| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include <math.h> // for isnan. |
| #include <setjmp.h> |
| #include <stdlib.h> |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_MIPS) |
| |
| // Only build the simulator if not compiling for real MIPS hardware. |
| #if !defined(HOST_ARCH_MIPS) |
| |
| #include "vm/simulator.h" |
| |
| #include "vm/assembler.h" |
| #include "vm/constants_mips.h" |
| #include "vm/disassembler.h" |
| #include "vm/native_arguments.h" |
| #include "vm/thread.h" |
| |
| namespace dart { |
| |
| DEFINE_FLAG(bool, trace_sim, false, "Trace simulator execution."); |
| DEFINE_FLAG(int, stop_sim_at, 0, "Address to stop simulator at."); |
| |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent way through |
| // OS in the same way as SNPrint is that the Windows C Run-Time |
| // Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| |
| // SimulatorSetjmpBuffer are linked together, and the last created one |
| // is referenced by the Simulator. When an exception is thrown, the exception |
| // runtime looks at where to jump and finds the corresponding |
| // SimulatorSetjmpBuffer based on the stack pointer of the exception handler. |
| // The runtime then does a Longjmp on that buffer to return to the simulator. |
| class SimulatorSetjmpBuffer { |
| public: |
| int Setjmp() { return setjmp(buffer_); } |
| void Longjmp() { |
| // "This" is now the last setjmp buffer. |
| simulator_->set_last_setjmp_buffer(this); |
| longjmp(buffer_, 1); |
| } |
| |
| explicit SimulatorSetjmpBuffer(Simulator* sim) { |
| simulator_ = sim; |
| link_ = sim->last_setjmp_buffer(); |
| sim->set_last_setjmp_buffer(this); |
| sp_ = static_cast<uword>(sim->get_register(SP)); |
| native_sp_ = reinterpret_cast<uword>(&sim); // Current C++ stack pointer. |
| } |
| |
| ~SimulatorSetjmpBuffer() { |
| ASSERT(simulator_->last_setjmp_buffer() == this); |
| simulator_->set_last_setjmp_buffer(link_); |
| } |
| |
| SimulatorSetjmpBuffer* link() { return link_; } |
| |
| uword sp() { return sp_; } |
| uword native_sp() { return native_sp_; } |
| |
| private: |
| uword sp_; |
| uword native_sp_; |
| Simulator* simulator_; |
| SimulatorSetjmpBuffer* link_; |
| jmp_buf buffer_; |
| |
| friend class Simulator; |
| }; |
| |
| |
| // The SimulatorDebugger class is used by the simulator while debugging |
| // simulated MIPS code. |
| class SimulatorDebugger { |
| public: |
| explicit SimulatorDebugger(Simulator* sim); |
| ~SimulatorDebugger(); |
| |
| void Stop(Instr* instr, const char* message); |
| void Debug(); |
| char* ReadLine(const char* prompt); |
| |
| private: |
| Simulator* sim_; |
| |
| bool GetValue(char* desc, uint32_t* value); |
| bool GetFValue(char* desc, double* value); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instr* breakpc); |
| bool DeleteBreakpoint(Instr* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| |
| SimulatorDebugger::SimulatorDebugger(Simulator* sim) { |
| sim_ = sim; |
| } |
| |
| |
| SimulatorDebugger::~SimulatorDebugger() { |
| } |
| |
| |
| void SimulatorDebugger::Stop(Instr* instr, const char* message) { |
| OS::Print("Simulator hit %s\n", message); |
| Debug(); |
| } |
| |
| |
| static Register LookupCpuRegisterByName(const char* name) { |
| static const char* kNames[] = { |
| "r0", "r1", "r2", "r3", |
| "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", |
| "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", |
| "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", |
| "r28", "r29", "r30", "r31", |
| |
| "zr", "at", "v0", "v1", |
| "a0", "a1", "a2", "a3", |
| "t0", "t1", "t2", "t3", |
| "t4", "t5", "t6", "t7", |
| "s0", "s1", "s2", "s3", |
| "s4", "s5", "s6", "s7", |
| "t8", "t9", "k0", "k1", |
| "gp", "sp", "fp", "ra" |
| }; |
| static const Register kRegisters[] = { |
| R0, R1, R2, R3, |
| R4, R5, R6, R7, |
| R8, R9, R10, R11, |
| R12, R13, R14, R15, |
| R16, R17, R18, R19, |
| R20, R21, R22, R23, |
| R24, R25, R26, R27, |
| R28, R29, R30, R31, |
| |
| ZR, AT, V0, V1, |
| A0, A1, A2, A3, |
| T0, T1, T2, T3, |
| T4, T5, T6, T7, |
| S0, S1, S2, S3, |
| S4, S5, S6, S7, |
| T8, T9, K0, K1, |
| GP, SP, FP, RA |
| }; |
| ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters)); |
| for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) { |
| if (strcmp(kNames[i], name) == 0) { |
| return kRegisters[i]; |
| } |
| } |
| return kNoRegister; |
| } |
| |
| |
| static FRegister LookupFRegisterByName(const char* name) { |
| int reg_nr = -1; |
| bool ok = SScanF(name, "f%d", ®_nr); |
| if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfFRegisters)) { |
| return static_cast<FRegister>(reg_nr); |
| } |
| return kNoFRegister; |
| } |
| |
| |
| bool SimulatorDebugger::GetValue(char* desc, uint32_t* value) { |
| Register reg = LookupCpuRegisterByName(desc); |
| if (reg != kNoRegister) { |
| *value = sim_->get_register(reg); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint32_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<uint32_t*>(addr)); |
| return true; |
| } |
| } |
| if (strcmp("pc", desc) == 0) { |
| *value = sim_->get_pc(); |
| return true; |
| } |
| bool retval = SScanF(desc, "0x%x", value) == 1; |
| if (!retval) { |
| retval = SScanF(desc, "%x", value) == 1; |
| } |
| return retval; |
| } |
| |
| |
| bool SimulatorDebugger::GetFValue(char* desc, double* value) { |
| FRegister freg = LookupFRegisterByName(desc); |
| if (freg != kNoFRegister) { |
| *value = sim_->get_fregister(freg); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint32_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<float*>(addr)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != NULL) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| |
| bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = NULL; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| |
| void SimulatorDebugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| |
| void SimulatorDebugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(Instr::kBreakPointInstruction); |
| } |
| } |
| |
| |
| void SimulatorDebugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done) { |
| if (last_pc != sim_->get_pc()) { |
| last_pc = sim_->get_pc(); |
| if (Simulator::IsIllegalAddress(last_pc)) { |
| OS::Print("pc is out of bounds: 0x%"Px"\n", last_pc); |
| } else { |
| Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize); |
| } |
| } |
| char* line = ReadLine("sim> "); |
| if (line == NULL) { |
| FATAL("ReadLine failed"); |
