |
| __ CallRuntime(kBreakpointStaticHandlerRuntimeEntry); |
| // Pop code object result and restore arguments descriptor. |
| __ PopList((1 << R0) | (1 << R4)); |
| __ LeaveStubFrame(); |
| |
| // Now call the static function. The breakpoint handler function |
| // ensures that the call target is compiled. |
| __ ldr(R0, FieldAddress(R0, Code::instructions_offset())); |
| __ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ bx(R0); |
| } |
| |
| |
| // R0: return value. |
| void StubCode::GenerateBreakpointReturnStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ Push(R0); |
| __ CallRuntime(kBreakpointReturnHandlerRuntimeEntry); |
| __ Pop(R0); |
| __ LeaveStubFrame(); |
| |
| // Instead of returning to the patched Dart function, emulate the |
| // smashed return code pattern and return to the function's caller. |
| __ LeaveDartFrame(); |
| __ Ret(); |
| } |
| |
| |
| // LR: return address (Dart code). |
| // R5: inline cache data array. |
| // R4: arguments descriptor array. |
| void StubCode::GenerateBreakpointDynamicStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ PushList((1 << R4) | (1 << R5)); |
| __ CallRuntime(kBreakpointDynamicHandlerRuntimeEntry); |
| __ PopList((1 << R4) | (1 << R5)); |
| __ LeaveStubFrame(); |
| |
| // Find out which dispatch stub to call. |
| __ ldr(IP, FieldAddress(R5, ICData::num_args_tested_offset())); |
| __ cmp(IP, ShifterOperand(1)); |
| __ Branch(&StubCode::OneArgCheckInlineCacheLabel(), EQ); |
| __ cmp(IP, ShifterOperand(2)); |
| __ Branch(&StubCode::TwoArgsCheckInlineCacheLabel(), EQ); |
| __ cmp(IP, ShifterOperand(3)); |
| __ Branch(&StubCode::ThreeArgsCheckInlineCacheLabel(), EQ); |
| __ Stop("Unsupported number of arguments tested."); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // LR: return address. |
| // R0: instance (must be preserved). |
| // R1: instantiator type arguments or NULL. |
| // R2: cache array. |
| // Result in R1: null -> not found, otherwise result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| ASSERT((1 <= n) && (n <= 3)); |
| if (n > 1) { |
| // Get instance type arguments. |
| __ LoadClass(R3, R0, R4); |
| // Compute instance type arguments into R4. |
| Label has_no_type_arguments; |
| __ LoadImmediate(R4, reinterpret_cast<intptr_t>(Object::null())); |
| __ ldr(R5, FieldAddress(R3, |
| Class::type_arguments_field_offset_in_words_offset())); |
| __ CompareImmediate(R5, Class::kNoTypeArguments); |
| __ b(&has_no_type_arguments, EQ); |
| __ add(R5, R0, ShifterOperand(R5, LSL, 2)); |
| __ ldr(R4, FieldAddress(R5, 0)); |
| __ Bind(&has_no_type_arguments); |
| } |
| __ LoadClassId(R3, R0); |
| // R0: instance. |
| // R1: instantiator type arguments or NULL. |
| // R2: SubtypeTestCache. |
| // R3: instance class id. |
| // R4: instance type arguments (null if none), used only if n > 1. |
| __ ldr(R2, FieldAddress(R2, SubtypeTestCache::cache_offset())); |
| __ AddImmediate(R2, Array::data_offset() - kHeapObjectTag); |
| |
| Label loop, found, not_found, next_iteration; |
| // R2: entry start. |
| // R3: instance class id. |
| // R4: instance type arguments. |
| __ SmiTag(R3); |
| __ Bind(&loop); |
| __ ldr(R5, Address(R2, kWordSize * SubtypeTestCache::kInstanceClassId)); |
