blob: 222b358f1fc4c6028f19aa0281626b3a67aaa8fe [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef VM_OBJECT_H_
#define VM_OBJECT_H_
#include "include/dart_api.h"
#include "platform/assert.h"
#include "platform/utils.h"
#include "vm/bitmap.h"
#include "vm/dart.h"
#include "vm/globals.h"
#include "vm/handles.h"
#include "vm/heap.h"
#include "vm/isolate.h"
#include "vm/os.h"
#include "vm/raw_object.h"
#include "vm/scanner.h"
namespace dart {
// Forward declarations.
#define DEFINE_FORWARD_DECLARATION(clazz) \
class clazz;
CLASS_LIST(DEFINE_FORWARD_DECLARATION)
#undef DEFINE_FORWARD_DECLARATION
class Api;
class Assembler;
class Closure;
class Code;
class DeoptInstr;
class FinalizablePersistentHandle;
class LocalScope;
class Symbols;
#if defined(DEBUG)
#define CHECK_HANDLE() CheckHandle();
#else
#define CHECK_HANDLE()
#endif
#define BASE_OBJECT_IMPLEMENTATION(object, super) \
public: /* NOLINT */ \
Raw##object* raw() const { return reinterpret_cast<Raw##object*>(raw_); } \
bool Is##object() const { return true; } \
static object& Handle(Isolate* isolate, Raw##object* raw_ptr) { \
object* obj = \
reinterpret_cast<object*>(VMHandles::AllocateHandle(isolate)); \
initializeHandle(obj, raw_ptr); \
return *obj; \
} \
static object& Handle() { \
return Handle(Isolate::Current(), object::null()); \
} \
static object& Handle(Isolate* isolate) { \
return Handle(isolate, object::null()); \
} \
static object& Handle(Raw##object* raw_ptr) { \
return Handle(Isolate::Current(), raw_ptr); \
} \
static object& CheckedHandle(Isolate* isolate, RawObject* raw_ptr) { \
object* obj = \
reinterpret_cast<object*>(VMHandles::AllocateHandle(isolate)); \
initializeHandle(obj, raw_ptr); \
if (!obj->Is##object()) { \
FATAL2("Handle check failed: saw %s expected %s", \
obj->ToCString(), #object); \
} \
return *obj; \
} \
static object& CheckedHandle(RawObject* raw_ptr) { \
return CheckedHandle(Isolate::Current(), raw_ptr); \
} \
static object& ZoneHandle(Isolate* isolate, Raw##object* raw_ptr) { \
object* obj = reinterpret_cast<object*>( \
VMHandles::AllocateZoneHandle(isolate)); \
initializeHandle(obj, raw_ptr); \
return *obj; \
} \
static object* ReadOnlyHandle(Isolate* isolate) { \
object* obj = reinterpret_cast<object*>( \
Dart::AllocateReadOnlyHandle()); \
initializeHandle(obj, object::null()); \
return obj; \
} \
static object& ZoneHandle() { \
return ZoneHandle(Isolate::Current(), object::null()); \
} \
static object& ZoneHandle(Raw##object* raw_ptr) { \
return ZoneHandle(Isolate::Current(), raw_ptr); \
} \
static object& CheckedZoneHandle(Isolate* isolate, RawObject* raw_ptr) { \
object* obj = reinterpret_cast<object*>( \
VMHandles::AllocateZoneHandle(isolate)); \
initializeHandle(obj, raw_ptr); \
if (!obj->Is##object()) { \
FATAL2("Handle check failed: saw %s expected %s", \
obj->ToCString(), #object); \
} \
return *obj; \
} \
static object& CheckedZoneHandle(RawObject* raw_ptr) { \
return CheckedZoneHandle(Isolate::Current(), raw_ptr); \
} \
/* T::Cast cannot be applied to a null Object, because the object vtable */ \
/* is not setup for type T, although some methods are supposed to work */ \
/* with null, for example Instance::Equals(). */ \
static const object& Cast(const Object& obj) { \
ASSERT(obj.Is##object()); \
return reinterpret_cast<const object&>(obj); \
} \
static Raw##object* null() { \
return reinterpret_cast<Raw##object*>(Object::null()); \
} \
virtual const char* ToCString() const; \
static const ClassId kClassId = k##object##Cid; \
private: /* NOLINT */ \
/* Initialize the handle based on the raw_ptr in the presence of null. */ \
static void initializeHandle(object* obj, RawObject* raw_ptr) { \
if (raw_ptr != Object::null()) { \
obj->SetRaw(raw_ptr); \
} else { \
obj->raw_ = Object::null(); \
object fake_object; \
obj->set_vtable(fake_object.vtable()); \
} \
} \
/* Disallow allocation, copy constructors and override super assignment. */ \
public: /* NOLINT */ \
void operator delete(void* pointer) { \
UNREACHABLE(); \
} \
private: /* NOLINT */ \
void* operator new(size_t size); \
object(const object& value); \
void operator=(Raw##super* value); \
void operator=(const object& value); \
void operator=(const super& value); \
#define SNAPSHOT_READER_SUPPORT(object) \
static Raw##object* ReadFrom(SnapshotReader* reader, \
intptr_t object_id, \
intptr_t tags, \
Snapshot::Kind); \
friend class SnapshotReader; \
#define OBJECT_IMPLEMENTATION(object, super) \
public: /* NOLINT */ \
void operator=(Raw##object* value) { \
initializeHandle(this, value); \
} \
void operator^=(RawObject* value) { \
initializeHandle(this, value); \
ASSERT(IsNull() || Is##object()); \
} \
protected: /* NOLINT */ \
object() : super() {} \
BASE_OBJECT_IMPLEMENTATION(object, super) \
#define HEAP_OBJECT_IMPLEMENTATION(object, super) \
OBJECT_IMPLEMENTATION(object, super); \
Raw##object* raw_ptr() const { \
ASSERT(raw() != null()); \
return raw()->ptr(); \
} \
SNAPSHOT_READER_SUPPORT(object) \
friend class StackFrame; \
// This macro is used to denote types that do not have a sub-type.