| } else { |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int args = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| OS::Print("c/cont -- continue execution\n" |
| "disasm -- disassemble instrs at current pc location\n" |
| " other variants are:\n" |
| " disasm <address>\n" |
| " disasm <address> <number_of_instructions>\n" |
| " by default 10 instrs are disassembled\n" |
| "del -- delete breakpoints\n" |
| "gdb -- transfer control to gdb\n" |
| "h/help -- print this help string\n" |
| "break <address> -- set break point at specified address\n" |
| "p/print <reg or value or *addr> -- print integer value\n" |
| "pf/printfloat <freg or *addr> -- print float value\n" |
| "po/printobject <*reg or *addr> -- print object\n" |
| "si/stepi -- single step an instruction\n" |
| "unstop -- if current pc is a stop instr make it a nop\n" |
| "q/quit -- Quit the debugger and exit the program\n"); |
| } else if ((strcmp(cmd, "quit") == 0) || (strcmp(cmd, "q") == 0)) { |
| OS::Print("Quitting\n"); |
| OS::Exit(0); |
| } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (args == 2) { |
| uint32_t value; |
| if (GetValue(arg1, &value)) { |
| OS::Print("%s: %u 0x%x\n", arg1, value, value); |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("print <reg or value or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "pf") == 0) || |
| (strcmp(cmd, "printfloat") == 0)) { |
| if (args == 2) { |
| double dvalue; |
| if (GetFValue(arg1, &dvalue)) { |
| uint64_t long_value = bit_cast<uint64_t, double>(dvalue); |
| OS::Print("%s: %llu 0x%llx %.8g\n", |
| arg1, long_value, long_value, dvalue); |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("printfloat <dreg or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) || |
| (strcmp(cmd, "printobject") == 0)) { |
| if (args == 2) { |
| uint32_t value; |
| // Make the dereferencing '*' optional. |
| if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) || |
| GetValue(arg1, &value)) { |
| if (Isolate::Current()->heap()->Contains(value)) { |
| OS::Print("%s: \n", arg1); |
| #if defined(DEBUG) |
| const Object& obj = Object::Handle( |
| reinterpret_cast<RawObject*>(value)); |
| obj.Print(); |
| #endif // defined(DEBUG) |
| } else { |
| OS::Print("0x%x is not an object reference\n", value); |
| } |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("printobject <*reg or *addr>\n"); |
| } |
| } else if (strcmp(cmd, "disasm") == 0) { |
| uint32_t start = 0; |
| uint32_t end = 0; |
| if (args == 1) { |
| start = sim_->get_pc(); |
| end = start + (10 * Instr::kInstrSize); |
| } else if (args == 2) { |
| if (GetValue(arg1, &start)) { |
| // no length parameter passed, assume 10 instructions |
| if (Simulator::IsIllegalAddress(start)) { |
| // If start isn't a valid address, warn and use PC instead |
| OS::Print("First argument yields invalid address: 0x%x\n", start); |
| OS::Print("Using PC instead"); |
| start = sim_->get_pc(); |
| } |
| end = start + (10 * Instr::kInstrSize); |
| } |
| } else { |
| uint32_t length; |
| if (GetValue(arg1, &start) && GetValue(arg2, &length)) { |
| if (Simulator::IsIllegalAddress(start)) { |
| // If start isn't a valid address, warn and use PC instead |
| OS::Print("First argument yields invalid address: 0x%x\n", start); |
| OS::Print("Using PC instead\n"); |
| start = sim_->get_pc(); |
| } |
| end = start + (length * Instr::kInstrSize); |
| } |
| } |
| |
| Disassembler::Disassemble(start, end); |
| } else if (strcmp(cmd, "gdb") == 0) { |
| OS::Print("relinquishing control to gdb\n"); |
| OS::DebugBreak(); |
| OS::Print("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (args == 2) { |
| uint32_t addr; |
| if (GetValue(arg1, &addr)) { |
| if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) { |
| OS::Print("setting breakpoint failed\n"); |
| } |
| } else { |
| OS::Print("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::Print("break <addr>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(NULL)) { |
| OS::Print("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "unstop") == 0) { |
| intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; |
| Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); |
| if (stop_instr->IsBreakPoint()) { |
| stop_instr->SetInstructionBits(Instr::kNopInstruction); |
| } else { |
| OS::Print("Not at debugger stop.\n"); |
| } |
| } else { |
| OS::Print("Unknown command: %s\n", cmd); |
| } |
| } |
| delete[] line; |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| |
| char* SimulatorDebugger::ReadLine(const char* prompt) { |
| char* result = NULL; |
| char line_buf[256]; |
| int offset = 0; |
| bool keep_going = true; |
| OS::Print("%s", prompt); |
| while (keep_going) { |
| if (fgets(line_buf, sizeof(line_buf), stdin) == NULL) { |
| // fgets got an error. Just give up. |
| if (result != NULL) { |
| delete[] result; |
| } |
| return NULL; |
| } |
| int len = strlen(line_buf); |
| if (len > 1 && |
| line_buf[len - 2] == '\\' && |
| line_buf[len - 1] == '\n') { |
| // When we read a line that ends with a "\" we remove the escape and |
| // append the remainder. |
| line_buf[len - 2] = '\n'; |
| line_buf[len - 1] = 0; |
| len -= 1; |
| } else if ((len > 0) && (line_buf[len - 1] == '\n')) { |
| // Since we read a new line we are done reading the line. This |
| // will exit the loop after copying this buffer into the result. |
| keep_going = false; |
| } |
| if (result == NULL) { |
| // Allocate the initial result and make room for the terminating '\0' |
| result = new char[len + 1]; |
| if (result == NULL) { |
| // OOM, so cannot readline anymore. |
| return NULL; |
| } |
| } else { |
| // Allocate a new result with enough room for the new addition. |
| int new_len = offset + len + 1; |
| char* new_result = new char[new_len]; |
| if (new_result == NULL) { |
| // OOM, free the buffer allocated so far and return NULL. |
| delete[] result; |
| return NULL; |
| } else { |
| // Copy the existing input into the new array and set the new |
| // array as the result. |
| memmove(new_result, result, offset); |
| delete[] result; |
| result = new_result; |
| } |
| } |
| // Copy the newly read line into the result. |
| memmove(result + offset, line_buf, len); |
| offset += len; |
| } |
| ASSERT(result != NULL); |
| result[offset] = '\0'; |
| return result; |
| } |
| |
| |
| void Simulator::InitOnce() { |
| } |
| |
| |
| Simulator::Simulator() { |
| // Setup simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| // We allocate the stack here, the size is computed as the sum of |
| // the size specified by the user and the buffer space needed for |