| __ CompareImmediate(R5, reinterpret_cast<intptr_t>(Object::null())); |
| __ b(¬_found, EQ); |
| __ cmp(R5, ShifterOperand(R3)); |
| if (n == 1) { |
| __ b(&found, EQ); |
| } else { |
| __ b(&next_iteration, NE); |
| __ ldr(R5, |
| Address(R2, kWordSize * SubtypeTestCache::kInstanceTypeArguments)); |
| __ cmp(R5, ShifterOperand(R4)); |
| if (n == 2) { |
| __ b(&found, EQ); |
| } else { |
| __ b(&next_iteration, NE); |
| __ ldr(R5, Address(R2, kWordSize * |
| SubtypeTestCache::kInstantiatorTypeArguments)); |
| __ cmp(R5, ShifterOperand(R1)); |
| __ b(&found, EQ); |
| } |
| } |
| __ Bind(&next_iteration); |
| __ AddImmediate(R2, kWordSize * SubtypeTestCache::kTestEntryLength); |
| __ b(&loop); |
| // Fall through to not found. |
| __ Bind(¬_found); |
| __ LoadImmediate(R1, reinterpret_cast<intptr_t>(Object::null())); |
| __ Ret(); |
| |
| __ Bind(&found); |
| __ ldr(R1, Address(R2, kWordSize * SubtypeTestCache::kTestResult)); |
| __ Ret(); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // LR: return address. |
| // R0: instance (must be preserved). |
| // R1: instantiator type arguments or NULL. |
| // R2: cache array. |
| // Result in R1: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // LR: return address. |
| // R0: instance (must be preserved). |
| // R1: instantiator type arguments or NULL. |
| // R2: cache array. |
| // Result in R1: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 2); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // LR: return address. |
| // R0: instance (must be preserved). |
| // R1: instantiator type arguments or NULL. |
| // R2: cache array. |
| // Result in R1: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 3); |
| } |
| |
| |
| // Return the current stack pointer address, used to stack alignment |
| // checks. |
| void StubCode::GenerateGetStackPointerStub(Assembler* assembler) { |
| __ Unimplemented("GetStackPointer Stub"); |
| } |
| |
| |
| // Jump to the exception or error handler. |
| // LR: return address. |
| // R0: program_counter. |
| // R1: stack_pointer. |
| // R2: frame_pointer. |
| // R3: error object. |
| // SP: address of stacktrace object. |
| // Does not return. |
| void StubCode::GenerateJumpToExceptionHandlerStub(Assembler* assembler) { |
| ASSERT(kExceptionObjectReg == R0); |
| ASSERT(kStackTraceObjectReg == R1); |
| __ mov(IP, ShifterOperand(R1)); // Stack pointer. |
| __ mov(LR, ShifterOperand(R0)); // Program counter. |
| __ mov(R0, ShifterOperand(R3)); // Exception object. |
| __ ldr(R1, Address(SP, 0)); // StackTrace object. |
| __ mov(FP, ShifterOperand(R2)); // Frame_pointer. |
| __ mov(SP, ShifterOperand(IP)); // Stack pointer. |
| __ bx(LR); // Jump to the exception handler code. |
| } |
| |
| |
| // Implements equality operator when one of the arguments is null |
| // (identity check) and updates ICData if necessary. |
| // LR: return address. |
| // R1: left argument. |
| // R0: right argument. |
| // R5: ICData. |
| // R0: result. |
| // TODO(srdjan): Move to VM stubs once Boolean objects become VM objects. |
| void StubCode::GenerateEqualityWithNullArgStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| static const intptr_t kNumArgsTested = 2; |
| #if defined(DEBUG) |
| { Label ok; |