#define FINAL_HEAP_OBJECT_IMPLEMENTATION(object, super) \
public: /* NOLINT */ \
void operator=(Raw##object* value) { \
raw_ = value; \
CHECK_HANDLE(); \
} \
void operator^=(RawObject* value) { \
raw_ = value; \
CHECK_HANDLE(); \
} \
private: /* NOLINT */ \
object() : super() {} \
BASE_OBJECT_IMPLEMENTATION(object, super) \
Raw##object* raw_ptr() const { \
ASSERT(raw() != null()); \
return raw()->ptr(); \
} \
SNAPSHOT_READER_SUPPORT(object) \
friend class StackFrame; \
class Object {
public:
virtual ~Object() { }
RawObject* raw() const { return raw_; }
void operator=(RawObject* value) {
initializeHandle(this, value);
}
void set_tags(intptr_t value) const {
// TODO(asiva): Remove the capability of setting tags in general. The mask
// here only allows for canonical and from_snapshot flags to be set.
ASSERT(!IsNull());
uword tags = raw()->ptr()->tags_ & ~0x0000000c;
raw()->ptr()->tags_ = tags | (value & 0x0000000c);
}
void SetCreatedFromSnapshot() const {
ASSERT(!IsNull());
raw()->SetCreatedFromSnapshot();
}
bool IsCanonical() const {
ASSERT(!IsNull());
return raw()->IsCanonical();
}
void SetCanonical() const {
ASSERT(!IsNull());
raw()->SetCanonical();
}
inline RawClass* clazz() const;
static intptr_t tags_offset() { return OFFSET_OF(RawObject, tags_); }
// Class testers.
#define DEFINE_CLASS_TESTER(clazz) \
virtual bool Is##clazz() const { return false; }
CLASS_LIST_FOR_HANDLES(DEFINE_CLASS_TESTER);
#undef DEFINE_CLASS_TESTER
bool IsNull() const { return raw_ == null_; }
virtual const char* ToCString() const {
if (IsNull()) {
return "null";
} else {
return "Object";
}
}
// Returns the name that is used to identify an object in the
// namespace dictionary.
// Object::DictionaryName() returns String::null(). Only subclasses
// of Object that need to be entered in the library and library prefix
// namespaces need to provide an implementation.
virtual RawString* DictionaryName() const;
bool IsNew() const { return raw()->IsNewObject(); }
bool IsOld() const { return raw()->IsOldObject(); }
bool InVMHeap() const {
#if defined(DEBUG)
if (raw()->IsVMHeapObject()) {
Heap* vm_isolate_heap = Dart::vm_isolate()->heap();
ASSERT(vm_isolate_heap->Contains(RawObject::ToAddr(raw())));
}
#endif
return raw()->IsVMHeapObject();
}
// Print the object on stdout for debugging.
void Print() const;
bool IsZoneHandle() const {
return VMHandles::IsZoneHandle(reinterpret_cast<uword>(this));
}
bool IsReadOnlyHandle() const;
bool IsNotTemporaryScopedHandle() const;
static RawObject* Clone(const Object& src, Heap::Space space = Heap::kNew);
static Object& Handle(Isolate* isolate, RawObject* raw_ptr) {
Object* obj = reinterpret_cast<Object*>(VMHandles::AllocateHandle(isolate));
initializeHandle(obj, raw_ptr);
return *obj;
}
static Object& Handle() {
return Handle(Isolate::Current(), null_);
}
static Object& Handle(Isolate* isolate) {
return Handle(isolate, null_);
}
static Object& Handle(RawObject* raw_ptr) {
return Handle(Isolate::Current(), raw_ptr);
}
static Object& ZoneHandle(Isolate* isolate, RawObject* raw_ptr) {
Object* obj = reinterpret_cast<Object*>(
VMHandles::AllocateZoneHandle(isolate));
initializeHandle(obj, raw_ptr);
return *obj;
}
static Object& ZoneHandle() {
return ZoneHandle(Isolate::Current(), null_);
}
static Object& ZoneHandle(RawObject* raw_ptr) {
return ZoneHandle(Isolate::Current(), raw_ptr);
}
static RawObject* null() { return null_; }
static const Array& empty_array() {
ASSERT(empty_array_ != NULL);
return *empty_array_;
}
// The sentinel is a value that cannot be produced by Dart code.