| // handling stack overflow exceptions. To be safe in potential |
| // stack underflows we also add some underflow buffer space. |
| stack_ = new char[(Isolate::GetSpecifiedStackSize() + |
| Isolate::kStackSizeBuffer + |
| kSimulatorStackUnderflowSize)]; |
| icount_ = 0; |
| delay_slot_ = false; |
| break_pc_ = NULL; |
| break_instr_ = 0; |
| last_setjmp_buffer_ = NULL; |
| top_exit_frame_info_ = 0; |
| |
| // Setup architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < kNumberOfCpuRegisters; i++) { |
| registers_[i] = 0; |
| } |
| pc_ = 0; |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. |
| registers_[SP] = StackTop(); |
| |
| // All double-precision registers are initialized to zero. |
| for (int i = 0; i < kNumberOfFRegisters; i++) { |
| fregisters_[i] = 0.0; |
| } |
| } |
| |
| |
| Simulator::~Simulator() { |
| delete[] stack_; |
| Isolate* isolate = Isolate::Current(); |
| if (isolate != NULL) { |
| isolate->set_simulator(NULL); |
| } |
| } |
| |
| |
| // When the generated code calls an external reference we need to catch that in |
| // the simulator. The external reference will be a function compiled for the |
| // host architecture. We need to call that function instead of trying to |
| // execute it with the simulator. We do that by redirecting the external |
| // reference to a break instruction with code 2 that is handled by |
| // the simulator. We write the original destination of the jump just at a known |
| // offset from the break instruction so the simulator knows what to call. |
| class Redirection { |
| public: |
| uword address_of_break_instruction() { |
| return reinterpret_cast<uword>(&break_instruction_); |
| } |
| |
| uword external_function() const { return external_function_; } |
| |
| Simulator::CallKind call_kind() const { return call_kind_; } |
| |
| static Redirection* Get(uword external_function, |
| Simulator::CallKind call_kind) { |
| Redirection* current; |
| for (current = list_; current != NULL; current = current->next_) { |
| if (current->external_function_ == external_function) return current; |
| } |
| return new Redirection(external_function, call_kind); |
| } |
| |
| static Redirection* FromBreakInstruction(Instr* break_instruction) { |
| char* addr_of_break = reinterpret_cast<char*>(break_instruction); |
| char* addr_of_redirection = |
| addr_of_break - OFFSET_OF(Redirection, break_instruction_); |
| return reinterpret_cast<Redirection*>(addr_of_redirection); |
| } |
| |
| private: |
| static const int32_t kRedirectInstruction = |
| Instr::kBreakPointInstruction | (Instr::kRedirectCode << kBreakCodeShift); |
| |
| Redirection(uword external_function, Simulator::CallKind call_kind) |
| : external_function_(external_function), |
| call_kind_(call_kind), |
| break_instruction_(kRedirectInstruction), |
| next_(list_) { |
| list_ = this; |
| } |
| |
| uword external_function_; |
| Simulator::CallKind call_kind_; |
| uint32_t break_instruction_; |
| Redirection* next_; |
| static Redirection* list_; |
| }; |
| |
| |
| Redirection* Redirection::list_ = NULL; |
| |
| |
| uword Simulator::RedirectExternalReference(uword function, CallKind call_kind) { |
| Redirection* redirection = Redirection::Get(function, call_kind); |
| return redirection->address_of_break_instruction(); |
| } |
| |
| |
| // Get the active Simulator for the current isolate. |
| Simulator* Simulator::Current() { |
| Simulator* simulator = Isolate::Current()->simulator(); |
| if (simulator == NULL) { |
| simulator = new Simulator(); |
| Isolate::Current()->set_simulator(simulator); |
| } |
| return simulator; |
| } |
| |
| |
| // Sets the register in the architecture state. |
| void Simulator::set_register(Register reg, int32_t value) { |
| if (reg != R0) { |
| registers_[reg] = value; |
| } |
| } |
| |
| |
| void Simulator::set_fregister(FRegister reg, int32_t value) { |
| ASSERT(reg >= 0); |
| ASSERT(reg < kNumberOfFRegisters); |
| fregisters_[reg] = value; |
| } |
| |
| |
| void Simulator::set_fregister_float(FRegister reg, float value) { |
| ASSERT(reg >= 0); |
| ASSERT(reg < kNumberOfFRegisters); |
| fregisters_[reg] = bit_cast<int32_t, float>(value); |
| } |
| |
| |
| void Simulator::set_fregister_long(FRegister reg, int64_t value) { |
| ASSERT(reg >= 0); |
| ASSERT(reg < kNumberOfFRegisters); |
| ASSERT((reg & 1) == 0); |
| fregisters_[reg] = Utils::Low32Bits(value); |
| fregisters_[reg + 1] = Utils::High32Bits(value); |
| } |
| |
| |
| void Simulator::set_fregister_double(FRegister reg, double value) { |
| const int64_t ival = bit_cast<int64_t, double>(value); |
| set_fregister_long(reg, ival); |
| } |
| |
| |
| // Get the register from the architecture state. |
| int32_t Simulator::get_register(Register reg) const { |
| if (reg == R0) { |
| return 0; |
| } |
| return registers_[reg]; |
| } |
| |
| |
| int32_t Simulator::get_fregister(FRegister reg) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfFRegisters)); |
| return fregisters_[reg]; |
| } |
| |
| |
| float Simulator::get_fregister_float(FRegister reg) const { |
| ASSERT(reg >= 0); |
| ASSERT(reg < kNumberOfFRegisters); |
| return bit_cast<float, int32_t>(fregisters_[reg]); |
| } |
| |
| |
| int64_t Simulator::get_fregister_long(FRegister reg) const { |
| ASSERT(reg >= 0); |
| ASSERT(reg < kNumberOfFRegisters); |
| ASSERT((reg & 1) == 0); |
| const int32_t low = fregisters_[reg]; |
| const int32_t high = fregisters_[reg + 1]; |
| const int64_t value = Utils::LowHighTo64Bits(low, high); |
| return value; |
| } |
| |
| |
| double Simulator::get_fregister_double(FRegister reg) const { |
| ASSERT(reg >= 0); |
| ASSERT(reg < kNumberOfFRegisters); |
| ASSERT((reg & 1) == 0); |
| const int64_t value = get_fregister_long(reg); |
| return bit_cast<double, int64_t>(value); |
| } |
| |
| |
| void Simulator::UnimplementedInstruction(Instr* instr) { |
| char buffer[64]; |
| snprintf(buffer, sizeof(buffer), "Unimplemented instruction: pc=%p\n", instr); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| FATAL("Cannot continue execution after unimplemented instruction."); |
| } |
| |
| |
| void Simulator::HandleIllegalAccess(uword addr, Instr* instr) { |
| uword fault_pc = get_pc(); |
| // The debugger will not be able to single step past this instruction, but |
| // it will be possible to disassemble the code and inspect registers. |
| char buffer[128]; |
| snprintf(buffer, sizeof(buffer), |
| "illegal memory access at 0x%"Px", pc=0x%"Px"\n", |