| __ ldr(IP, FieldAddress(R5, ICData::num_args_tested_offset())); |
| __ cmp(IP, ShifterOperand(kNumArgsTested)); |
| __ b(&ok, EQ); |
| __ Stop("Incorrect ICData for equality"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| // Check IC data, update if needed. |
| // R5: IC data object (preserved). |
| __ ldr(R6, FieldAddress(R5, ICData::ic_data_offset())); |
| // R6: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(R6, Array::data_offset() - kHeapObjectTag); |
| // R6: points directly to the first ic data array element. |
| |
| Label get_class_id_as_smi, no_match, loop, found; |
| __ Bind(&loop); |
| // Check left. |
| __ mov(R2, ShifterOperand(R1)); |
| __ bl(&get_class_id_as_smi); |
| __ ldr(R3, Address(R6, 0 * kWordSize)); |
| __ cmp(R2, ShifterOperand(R3)); // Class id match? |
| __ b(&no_match, NE); |
| // Check right. |
| __ mov(R2, ShifterOperand(R0)); |
| __ bl(&get_class_id_as_smi); |
| __ ldr(R3, Address(R6, 1 * kWordSize)); |
| __ cmp(R2, ShifterOperand(R3)); // Class id match? |
| __ b(&found, EQ); |
| __ Bind(&no_match); |
| // Next check group. |
| __ AddImmediate(R6, kWordSize * ICData::TestEntryLengthFor(kNumArgsTested)); |
| __ CompareImmediate(R3, Smi::RawValue(kIllegalCid)); // Done? |
| __ b(&loop, NE); |
| Label update_ic_data; |
| __ b(&update_ic_data); |
| |
| __ Bind(&found); |
| const intptr_t count_offset = |
| ICData::CountIndexFor(kNumArgsTested) * kWordSize; |
| __ ldr(IP, Address(R6, count_offset)); |
| __ adds(IP, IP, ShifterOperand(Smi::RawValue(1))); |
| __ LoadImmediate(IP, Smi::RawValue(Smi::kMaxValue), VS); // If overflow. |
| __ str(IP, Address(R6, count_offset)); |
| |
| Label compute_result; |
| __ Bind(&compute_result); |
| __ cmp(R0, ShifterOperand(R1)); |
| __ LoadObject(R0, Bool::False(), NE); |
| __ LoadObject(R0, Bool::True(), EQ); |
| __ LeaveStubFrame(); |
| __ Ret(); |
| |
| __ Bind(&get_class_id_as_smi); |
| // Test if Smi -> load Smi class for comparison. |
| __ tst(R2, ShifterOperand(kSmiTagMask)); |
| __ mov(R2, ShifterOperand(Smi::RawValue(kSmiCid)), EQ); |
| __ bx(LR, EQ); |
| __ LoadClassId(R2, R2); |
| __ SmiTag(R2); |
| __ bx(LR); |
| |
| __ Bind(&update_ic_data); |
| // R5: ICData |
| __ PushList((1 << R0) | (1 << R1)); |
| __ PushObject(Symbols::EqualOperator()); // Target's name. |
| __ Push(R5); // ICData |
| __ CallRuntime(kUpdateICDataTwoArgsRuntimeEntry); // Clobbers R4, R5. |
| __ Drop(2); |
| __ PopList((1 << R0) | (1 << R1)); |
| __ b(&compute_result); |
| } |
| |
| |
| // Calls to the runtime to optimize the given function. |
| // R6: function to be reoptimized. |
| // R4: argument descriptor (preserved). |
| void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ Push(R4); |
| __ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null())); |
| __ Push(IP); // Setup space on stack for return value. |
| __ Push(R6); |
| __ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry); |
| __ Pop(R0); // Discard argument. |
| __ Pop(R0); // Get Code object |
| __ Pop(R4); // Restore argument descriptor. |
| __ ldr(R0, FieldAddress(R0, Code::instructions_offset())); |
| __ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag); |
| __ LeaveStubFrame(); |
| __ bx(R0); |
| __ bkpt(0); |
| } |