// It can be used to mark special values, for example to distinguish
// "uninitialized" fields.
static const Instance& sentinel() {
ASSERT(sentinel_ != NULL);
return *sentinel_;
}
// Value marking that we are transitioning from sentinel, e.g., computing
// a field value. Used to detect circular initialization.
static const Instance& transition_sentinel() {
ASSERT(transition_sentinel_ != NULL);
return *transition_sentinel_;
}
static const Bool& bool_true() {
ASSERT(bool_true_ != NULL);
return *bool_true_;
}
static const Bool& bool_false() {
ASSERT(bool_false_ != NULL);
return *bool_false_;
}
static const LanguageError& snapshot_writer_error() {
ASSERT(snapshot_writer_error_ != NULL);
return *snapshot_writer_error_;
}
static RawClass* class_class() { return class_class_; }
static RawClass* null_class() { return null_class_; }
static RawClass* dynamic_class() { return dynamic_class_; }
static RawClass* void_class() { return void_class_; }
static RawClass* unresolved_class_class() { return unresolved_class_class_; }
static RawClass* type_arguments_class() { return type_arguments_class_; }
static RawClass* instantiated_type_arguments_class() {
return instantiated_type_arguments_class_;
}
static RawClass* patch_class_class() { return patch_class_class_; }
static RawClass* function_class() { return function_class_; }
static RawClass* closure_data_class() { return closure_data_class_; }
static RawClass* redirection_data_class() { return redirection_data_class_; }
static RawClass* field_class() { return field_class_; }
static RawClass* literal_token_class() { return literal_token_class_; }
static RawClass* token_stream_class() { return token_stream_class_; }
static RawClass* script_class() { return script_class_; }
static RawClass* library_class() { return library_class_; }
static RawClass* library_prefix_class() { return library_prefix_class_; }
static RawClass* namespace_class() { return namespace_class_; }
static RawClass* code_class() { return code_class_; }
static RawClass* instructions_class() { return instructions_class_; }
static RawClass* pc_descriptors_class() { return pc_descriptors_class_; }
static RawClass* stackmap_class() { return stackmap_class_; }
static RawClass* var_descriptors_class() { return var_descriptors_class_; }
static RawClass* exception_handlers_class() {
return exception_handlers_class_;
}
static RawClass* deopt_info_class() { return deopt_info_class_; }
static RawClass* context_class() { return context_class_; }
static RawClass* context_scope_class() { return context_scope_class_; }
static RawClass* api_error_class() { return api_error_class_; }
static RawClass* language_error_class() { return language_error_class_; }
static RawClass* unhandled_exception_class() {
return unhandled_exception_class_;
}
static RawClass* unwind_error_class() { return unwind_error_class_; }
static RawClass* icdata_class() { return icdata_class_; }
static RawClass* megamorphic_cache_class() {
return megamorphic_cache_class_;
}
static RawClass* subtypetestcache_class() { return subtypetestcache_class_; }
static RawError* Init(Isolate* isolate);
static void InitFromSnapshot(Isolate* isolate);
static void InitOnce();
static void RegisterSingletonClassNames();
static void CreateInternalMetaData();
static void MakeUnusedSpaceTraversable(const Object& obj,
intptr_t original_size,
intptr_t used_size);
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawObject));
}
static void VerifyBuiltinVtables();
static const ClassId kClassId = kObjectCid;
// Different kinds of type tests.
enum TypeTestKind {
kIsSubtypeOf = 0,
kIsMoreSpecificThan
};
// Different kinds of name visibility.
enum NameVisibility {
kInternalName = 0,
kUserVisibleName
};
protected:
// Used for extracting the C++ vtable during bringup.
Object() : raw_(null_) {}
uword raw_value() const {
return reinterpret_cast<uword>(raw());
}
inline void SetRaw(RawObject* value);
void CheckHandle() const;
cpp_vtable vtable() const { return bit_copy<cpp_vtable>(*this); }
void set_vtable(cpp_vtable value) { *vtable_address() = value; }
static RawObject* Allocate(intptr_t cls_id,
intptr_t size,
Heap::Space space);
static intptr_t RoundedAllocationSize(intptr_t size) {
return Utils::RoundUp(size, kObjectAlignment);
}
bool Contains(uword addr) const {
intptr_t this_size = raw()->Size();
uword this_addr = RawObject::ToAddr(raw());
return (addr >= this_addr) && (addr < (this_addr + this_size));
}
template<typename type> void StorePointer(type* addr, type value) const {
// Ensure that this object contains the addr.