| addr, fault_pc); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| // The debugger will return control in non-interactive mode. |
| FATAL("Cannot continue execution after illegal memory access."); |
| } |
| |
| |
| void Simulator::UnalignedAccess(const char* msg, uword addr, Instr* instr) { |
| // The debugger will not be able to single step past this instruction, but |
| // it will be possible to disassemble the code and inspect registers. |
| char buffer[128]; |
| snprintf(buffer, sizeof(buffer), |
| "pc=%p, unaligned %s at 0x%"Px"\n", instr, msg, addr); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| // The debugger will return control in non-interactive mode. |
| FATAL("Cannot continue execution after unaligned access."); |
| } |
| |
| |
| // Returns the top of the stack area to enable checking for stack pointer |
| // validity. |
| uword Simulator::StackTop() const { |
| // To be safe in potential stack underflows we leave some buffer above and |
| // set the stack top. |
| return reinterpret_cast<uword>(stack_) + |
| (Isolate::GetSpecifiedStackSize() + Isolate::kStackSizeBuffer); |
| } |
| |
| |
| void Simulator::Format(Instr* instr, const char* format) { |
| OS::PrintErr("Simulator - unknown instruction: %s\n", format); |
| UNIMPLEMENTED(); |
| } |
| |
| |
| int8_t Simulator::ReadB(uword addr) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| uint8_t Simulator::ReadBU(uword addr) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| int16_t Simulator::ReadH(uword addr, Instr* instr) { |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| } |
| UnalignedAccess("signed halfword read", addr, instr); |
| return 0; |
| } |
| |
| |
| uint16_t Simulator::ReadHU(uword addr, Instr* instr) { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| UnalignedAccess("unsigned halfword read", addr, instr); |
| return 0; |
| } |
| |
| |
| int Simulator::ReadW(uword addr, Instr* instr) { |
| if ((addr & 3) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| } |
| UnalignedAccess("read", addr, instr); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteB(uword addr, uint8_t value) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| void Simulator::WriteH(uword addr, uint16_t value, Instr* instr) { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| UnalignedAccess("halfword write", addr, instr); |
| } |
| |
| |
| void Simulator::WriteW(uword addr, int value, Instr* instr) { |
| if ((addr & 3) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| UnalignedAccess("write", addr, instr); |
| } |
| |
| |
| double Simulator::ReadD(uword addr, Instr* instr) { |
| if ((addr & 7) == 0) { |
| double* ptr = reinterpret_cast<double*>(addr); |
| return *ptr; |
| } |
| UnalignedAccess("double-precision floating point read", addr, instr); |
| return 0.0; |
| } |
| |
| |
| void Simulator::WriteD(uword addr, double value, Instr* instr) { |
| if ((addr & 7) == 0) { |
| double* ptr = reinterpret_cast<double*>(addr); |
| *ptr = value; |
| return; |
| } |
| UnalignedAccess("double-precision floating point write", addr, instr); |
| } |
| |
| |
| bool Simulator::OverflowFrom(int32_t alu_out, |
| int32_t left, int32_t right, bool addition) { |
| bool overflow; |
| if (addition) { |
| // Operands have the same sign. |
| overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
| // And operands and result have different sign. |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } else { |
| // Operands have different signs. |
| overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
| // And first operand and result have different signs. |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } |
| return overflow; |
| } |
| |
| |
| // Calls into the Dart runtime are based on this interface. |
| typedef void (*SimulatorRuntimeCall)(NativeArguments arguments); |
| |
| // Calls to leaf Dart runtime functions are based on this interface. |
| typedef int32_t (*SimulatorLeafRuntimeCall)( |
| int32_t r0, int32_t r1, int32_t r2, int32_t r3); |
| |
| // Calls to native Dart functions are based on this interface. |
| typedef void (*SimulatorNativeCall)(NativeArguments* arguments); |
| |
| |
| void Simulator::DoBreak(Instr *instr) { |
| ASSERT(instr->OpcodeField() == SPECIAL); |
| ASSERT(instr->FunctionField() == BREAK); |
| if (instr->BreakCodeField() == Instr::kStopMessageCode) { |
| SimulatorDebugger dbg(this); |
| const char* message = *reinterpret_cast<const char**>( |
| reinterpret_cast<intptr_t>(instr) - Instr::kInstrSize); |
| set_pc(get_pc() + Instr::kInstrSize); |
| dbg.Stop(instr, message); |
| // Adjust for extra pc increment. |
| set_pc(get_pc() - Instr::kInstrSize); |
| } else if (instr->BreakCodeField() == Instr::kMsgMessageCode) { |
| const char* message = *reinterpret_cast<const char**>( |
| reinterpret_cast<intptr_t>(instr) - Instr::kInstrSize); |
| if (FLAG_trace_sim) { |
| OS::Print("Message: %s\n", message); |
| } else { |
| OS::PrintErr("Bad break code: 0x%x\n", instr->InstructionBits()); |
| UnimplementedInstruction(instr); |
| } |
| } else if (instr->BreakCodeField() == Instr::kRedirectCode) { |
| SimulatorSetjmpBuffer buffer(this); |
| |
| if (!setjmp(buffer.buffer_)) { |
| int32_t saved_ra = get_register(RA); |
| Redirection* redirection = Redirection::FromBreakInstruction(instr); |
| uword external = redirection->external_function(); |
| if (FLAG_trace_sim) { |
| OS::Print("Call to host function at 0x%"Pd"\n", external); |
| } |
| |
| if (redirection->call_kind() != kLeafRuntimeCall) { |
| // The top_exit_frame_info of the current isolate points to the top of |
| // the simulator stack. |
| ASSERT((StackTop() - Isolate::Current()->top_exit_frame_info()) < |
| Isolate::GetSpecifiedStackSize()); |
| // Set the top_exit_frame_info of this simulator to the native stack. |
| set_top_exit_frame_info(reinterpret_cast<uword>(&buffer)); |
| } |
| if (redirection->call_kind() == kRuntimeCall) { |
| NativeArguments arguments; |
| ASSERT(sizeof(NativeArguments) == 4*kWordSize); |
| arguments.isolate_ = reinterpret_cast<Isolate*>(get_register(A0)); |
| arguments.argc_tag_ = get_register(A1); |
| arguments.argv_ = reinterpret_cast<RawObject*(*)[]>(get_register(A2)); |
| arguments.retval_ = reinterpret_cast<RawObject**>(get_register(A3)); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| target(arguments); |
| set_register(V0, icount_); // Zap result register from void function. |
| } else if (redirection->call_kind() == kLeafRuntimeCall) { |
| int32_t a0 = get_register(A0); |
| int32_t a1 = get_register(A1); |