| |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(intptr_t, |
| BigintCompare, |
| RawBigint* left, |
| RawBigint* right); |
| |
| |
| // Does identical check (object references are equal or not equal) with special |
| // checks for boxed numbers. |
| // LR: return address. |
| // SP + 4: left operand. |
| // SP + 0: right operand. |
| // Return Zero condition flag set if equal. |
| // Note: A Mint cannot contain a value that would fit in Smi, a Bigint |
| // cannot contain a value that fits in Mint or Smi. |
| void StubCode::GenerateIdenticalWithNumberCheckStub(Assembler* assembler) { |
| const Register temp = R2; |
| const Register left = R1; |
| const Register right = R0; |
| // Preserve left, right and temp. |
| __ PushList((1 << R0) | (1 << R1) | (1 << R2)); |
| // TOS + 4: left argument. |
| // TOS + 3: right argument. |
| // TOS + 2: saved temp |
| // TOS + 1: saved left |
| // TOS + 0: saved right |
| __ ldr(left, Address(SP, 4 * kWordSize)); |
| __ ldr(right, Address(SP, 3 * kWordSize)); |
| Label reference_compare, done, check_mint, check_bigint; |
| // If any of the arguments is Smi do reference compare. |
| __ tst(left, ShifterOperand(kSmiTagMask)); |
| __ b(&reference_compare, EQ); |
| __ tst(right, ShifterOperand(kSmiTagMask)); |
| __ b(&reference_compare, EQ); |
| |
| // Value compare for two doubles. |
| __ CompareClassId(left, kDoubleCid, temp); |
| __ b(&check_mint, NE); |
| __ CompareClassId(right, kDoubleCid, temp); |
| __ b(&done, NE); |
| |
| // Double values bitwise compare. |
| __ ldr(temp, FieldAddress(left, Double::value_offset() + 0 * kWordSize)); |
| __ ldr(IP, FieldAddress(right, Double::value_offset() + 0 * kWordSize)); |
| __ cmp(temp, ShifterOperand(IP)); |
| __ b(&done, NE); |
| __ ldr(temp, FieldAddress(left, Double::value_offset() + 1 * kWordSize)); |
| __ ldr(IP, FieldAddress(right, Double::value_offset() + 1 * kWordSize)); |
| __ cmp(temp, ShifterOperand(IP)); |
| __ b(&done); |
| |
| __ Bind(&check_mint); |
| __ CompareClassId(left, kMintCid, temp); |
| __ b(&check_bigint, NE); |
| __ CompareClassId(right, kMintCid, temp); |
| __ b(&done, NE); |
| __ ldr(temp, FieldAddress(left, Mint::value_offset() + 0 * kWordSize)); |
| __ ldr(IP, FieldAddress(right, Mint::value_offset() + 0 * kWordSize)); |
| __ cmp(temp, ShifterOperand(IP)); |
| __ b(&done, NE); |
| __ ldr(temp, FieldAddress(left, Mint::value_offset() + 1 * kWordSize)); |
| __ ldr(IP, FieldAddress(right, Mint::value_offset() + 1 * kWordSize)); |
| __ cmp(temp, ShifterOperand(IP)); |
| __ b(&done); |
| |
| __ Bind(&check_bigint); |
| __ CompareClassId(left, kBigintCid, temp); |
| __ b(&reference_compare, NE); |
| __ CompareClassId(right, kBigintCid, temp); |
| __ b(&done, NE); |
| __ EnterStubFrame(0); |
| __ ReserveAlignedFrameSpace(2 * kWordSize); |
| __ stm(IA, SP, (1 << R0) | (1 << R1)); |
| __ CallRuntime(kBigintCompareRuntimeEntry); |
| // Result in R0, 0 means equal. |
| __ LeaveStubFrame(); |
| __ cmp(R0, ShifterOperand(0)); |
| __ b(&done); |
| |
| __ Bind(&reference_compare); |
| __ cmp(left, ShifterOperand(right)); |
| __ Bind(&done); |
| __ PopList((1 << R0) | (1 << R1) | (1 << R2)); |
| __ Ret(); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_ARM |