ASSERT(Contains(reinterpret_cast<uword>(addr)));
*addr = value;
// Filter stores based on source and target.
if (!value->IsHeapObject()) return;
if (value->IsNewObject() && raw()->IsOldObject()) {
uword ptr = reinterpret_cast<uword>(raw());
Isolate::Current()->store_buffer()->AddPointer(ptr);
}
}
RawObject* raw_; // The raw object reference.
private:
static void InitializeObject(uword address, intptr_t id, intptr_t size);
static void RegisterClass(const Class& cls,
const String& name,
const Library& lib);
static void RegisterPrivateClass(const Class& cls,
const String& name,
const Library& lib);
/* Initialize the handle based on the raw_ptr in the presence of null. */
static void initializeHandle(Object* obj, RawObject* raw_ptr) {
if (raw_ptr != Object::null()) {
obj->SetRaw(raw_ptr);
} else {
obj->raw_ = Object::null();
Object fake_object;
obj->set_vtable(fake_object.vtable());
}
}
cpp_vtable* vtable_address() const {
uword vtable_addr = reinterpret_cast<uword>(this);
return reinterpret_cast<cpp_vtable*>(vtable_addr);
}
static cpp_vtable handle_vtable_;
static cpp_vtable builtin_vtables_[kNumPredefinedCids];
// The static values below are singletons shared between the different
// isolates. They are all allocated in the non-GC'd Dart::vm_isolate_.
static RawObject* null_;
static RawClass* class_class_; // Class of the Class vm object.
static RawClass* null_class_; // Class of the null object.
static RawClass* dynamic_class_; // Class of the 'dynamic' type.
static RawClass* void_class_; // Class of the 'void' type.
static RawClass* unresolved_class_class_; // Class of UnresolvedClass.
// Class of the TypeArguments vm object.
static RawClass* type_arguments_class_;
static RawClass* instantiated_type_arguments_class_; // Class of Inst..ments.
static RawClass* patch_class_class_; // Class of the PatchClass vm object.
static RawClass* function_class_; // Class of the Function vm object.
static RawClass* closure_data_class_; // Class of ClosureData vm obj.
static RawClass* redirection_data_class_; // Class of RedirectionData vm obj.
static RawClass* field_class_; // Class of the Field vm object.
static RawClass* literal_token_class_; // Class of LiteralToken vm object.
static RawClass* token_stream_class_; // Class of the TokenStream vm object.
static RawClass* script_class_; // Class of the Script vm object.
static RawClass* library_class_; // Class of the Library vm object.
static RawClass* library_prefix_class_; // Class of Library prefix vm object.
static RawClass* namespace_class_; // Class of Namespace vm object.
static RawClass* code_class_; // Class of the Code vm object.
static RawClass* instructions_class_; // Class of the Instructions vm object.
static RawClass* pc_descriptors_class_; // Class of PcDescriptors vm object.
static RawClass* stackmap_class_; // Class of Stackmap vm object.
static RawClass* var_descriptors_class_; // Class of LocalVarDescriptors.
static RawClass* exception_handlers_class_; // Class of ExceptionHandlers.
static RawClass* deopt_info_class_; // Class of DeoptInfo.
static RawClass* context_class_; // Class of the Context vm object.
static RawClass* context_scope_class_; // Class of ContextScope vm object.
static RawClass* icdata_class_; // Class of ICData.
static RawClass* megamorphic_cache_class_; // Class of MegamorphiCache.
static RawClass* subtypetestcache_class_; // Class of SubtypeTestCache.
static RawClass* api_error_class_; // Class of ApiError.
static RawClass* language_error_class_; // Class of LanguageError.
static RawClass* unhandled_exception_class_; // Class of UnhandledException.
static RawClass* unwind_error_class_; // Class of UnwindError.
// The static values below are read-only handle pointers for singleton
// objects that are shared between the different isolates.