| int32_t a2 = get_register(A2); |
| int32_t a3 = get_register(A3); |
| SimulatorLeafRuntimeCall target = |
| reinterpret_cast<SimulatorLeafRuntimeCall>(external); |
| a0 = target(a0, a1, a2, a3); |
| set_register(V0, a0); // Set returned result from function. |
| } else { |
| ASSERT(redirection->call_kind() == kNativeCall); |
| NativeArguments* arguments; |
| arguments = reinterpret_cast<NativeArguments*>(get_register(A0)); |
| SimulatorNativeCall target = |
| reinterpret_cast<SimulatorNativeCall>(external); |
| target(arguments); |
| set_register(V0, icount_); // Zap result register from void function. |
| } |
| set_top_exit_frame_info(0); |
| |
| // Zap caller-saved registers, since the actual runtime call could have |
| // used them. |
| set_register(T0, icount_); |
| set_register(T1, icount_); |
| set_register(T2, icount_); |
| set_register(T3, icount_); |
| set_register(T4, icount_); |
| set_register(T5, icount_); |
| set_register(T6, icount_); |
| set_register(T7, icount_); |
| set_register(T8, icount_); |
| set_register(T9, icount_); |
| |
| set_register(A0, icount_); |
| set_register(A1, icount_); |
| set_register(A2, icount_); |
| set_register(A3, icount_); |
| set_register(TMP, icount_); |
| set_register(RA, icount_); |
| |
| // Zap floating point registers. |
| int32_t zap_dvalue = icount_; |
| for (int i = F0; i <= F31; i++) { |
| set_fregister(static_cast<FRegister>(i), zap_dvalue); |
| } |
| |
| // Return. Subtract to account for pc_ increment after return. |
| set_pc(saved_ra - Instr::kInstrSize); |
| } else { |
| // Coming via long jump from a throw. Continue to exception handler. |
| set_top_exit_frame_info(0); |
| // Adjust for extra pc increment. |
| set_pc(get_pc() - Instr::kInstrSize); |
| } |
| } else { |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, "breakpoint"); |
| // Adjust for extra pc increment. |
| set_pc(get_pc() - Instr::kInstrSize); |
| } |
| } |
| |
| |
| void Simulator::DecodeSpecial(Instr* instr) { |
| ASSERT(instr->OpcodeField() == SPECIAL); |
| switch (instr->FunctionField()) { |
| case ADDU: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "addu 'rd, 'rs, 'rt"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| set_register(instr->RdField(), rs_val + rt_val); |
| break; |
| } |
| case AND: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "and 'rd, 'rs, 'rt"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| set_register(instr->RdField(), rs_val & rt_val); |
| break; |
| } |
| case BREAK: { |
| DoBreak(instr); |
| break; |
| } |
| case DIV: { |
| ASSERT(instr->RdField() == 0); |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "div 'rs, 'rt"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| if (rt_val == 0) { |
| // Results are unpredictable. |
| set_hi_register(0); |
| set_lo_register(0); |
| // TODO(zra): Drop into the debugger here. |
| break; |
| } |
| |
| if ((rs_val == static_cast<int32_t>(0x80000000)) && |
| (rt_val == static_cast<int32_t>(0xffffffff))) { |
| set_lo_register(0x80000000); |
| set_hi_register(0); |
| } else { |
| set_lo_register(rs_val / rt_val); |
| set_hi_register(rs_val % rt_val); |
| } |
| break; |
| } |
| case DIVU: { |
| ASSERT(instr->RdField() == 0); |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "divu 'rs, 'rt"); |
| uint32_t rs_val = get_register(instr->RsField()); |
| uint32_t rt_val = get_register(instr->RtField()); |
| if (rt_val == 0) { |
| // Results are unpredictable. |
| set_hi_register(0); |
| set_lo_register(0); |
| // TODO(zra): Drop into the debugger here. |
| break; |
| } |
| |
| set_lo_register(rs_val / rt_val); |
| set_hi_register(rs_val % rt_val); |
| break; |
| } |
| case JALR: { |
| ASSERT(instr->RtField() == R0); |
| ASSERT(instr->RsField() != instr->RdField()); |
| ASSERT(!delay_slot_); |
| // Format(instr, "jalr'hint 'rd, rs"); |
| set_register(instr->RdField(), pc_ + 2*Instr::kInstrSize); |
| uword next_pc = get_register(instr->RsField()); |
| ExecuteDelaySlot(); |
| // Set return address to be the instruction after the delay slot. |
| pc_ = next_pc - Instr::kInstrSize; // Account for regular PC increment. |
| break; |
| } |
| case JR: { |
| ASSERT(instr->RtField() == R0); |
| ASSERT(instr->RdField() == R0); |
| ASSERT(!delay_slot_); |
| // Format(instr, "jr'hint 'rs"); |
| uword next_pc = get_register(instr->RsField()); |
| ExecuteDelaySlot(); |
| pc_ = next_pc - Instr::kInstrSize; // Account for regular PC increment. |
| break; |
| } |
| case MFHI: { |
| ASSERT(instr->RsField() == 0); |
| ASSERT(instr->RtField() == 0); |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "mfhi 'rd"); |
| set_register(instr->RdField(), get_hi_register()); |
| break; |
| } |
| case MFLO: { |
| ASSERT(instr->RsField() == 0); |
| ASSERT(instr->RtField() == 0); |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "mflo 'rd"); |
| set_register(instr->RdField(), get_lo_register()); |
| break; |
| } |
| case MOVN: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "movn 'rd, 'rs, 'rt"); |
| int32_t rt_val = get_register(instr->RtField()); |
| int32_t rs_val = get_register(instr->RsField()); |
| if (rt_val != 0) { |
| set_register(instr->RdField(), rs_val); |
| } |
| break; |
| } |
| case MOVZ: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "movz 'rd, 'rs, 'rt"); |
| int32_t rt_val = get_register(instr->RtField()); |
| int32_t rs_val = get_register(instr->RsField()); |
| if (rt_val == 0) { |
| set_register(instr->RdField(), rs_val); |
| } |
| break; |
| } |
| case MULT: { |
| ASSERT(instr->RdField() == 0); |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "mult 'rs, 'rt"); |
| int64_t rs = static_cast<int64_t>(get_register(instr->RsField())); |
| int64_t rt = static_cast<int64_t>(get_register(instr->RtField())); |
| int64_t res = rs * rt; |
| set_hi_register(Utils::High32Bits(res)); |
| set_lo_register(Utils::Low32Bits(res)); |
| break; |
| } |
| case MULTU: { |
| ASSERT(instr->RdField() == 0); |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "multu 'rs, 'rt"); |
| uint64_t rs = static_cast<uint64_t>(get_register(instr->RsField())); |
| uint64_t rt = static_cast<uint64_t>(get_register(instr->RtField())); |
| uint64_t res = rs * rt; |
| set_hi_register(Utils::High32Bits(res)); |
| set_lo_register(Utils::Low32Bits(res)); |
| break; |
| } |
| case NOR: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "nor 'rd, 'rs, 'rt"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| set_register(instr->RdField(), ~(rs_val | rt_val)); |
| break; |
| } |
| case OR: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "or 'rd, 'rs, 'rt"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| set_register(instr->RdField(), rs_val | rt_val); |
| break; |
| } |
| case SLL: { |
| ASSERT(instr->RsField() == 0); |
| if ((instr->RdField() == R0) && |
| (instr->RtField() == R0) && |
| (instr->SaField() == 0)) { |
| // Format(instr, "nop"); |
| // Nothing to be done for NOP. |
| } else { |
| int32_t rt_val = get_register(instr->RtField()); |
| int sa = instr->SaField(); |
| set_register(instr->RdField(), rt_val << sa); |
| } |
| break; |
| } |
| case SLLV: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "sllv 'rd, 'rt, 'rs"); |
| int32_t rt_val = get_register(instr->RtField()); |
| int32_t rs_val = get_register(instr->RsField()); |
| set_register(instr->RdField(), rt_val << (rs_val & 0x1f)); |
| break; |
| } |
| case SLT: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "slt 'rd, 'rs, 'rt"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| set_register(instr->RdField(), rs_val < rt_val ? 1 : 0); |
| break; |
| } |
| case SLTU: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "sltu 'rd, 'rs, 'rt"); |
| uint32_t rs_val = static_cast<uint32_t>(get_register(instr->RsField())); |
| uint32_t rt_val = static_cast<uint32_t>(get_register(instr->RtField())); |
| set_register(instr->RdField(), rs_val < rt_val ? 1 : 0); |
| break; |
| } |
| case SRA: { |
| ASSERT(instr->RsField() == 0); |
| // Format(instr, "sra 'rd, 'rt, 'sa"); |
| int32_t rt_val = get_register(instr->RtField()); |
| int32_t sa = instr->SaField(); |
| set_register(instr->RdField(), rt_val >> sa); |
| break; |
| } |
| case SRAV: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "srav 'rd, 'rt, 'rs"); |
| int32_t rt_val = get_register(instr->RtField()); |
| int32_t rs_val = get_register(instr->RsField()); |
| set_register(instr->RdField(), rt_val >> (rs_val & 0x1f)); |
| break; |
| } |
| case SRL: { |
| ASSERT(instr->RsField() == 0); |
| // Format(instr, "srl 'rd, 'rt, 'sa"); |
| uint32_t rt_val = get_register(instr->RtField()); |
| uint32_t sa = instr->SaField(); |
| set_register(instr->RdField(), rt_val >> sa); |
| break; |
| } |
| case SRLV: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "srlv 'rd, 'rt, 'rs"); |
| uint32_t rt_val = get_register(instr->RtField()); |
| uint32_t rs_val = get_register(instr->RsField()); |
| set_register(instr->RdField(), rt_val >> (rs_val & 0x1f)); |
| break; |
| } |
| case SUBU: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "subu 'rd, 'rs, 'rt"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| set_register(instr->RdField(), rs_val - rt_val); |
| break; |
| } |
| case XOR: { |
| ASSERT(instr->SaField() == 0); |
| // Format(instr, "xor 'rd, 'rs, 'rt"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| set_register(instr->RdField(), rs_val ^ rt_val); |
| break; |
| } |
| default: { |
| OS::PrintErr("DecodeSpecial: 0x%x\n", instr->InstructionBits()); |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeSpecial2(Instr* instr) { |
| ASSERT(instr->OpcodeField() == SPECIAL2); |
| switch (instr->FunctionField()) { |
| case CLO: { |
| ASSERT(instr->SaField() == 0); |
| ASSERT(instr->RtField() == instr->RdField()); |
| // Format(instr, "clo 'rd, 'rs"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t bitcount = 0; |
| while (rs_val < 0) { |
| bitcount++; |
| rs_val <<= 1; |
| } |
| set_register(instr->RdField(), bitcount); |
| break; |
| } |
| case CLZ: { |
| ASSERT(instr->SaField() == 0); |
| ASSERT(instr->RtField() == instr->RdField()); |
| // Format(instr, "clz 'rd, 'rs"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t bitcount = 0; |
| if (rs_val != 0) { |
| while (rs_val > 0) { |
| bitcount++; |
| rs_val <<= 1; |
| } |
| } else { |
| bitcount = 32; |
| } |
| set_register(instr->RdField(), bitcount); |
| break; |
| } |
| default: { |
| OS::PrintErr("DecodeSpecial2: 0x%x\n", instr->InstructionBits()); |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } |
| |
| |
| void Simulator::DoBranch(Instr* instr, bool taken, bool likely) { |
| ASSERT(!delay_slot_); |
| int32_t imm_val = instr->SImmField() << 2; |
| |
| uword next_pc; |
| if (taken) { |
| // imm_val is added to the address of the instruction following the branch. |
| next_pc = pc_ + imm_val + Instr::kInstrSize; |
| if (likely) { |
| ExecuteDelaySlot(); |
| } |
| } else { |
| next_pc = pc_ + (2 * Instr::kInstrSize); // Next after delay slot. |
| } |
| if (!likely) { |
| ExecuteDelaySlot(); |
| } |
| pc_ = next_pc - Instr::kInstrSize; |
| |
| return; |
| } |
| |
| |
| void Simulator::DecodeRegImm(Instr* instr) { |
| ASSERT(instr->OpcodeField() == REGIMM); |
| switch (instr->RegImmFnField()) { |
| case BGEZ: { |
| // Format(instr, "bgez 'rs, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| DoBranch(instr, rs_val >= 0, false); |
| break; |
| } |
| case BGEZAL: { |
| int32_t rs_val = get_register(instr->RsField()); |
| // Return address is one after the delay slot. |
| set_register(RA, pc_ + (2*Instr::kInstrSize)); |
| DoBranch(instr, rs_val >= 0, false); |
| break; |
| } |
| case BGEZL: { |
| // Format(instr, "bgezl 'rs, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| DoBranch(instr, rs_val >= 0, true); |
| break; |
| } |
| case BLTZ: { |
| // Format(instr, "bltz 'rs, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| DoBranch(instr, rs_val < 0, false); |
| break; |
| } |
| case BLTZL: { |
| // Format(instr, "bltzl 'rs, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| DoBranch(instr, rs_val < 0, true); |
| break; |
| } |
| default: { |
| OS::PrintErr("DecodeRegImm: 0x%x\n", instr->InstructionBits()); |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeCop1(Instr* instr) { |
| ASSERT(instr->OpcodeField() == COP1); |
| if (instr->HasFormat()) { |
| // If the rs field is a valid format, then the function field identifies the |
| // instruction. |
| switch (instr->Cop1FunctionField()) { |
| case COP1_ADD: { |
| // Format(instr, "add.'fmt 'fd, 'fs, 'ft"); |
| if (instr->FormatField() == FMT_S) { |
| float fs_val = get_fregister_float(instr->FsField()); |
| float ft_val = get_fregister_float(instr->FtField()); |
| set_fregister_float(instr->FdField(), fs_val + ft_val); |
| } else { |
| ASSERT(instr->FormatField() == FMT_D); // Only S and D supported. |
| double fs_val = get_fregister_double(instr->FsField()); |
| double ft_val = get_fregister_double(instr->FtField()); |
| set_fregister_double(instr->FdField(), fs_val + ft_val); |
| } |
| break; |
| } |
| case COP1_MOV: { |