static Array* empty_array_;
static Instance* sentinel_;
static Instance* transition_sentinel_;
static Bool* bool_true_;
static Bool* bool_false_;
static LanguageError* snapshot_writer_error_;
friend void ClassTable::Register(const Class& cls);
friend void RawObject::Validate(Isolate* isolate) const;
friend class Closure;
friend class SnapshotReader;
friend class OneByteString;
friend class TwoByteString;
friend class ExternalOneByteString;
friend class ExternalTwoByteString;
DISALLOW_ALLOCATION();
DISALLOW_COPY_AND_ASSIGN(Object);
};
class Class : public Object {
public:
intptr_t instance_size() const {
ASSERT(is_finalized() || is_prefinalized());
return (raw_ptr()->instance_size_in_words_ * kWordSize);
}
void set_instance_size(intptr_t value_in_bytes) const {
ASSERT(kWordSize != 0);
set_instance_size_in_words(value_in_bytes / kWordSize);
}
void set_instance_size_in_words(intptr_t value) const {
ASSERT(Utils::IsAligned((value * kWordSize), kObjectAlignment));
raw_ptr()->instance_size_in_words_ = value;
}
intptr_t next_field_offset() const {
return raw_ptr()->next_field_offset_in_words_ * kWordSize;
}
void set_next_field_offset(intptr_t value_in_bytes) const {
ASSERT(kWordSize != 0);
set_next_field_offset_in_words(value_in_bytes / kWordSize);
}
void set_next_field_offset_in_words(intptr_t value) const {
ASSERT((Utils::IsAligned((value * kWordSize), kObjectAlignment) &&
(value == raw_ptr()->instance_size_in_words_)) ||
(!Utils::IsAligned((value * kWordSize), kObjectAlignment) &&
((value + 1) == raw_ptr()->instance_size_in_words_)));
raw_ptr()->next_field_offset_in_words_ = value;
}
cpp_vtable handle_vtable() const { return raw_ptr()->handle_vtable_; }
void set_handle_vtable(cpp_vtable value) const {
raw_ptr()->handle_vtable_ = value;
}
intptr_t id() const { return raw_ptr()->id_; }
void set_id(intptr_t value) const {
raw_ptr()->id_ = value;
}
RawString* Name() const;
RawString* UserVisibleName() const;
virtual RawString* DictionaryName() const { return Name(); }
RawScript* script() const { return raw_ptr()->script_; }
void set_script(const Script& value) const;
intptr_t token_pos() const { return raw_ptr()->token_pos_; }
// This class represents the signature class of a closure function if
// signature_function() is not null.
// The associated function may be a closure function (with code) or a
// signature function (without code) solely describing the result type and
// parameter types of the signature.
RawFunction* signature_function() const {
return raw_ptr()->signature_function_;
}
static intptr_t signature_function_offset() {
return OFFSET_OF(RawClass, signature_function_);
}
// Return the signature type of this signature class.
// For example, if this class represents a signature of the form
// 'F<T, R>(T, [b: B, c: C]) => R', then its signature type is a parameterized
// type with this class as the type class and type parameters 'T' and 'R'
// as its type argument vector.
RawType* SignatureType() const;
RawLibrary* library() const { return raw_ptr()->library_; }
void set_library(const Library& value) const;
// The type parameters (and their bounds) are specified as an array of
// TypeParameter.
RawTypeArguments* type_parameters() const {
return raw_ptr()->type_parameters_;
}
void set_type_parameters(const TypeArguments& value) const;
intptr_t NumTypeParameters() const;
static intptr_t type_parameters_offset() {
return OFFSET_OF(RawClass, type_parameters_);
}
// Return a TypeParameter if the type_name is a type parameter of this class.
// Return null otherwise.
RawTypeParameter* LookupTypeParameter(const String& type_name,
intptr_t token_pos) const;
// The type argument vector is flattened and includes the type arguments of
// the super class.
bool HasTypeArguments() const;
intptr_t NumTypeArguments() const;
// If this class is parameterized, each instance has a type_arguments field.
static const intptr_t kNoTypeArguments = -1;
intptr_t type_arguments_field_offset() const {
ASSERT(is_finalized() || is_prefinalized());
if (raw_ptr()->type_arguments_field_offset_in_words_ == kNoTypeArguments) {
return kNoTypeArguments;
}
return raw_ptr()->type_arguments_field_offset_in_words_ * kWordSize;
}
void set_type_arguments_field_offset(intptr_t value_in_bytes) const {
intptr_t value;
if (value_in_bytes == kNoTypeArguments) {
value = kNoTypeArguments;
} else {
ASSERT(kWordSize != 0);
value = value_in_bytes / kWordSize;
}
set_type_arguments_field_offset_in_words(value);
}
void set_type_arguments_field_offset_in_words(intptr_t value) const {
raw_ptr()->type_arguments_field_offset_in_words_ = value;
}
static intptr_t type_arguments_field_offset_in_words_offset() {
return OFFSET_OF(RawClass, type_arguments_field_offset_in_words_);
}
// The super type of this class, Object type if not explicitly specified.
// Note that the super type may be bounded, as in this example:
// class C<T> extends S<T> { }; class S<T extends num> { };
RawAbstractType* super_type() const { return raw_ptr()->super_type_; }
void set_super_type(const AbstractType& value) const;
static intptr_t super_type_offset() {
return OFFSET_OF(RawClass, super_type_);
}
// Asserts that the class of the super type has been resolved.
RawClass* SuperClass() const;
RawType* mixin() const { return raw_ptr()->mixin_; }
void set_mixin(const Type& value) const;
// Interfaces is an array of Types.
RawArray* interfaces() const { return raw_ptr()->interfaces_; }
void set_interfaces(const Array& value) const;
static intptr_t interfaces_offset() {
return OFFSET_OF(RawClass, interfaces_);
}
// Returns the list of classes having this class as direct superclass.