| // Format(instr, "mov.'fmt 'fd, 'fs"); |
| ASSERT(instr->FtField() == F0); |
| if (instr->FormatField() == FMT_S) { |
| float fs_val = get_fregister_float(instr->FsField()); |
| set_fregister_float(instr->FdField(), fs_val); |
| } else { |
| ASSERT(instr->FormatField() == FMT_D); |
| double fs_val = get_fregister_double(instr->FsField()); |
| set_fregister_double(instr->FdField(), fs_val); |
| } |
| break; |
| } |
| default: { |
| OS::PrintErr("DecodeCop1: 0x%x\n", instr->InstructionBits()); |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } else { |
| // If the rs field isn't a valid format, then it must be a sub-op. |
| switch (instr->Cop1SubField()) { |
| case COP1_MF: { |
| // Format(instr, "mfc1 'rt, 'fs"); |
| ASSERT(instr->Bits(0, 11) == 0); |
| int32_t fs_val = get_fregister(instr->FsField()); |
| set_register(instr->RtField(), fs_val); |
| break; |
| } |
| case COP1_MT: { |
| // Format(instr, "mtc1 'rt, 'fs"); |
| ASSERT(instr->Bits(0, 11) == 0); |
| int32_t rt_val = get_register(instr->RtField()); |
| set_fregister(instr->FsField(), rt_val); |
| break; |
| } |
| default: { |
| OS::PrintErr("DecodeCop1: 0x%x\n", instr->InstructionBits()); |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| void Simulator::InstructionDecode(Instr* instr) { |
| if (FLAG_trace_sim) { |
| const uword start = reinterpret_cast<uword>(instr); |
| const uword end = start + Instr::kInstrSize; |
| Disassembler::Disassemble(start, end); |
| } |
| |
| switch (instr->OpcodeField()) { |
| case SPECIAL: { |
| DecodeSpecial(instr); |
| break; |
| } |
| case SPECIAL2: { |
| DecodeSpecial2(instr); |
| break; |
| } |
| case REGIMM: { |
| DecodeRegImm(instr); |
| break; |
| } |
| case COP1: { |
| DecodeCop1(instr); |
| break; |
| } |
| case ADDIU: { |
| // Format(instr, "addiu 'rt, 'rs, 'imms"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| int32_t res = rs_val + imm_val; |
| // Rt is set even on overflow. |
| set_register(instr->RtField(), res); |
| break; |
| } |
| case ANDI: { |
| // Format(instr, "andi 'rt, 'rs, 'immu"); |
| int32_t rs_val = get_register(instr->RsField()); |
| set_register(instr->RtField(), rs_val & instr->UImmField()); |
| break; |
| } |
| case BEQ: { |
| // Format(instr, "beq 'rs, 'rt, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| DoBranch(instr, rs_val == rt_val, false); |
| break; |
| } |
| case BEQL: { |
| // Format(instr, "beql 'rs, 'rt, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| DoBranch(instr, rs_val == rt_val, true); |
| break; |
| } |
| case BGTZ: { |
| ASSERT(instr->RtField() == R0); |
| // Format(instr, "bgtz 'rs, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| DoBranch(instr, rs_val > 0, false); |
| break; |
| } |
| case BGTZL: { |
| ASSERT(instr->RtField() == R0); |
| // Format(instr, "bgtzl 'rs, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| DoBranch(instr, rs_val > 0, true); |
| break; |
| } |
| case BLEZ: { |
| ASSERT(instr->RtField() == R0); |
| // Format(instr, "blez 'rs, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| DoBranch(instr, rs_val <= 0, false); |
| break; |
| } |
| case BLEZL: { |
| ASSERT(instr->RtField() == R0); |
| // Format(instr, "blezl 'rs, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| DoBranch(instr, rs_val <= 0, true); |
| break; |
| } |
| case BNE: { |
| // Format(instr, "bne 'rs, 'rt, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| DoBranch(instr, rs_val != rt_val, false); |
| break; |
| } |
| case BNEL: { |
| // Format(instr, "bnel 'rs, 'rt, 'dest"); |
| int32_t rs_val = get_register(instr->RsField()); |
| int32_t rt_val = get_register(instr->RtField()); |
| DoBranch(instr, rs_val != rt_val, true); |
| break; |
| } |
| case LB: { |
| // Format(instr, "lb 'rt, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| int32_t res = ReadB(addr); |
| set_register(instr->RtField(), res); |
| } |
| break; |
| } |
| case LBU: { |
| // Format(instr, "lbu 'rt, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| int32_t res = ReadBU(addr); |
| set_register(instr->RtField(), res); |
| } |
| break; |
| } |
| case LDC1: { |
| // Format(instr, "ldc1 'ft, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| double value = ReadD(addr, instr); |
| set_fregister_double(instr->FtField(), value); |
| } |
| break; |
| } |
| case LH: { |
| // Format(instr, "lh 'rt, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| int32_t res = ReadH(addr, instr); |
| set_register(instr->RtField(), res); |
| } |
| break; |
| } |
| case LHU: { |
| // Format(instr, "lhu 'rt, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| int32_t res = ReadHU(addr, instr); |
| set_register(instr->RtField(), res); |
| } |
| break; |
| } |
| case LUI: { |
| ASSERT(instr->RsField() == 0); |
| set_register(instr->RtField(), instr->UImmField() << 16); |
| break; |
| } |
| case LW: { |
| // Format(instr, "lw 'rt, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| int32_t res = ReadW(addr, instr); |
| set_register(instr->RtField(), res); |
| } |
| break; |
| } |
| case LWC1: { |
| // Format(instr, "lwc1 'ft, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| int32_t value = ReadW(addr, instr); |
| set_fregister(instr->FtField(), value); |
| } |
| break; |
| } |
| case ORI: { |
| // Format(instr, "ori 'rt, 'rs, 'immu"); |
| int32_t rs_val = get_register(instr->RsField()); |
| set_register(instr->RtField(), rs_val | instr->UImmField()); |
| break; |
| } |
| case SB: { |
| // Format(instr, "sb 'rt, 'imms('rs)"); |
| int32_t rt_val = get_register(instr->RtField()); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| WriteB(addr, rt_val & 0xff); |
| } |
| break; |
| } |
| case SDC1: { |
| // Format(instr, "sdc1 'ft, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| double value = get_fregister_double(instr->FtField()); |
| WriteD(addr, value, instr); |
| } |
| break; |
| } |
| case SH: { |
| // Format(instr, "sh 'rt, 'imms('rs)"); |
| int32_t rt_val = get_register(instr->RtField()); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| WriteH(addr, rt_val & 0xffff, instr); |
| } |
| break; |
| } |
| case SW: { |
| // Format(instr, "sw 'rt, 'imms('rs)"); |
| int32_t rt_val = get_register(instr->RtField()); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| WriteW(addr, rt_val, instr); |
| } |
| break; |
| } |
| case SWC1: { |
| // Format(instr, "swc1 'ft, 'imms('rs)"); |
| int32_t base_val = get_register(instr->RsField()); |
| int32_t imm_val = instr->SImmField(); |
| uword addr = base_val + imm_val; |