RawGrowableObjectArray* direct_subclasses() const {
return raw_ptr()->direct_subclasses_;
}
void AddDirectSubclass(const Class& subclass) const;
// TODO(regis): Implement RemoveDirectSubclass for class unloading support.
// Check if this class represents the class of null.
bool IsNullClass() const { return id() == kNullCid; }
// Check if this class represents the 'dynamic' class.
bool IsDynamicClass() const { return id() == kDynamicCid; }
// Check if this class represents the 'void' class.
bool IsVoidClass() const { return id() == kVoidCid; }
// Check if this class represents the 'Object' class.
bool IsObjectClass() const { return id() == kInstanceCid; }
// Check if this class represents the 'Function' class.
bool IsFunctionClass() const;
// Check if this class represents the 'List' class.
bool IsListClass() const;
// Check if this class represents a signature class.
bool IsSignatureClass() const {
return signature_function() != Object::null();
}
static bool IsSignatureClass(RawClass* cls) {
return cls->ptr()->signature_function_ != Object::null();
}
// Check if this class represents a canonical signature class, i.e. not an
// alias as defined in a typedef.
bool IsCanonicalSignatureClass() const;
// Check the subtype relationship.
bool IsSubtypeOf(const AbstractTypeArguments& type_arguments,
const Class& other,
const AbstractTypeArguments& other_type_arguments,
Error* malformed_error) const {
return TypeTest(kIsSubtypeOf,
type_arguments,
other,
other_type_arguments,
malformed_error);
}
// Check the 'more specific' relationship.
bool IsMoreSpecificThan(const AbstractTypeArguments& type_arguments,
const Class& other,
const AbstractTypeArguments& other_type_arguments,
Error* malformed_error) const {
return TypeTest(kIsMoreSpecificThan,
type_arguments,
other,
other_type_arguments,
malformed_error);
}
// Check if this is the top level class.
bool IsTopLevel() const;
RawArray* fields() const { return raw_ptr()->fields_; }
void SetFields(const Array& value) const;
// Returns true if non-static fields are defined.
bool HasInstanceFields() const;
RawArray* functions() const { return raw_ptr()->functions_; }
void SetFunctions(const Array& value) const;
void AddFunction(const Function& function) const;
void AddClosureFunction(const Function& function) const;
RawFunction* LookupClosureFunction(intptr_t token_pos) const;
RawFunction* LookupDynamicFunction(const String& name) const;
RawFunction* LookupDynamicFunctionAllowPrivate(const String& name) const;
RawFunction* LookupStaticFunction(const String& name) const;
RawFunction* LookupStaticFunctionAllowPrivate(const String& name) const;
RawFunction* LookupConstructor(const String& name) const;
RawFunction* LookupConstructorAllowPrivate(const String& name) const;
RawFunction* LookupFactory(const String& name) const;
RawFunction* LookupFunction(const String& name) const;
RawFunction* LookupFunctionAllowPrivate(const String& name) const;
RawFunction* LookupGetterFunction(const String& name) const;
RawFunction* LookupSetterFunction(const String& name) const;
RawFunction* LookupFunctionAtToken(intptr_t token_pos) const;
RawField* LookupInstanceField(const String& name) const;
RawField* LookupStaticField(const String& name) const;
RawField* LookupField(const String& name) const;
RawLibraryPrefix* LookupLibraryPrefix(const String& name) const;
void InsertCanonicalConstant(intptr_t index, const Instance& constant) const;
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawClass));
}
bool is_implemented() const {
return ImplementedBit::decode(raw_ptr()->state_bits_);
}
void set_is_implemented() const;
bool is_abstract() const {
return AbstractBit::decode(raw_ptr()->state_bits_);
}
void set_is_abstract() const;
bool is_finalized() const {
return StateBits::decode(raw_ptr()->state_bits_) == RawClass::kFinalized;
}
void set_is_finalized() const;
bool is_prefinalized() const {
return StateBits::decode(raw_ptr()->state_bits_) == RawClass::kPreFinalized;
}
void set_is_prefinalized() const;
bool is_const() const { return ConstBit::decode(raw_ptr()->state_bits_); }
void set_is_const() const;
int num_native_fields() const {
return raw_ptr()->num_native_fields_;
}
void set_num_native_fields(int value) const {
raw_ptr()->num_native_fields_ = value;
}
static intptr_t num_native_fields_offset() {
return OFFSET_OF(RawClass, num_native_fields_);
}
RawCode* allocation_stub() const {
return raw_ptr()->allocation_stub_;
}
void set_allocation_stub(const Code& value) const;
RawArray* constants() const;
void Finalize() const;
const char* ApplyPatch(const Class& patch) const;
// Allocate a class used for VM internal objects.
template <class FakeObject> static RawClass* New();
// Allocate instance classes.
static RawClass* New(const String& name,
const Script& script,
intptr_t token_pos);
static RawClass* NewNativeWrapper(const Library& library,
const String& name,
int num_fields);
// Allocate the raw string classes.
static RawClass* NewStringClass(intptr_t class_id);
// Allocate the raw TypedData classes.
static RawClass* NewTypedDataClass(intptr_t class_id);
// Allocate the raw TypedDataView classes.
static RawClass* NewTypedDataViewClass(intptr_t class_id);
// Allocate the raw ExternalTypedData classes.
static RawClass* NewExternalTypedDataClass(intptr_t class_id);
// Allocate a class representing a function signature described by
// signature_function, which must be a closure function or a signature
// function.