| if (Simulator::IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| int32_t value = get_fregister(instr->FtField()); |
| WriteW(addr, value, instr); |
| } |
| break; |
| } |
| case XORI: { |
| // Format(instr, "xori 'rt, 'rs, 'immu"); |
| int32_t rs_val = get_register(instr->RsField()); |
| set_register(instr->RtField(), rs_val ^ instr->UImmField()); |
| break; |
| break; |
| } |
| default: { |
| OS::PrintErr("Undecoded instruction: 0x%x at %p\n", |
| instr->InstructionBits(), instr); |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| pc_ += Instr::kInstrSize; |
| } |
| |
| |
| void Simulator::ExecuteDelaySlot() { |
| ASSERT(pc_ != kEndSimulatingPC); |
| delay_slot_ = true; |
| icount_++; |
| Instr* instr = Instr::At(pc_ + Instr::kInstrSize); |
| if (icount_ == FLAG_stop_sim_at) { |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, "Instruction count reached"); |
| } |
| InstructionDecode(instr); |
| delay_slot_ = false; |
| } |
| |
| |
| void Simulator::Execute() { |
| if (FLAG_stop_sim_at == 0) { |
| // Fast version of the dispatch loop without checking whether the simulator |
| // should be stopping at a particular executed instruction. |
| while (pc_ != kEndSimulatingPC) { |
| icount_++; |
| Instr* instr = Instr::At(pc_); |
| if (IsIllegalAddress(pc_)) { |
| HandleIllegalAccess(pc_, instr); |
| } else { |
| InstructionDecode(instr); |
| } |
| } |
| } else { |
| // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| // we reach the particular instruction count. |
| while (pc_ != kEndSimulatingPC) { |
| icount_++; |
| Instr* instr = Instr::At(pc_); |
| if (icount_ == FLAG_stop_sim_at) { |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, "Instruction count reached"); |
| } else { |
| if (IsIllegalAddress(pc_)) { |
| HandleIllegalAccess(pc_, instr); |
| } else { |
| InstructionDecode(instr); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| int64_t Simulator::Call(int32_t entry, |
| int32_t parameter0, |
| int32_t parameter1, |
| int32_t parameter2, |
| int32_t parameter3) { |
| // Save the SP register before the call so we can restore it. |
| int32_t sp_before_call = get_register(SP); |
| |
| // Setup parameters. |
| set_register(A0, parameter0); |
| set_register(A1, parameter1); |
| set_register(A2, parameter2); |
| set_register(A3, parameter3); |
| |
| // Make sure the activation frames are properly aligned. |
| int32_t stack_pointer = sp_before_call; |
| static const int kFrameAlignment = OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| stack_pointer = Utils::RoundDown(stack_pointer, kFrameAlignment); |
| } |
| set_register(SP, stack_pointer); |
| |
| // Prepare to execute the code at entry. |
| set_pc(entry); |
| // Put down marker for end of simulation. The simulator will stop simulation |
| // when the PC reaches this value. By saving the "end simulation" value into |
| // RA the simulation stops when returning to this call point. |
| set_register(RA, kEndSimulatingPC); |
| |
| // Remember the values of callee-saved registers. |
| // The code below assumes that r9 is not used as sb (static base) in |
| // simulator code and therefore is regarded as a callee-saved register. |
| int32_t r16_val = get_register(R16); |
| int32_t r17_val = get_register(R17); |
| int32_t r18_val = get_register(R18); |
| int32_t r19_val = get_register(R19); |
| int32_t r20_val = get_register(R20); |
| int32_t r21_val = get_register(R21); |
| int32_t r22_val = get_register(R22); |
| int32_t r23_val = get_register(R23); |
| |
| // Setup the callee-saved registers with a known value. To be able to check |
| // that they are preserved properly across dart execution. |
| int32_t callee_saved_value = icount_; |
| set_register(R16, callee_saved_value); |
| set_register(R17, callee_saved_value); |
| set_register(R18, callee_saved_value); |
| set_register(R19, callee_saved_value); |
| set_register(R20, callee_saved_value); |
| set_register(R21, callee_saved_value); |
| set_register(R22, callee_saved_value); |
| set_register(R23, callee_saved_value); |
| |
| // Start the simulation |
| Execute(); |
| |
| // Check that the callee-saved registers have been preserved. |
| ASSERT(callee_saved_value == get_register(R16)); |
| ASSERT(callee_saved_value == get_register(R17)); |
| ASSERT(callee_saved_value == get_register(R18)); |
| ASSERT(callee_saved_value == get_register(R19)); |
| ASSERT(callee_saved_value == get_register(R20)); |
| ASSERT(callee_saved_value == get_register(R21)); |
| ASSERT(callee_saved_value == get_register(R22)); |
| ASSERT(callee_saved_value == get_register(R23)); |
| |
| // Restore callee-saved registers with the original value. |
| set_register(R16, r16_val); |
| set_register(R17, r17_val); |
| set_register(R18, r18_val); |
| set_register(R19, r19_val); |
| set_register(R20, r20_val); |
| set_register(R21, r21_val); |
| set_register(R22, r22_val); |
| set_register(R23, r23_val); |
| |
| // Restore the SP register and return V1:V0. |
| set_register(SP, sp_before_call); |
| return Utils::LowHighTo64Bits(get_register(V0), get_register(V1)); |
| } |
| |
| |
| void Simulator::Longjmp(uword pc, |
| uword sp, |
| uword fp, |
| RawObject* raw_exception, |
| RawObject* raw_stacktrace) { |
| // Walk over all setjmp buffers (simulated --> C++ transitions) |
| // and try to find the setjmp associated with the simulated stack pointer. |
| SimulatorSetjmpBuffer* buf = last_setjmp_buffer(); |
| while (buf->link() != NULL && buf->link()->sp() <= sp) { |
| buf = buf->link(); |
| } |
| ASSERT(buf != NULL); |
| |
| // The C++ caller has not cleaned up the stack memory of C++ frames. |
| // Prepare for unwinding frames by destroying all the stack resources |
| // in the previous C++ frames. |
| uword native_sp = buf->native_sp(); |
| Isolate* isolate = Isolate::Current(); |
| while (isolate->top_resource() != NULL && |
| (reinterpret_cast<uword>(isolate->top_resource()) < native_sp)) { |
| isolate->top_resource()->~StackResource(); |
| } |
| |
| // Unwind the C++ stack and continue simulation in the target frame. |
| set_pc(static_cast<int32_t>(pc)); |
| set_register(SP, static_cast<int32_t>(sp)); |
| set_register(FP, static_cast<int32_t>(fp)); |
| ASSERT(raw_exception != NULL); |
| set_register(kExceptionObjectReg, bit_cast<int32_t>(raw_exception)); |
| if (raw_stacktrace != NULL) { |
| set_register(kStackTraceObjectReg, bit_cast<int32_t>(raw_stacktrace)); |
| } |
| buf->Longjmp(); |
| } |
| |
| } // namespace dart |
| |
| #endif // !defined(HOST_ARCH_MIPS) |
| |
| #endif // defined TARGET_ARCH_MIPS |