// The class may be type parameterized unless the signature_function is in a
// static scope. In that case, the type parameters are copied from the owner
// class of signature_function.
// A null signature function may be passed in and patched later. See below.
static RawClass* NewSignatureClass(const String& name,
const Function& signature_function,
const Script& script,
intptr_t token_pos);
// Patch the signature function of a signature class allocated without it.
void PatchSignatureFunction(const Function& signature_function) const;
// Return a class object corresponding to the specified kind. If
// a canonicalized version of it exists then that object is returned
// otherwise a new object is allocated and returned.
static RawClass* GetClass(intptr_t class_id, bool is_signature_class);
private:
enum {
kConstBit = 1,
kImplementedBit = 2,
kAbstractBit = 3,
kStateTagBit = 4,
kStateTagSize = 2,
};
class ConstBit : public BitField<bool, kConstBit, 1> {};
class ImplementedBit : public BitField<bool, kImplementedBit, 1> {};
class AbstractBit : public BitField<bool, kAbstractBit, 1> {};
class StateBits : public BitField<RawClass::ClassState,
kStateTagBit, kStateTagSize> {}; // NOLINT
void set_name(const String& value) const;
void set_token_pos(intptr_t value) const;
void set_signature_function(const Function& value) const;
void set_signature_type(const AbstractType& value) const;
void set_class_state(RawClass::ClassState state) const;
void set_state_bits(intptr_t bits) const;
void set_constants(const Array& value) const;
void set_canonical_types(const Array& value) const;
RawArray* canonical_types() const;
void CalculateFieldOffsets() const;
// Assigns empty array to all raw class array fields.
void InitEmptyFields();
RawFunction* LookupAccessorFunction(const char* prefix,
intptr_t prefix_length,
const String& name) const;
// Allocate an instance class which has a VM implementation.
template <class FakeInstance> static RawClass* New(intptr_t id);
template <class FakeInstance> static RawClass* New(const String& name,
const Script& script,
intptr_t token_pos);
// Check the subtype or 'more specific' relationship.
bool TypeTest(TypeTestKind test_kind,
const AbstractTypeArguments& type_arguments,
const Class& other,
const AbstractTypeArguments& other_type_arguments,
Error* malformed_error) const;
FINAL_HEAP_OBJECT_IMPLEMENTATION(Class, Object);
friend class AbstractType;
friend class Instance;
friend class Object;
friend class Type;
};
// Unresolved class is used for storing unresolved names which will be resolved
// to a class after all classes have been loaded and finalized.
class UnresolvedClass : public Object {
public:
RawLibraryPrefix* library_prefix() const {
return raw_ptr()->library_prefix_;
}
RawString* ident() const { return raw_ptr()->ident_; }
intptr_t token_pos() const { return raw_ptr()->token_pos_; }
RawString* Name() const;
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawUnresolvedClass));
}
static RawUnresolvedClass* New(const LibraryPrefix& library_prefix,
const String& ident,
intptr_t token_pos);
private:
void set_library_prefix(const LibraryPrefix& library_prefix) const;
void set_ident(const String& ident) const;
void set_token_pos(intptr_t token_pos) const;
static RawUnresolvedClass* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(UnresolvedClass, Object);
friend class Class;
};
// AbstractTypeArguments is an abstract superclass.
// Subclasses of AbstractTypeArguments are TypeArguments and
// InstantiatedTypeArguments.
class AbstractTypeArguments : public Object {
public:
// Returns true if both arguments represent vectors of equal types.
static bool AreEqual(const AbstractTypeArguments& arguments,
const AbstractTypeArguments& other_arguments);
// Return 'this' if this type argument vector is instantiated, i.e. if it does
// not refer to type parameters. Otherwise, return a new type argument vector
// where each reference to a type parameter is replaced with the corresponding
// type of the instantiator type argument vector.
// If malformed_error is not NULL, it may be set to reflect a bound error.
virtual RawAbstractTypeArguments* InstantiateFrom(
const AbstractTypeArguments& instantiator_type_arguments,
Error* malformed_error) const;
// Do not canonicalize InstantiatedTypeArguments or NULL objects
virtual RawAbstractTypeArguments* Canonicalize() const { return this->raw(); }
// The name of this type argument vector, e.g. "<T, dynamic, List<T>, Smi>".
virtual RawString* Name() const {
return SubvectorName(0, Length(), kInternalName);
}
// The name of this type argument vector, e.g. "<T, dynamic, List<T>, int>".
// Names of internal classes are mapped to their public interfaces.
virtual RawString* UserVisibleName() const {
return SubvectorName(0, Length(), kUserVisibleName);
}
// Check if this type argument vector consists solely of DynamicType,
// considering only a prefix of length 'len'.
bool IsRaw(intptr_t len) const {
return IsDynamicTypes(false, len);
}
// Check if this type argument vector would consist solely of DynamicType if
// it was instantiated from a raw (null) instantiator, i.e. consider each type
// parameter as it would be first instantiated from a vector of dynamic types.
// Consider only a prefix of length 'len'.
bool IsRawInstantiatedRaw(intptr_t len) const {
return IsDynamicTypes(true, len);
}
// Check the subtype relationship, considering only a prefix of length 'len'.
bool IsSubtypeOf(const AbstractTypeArguments& other,
intptr_t len,
Error* malformed_error) const {
return TypeTest(kIsSubtypeOf, other, len, malformed_error);
}
// Check the 'more specific' relationship, considering only a prefix of
// length 'len'.
bool IsMoreSpecificThan(const AbstractTypeArguments& other,
intptr_t len,
Error* malformed_error) const {
return TypeTest(kIsMoreSpecificThan, other, len, malformed_error);
}
bool Equals(const AbstractTypeArguments& other) const;
// UNREACHABLEs as AbstractTypeArguments is an abstract class.
virtual intptr_t Length() const;
virtual RawAbstractType* TypeAt(intptr_t index) const;
virtual void SetTypeAt(intptr_t index, const AbstractType& value) const;
virtual bool IsResolved() const;
virtual bool IsInstantiated() const;
virtual bool IsUninstantiatedIdentity() const;
virtual bool IsBounded() const;
virtual intptr_t Hash() const;
private:
// Check if this type argument vector consists solely of DynamicType,
// considering only a prefix of length 'len'.
// If raw_instantiated is true, consider each type parameter to be first
// instantiated from a vector of dynamic types.
bool IsDynamicTypes(bool raw_instantiated, intptr_t len) const;
// Check the subtype or 'more specific' relationship, considering only a
// prefix of length 'len'.
bool TypeTest(TypeTestKind test_kind,
const AbstractTypeArguments& other,
intptr_t len,
Error* malformed_error) const;
// Return the internal or public name of a subvector of this type argument
// vector, e.g. "<T, dynamic, List<T>, int>".
RawString* SubvectorName(intptr_t from_index,
intptr_t len,
NameVisibility name_visibility) const;
protected:
HEAP_OBJECT_IMPLEMENTATION(AbstractTypeArguments, Object);
friend class AbstractType;
friend class Class;
};
// A TypeArguments is an array of AbstractType.
class TypeArguments : public AbstractTypeArguments {
public:
virtual intptr_t Length() const;
virtual RawAbstractType* TypeAt(intptr_t index) const;
static intptr_t type_at_offset(intptr_t index) {
return OFFSET_OF(RawTypeArguments, types_) + index * kWordSize;
}
virtual void SetTypeAt(intptr_t index, const AbstractType& value) const;
virtual bool IsResolved() const;
virtual bool IsInstantiated() const;
virtual bool IsUninstantiatedIdentity() const;
virtual bool IsBounded() const;
// Canonicalize only if instantiated, otherwise returns 'this'.
virtual RawAbstractTypeArguments* Canonicalize() const;
virtual RawAbstractTypeArguments* InstantiateFrom(
const AbstractTypeArguments& instantiator_type_arguments,
Error* malformed_error) const;
static const intptr_t kBytesPerElement = kWordSize;
static const intptr_t kMaxElements = kSmiMax / kBytesPerElement;
static intptr_t length_offset() {
return OFFSET_OF(RawTypeArguments, length_);
}
static intptr_t InstanceSize() {
ASSERT(sizeof(RawTypeArguments) == OFFSET_OF(RawTypeArguments, types_));
return 0;
}
static intptr_t InstanceSize(intptr_t len) {
// Ensure that the types_ is not adding to the object length.
ASSERT(sizeof(RawTypeArguments) == (sizeof(RawObject) + (1 * kWordSize)));
ASSERT(0 <= len && len <= kMaxElements);
return RoundedAllocationSize(
sizeof(RawTypeArguments) + (len * kBytesPerElement));
}
static RawTypeArguments* New(intptr_t len, Heap::Space space = Heap::kOld);
private:
RawAbstractType** TypeAddr(intptr_t index) const;
void SetLength(intptr_t value) const;
FINAL_HEAP_OBJECT_IMPLEMENTATION(TypeArguments, AbstractTypeArguments);
friend class Class;
};
// An instance of InstantiatedTypeArguments is never encountered at compile
// time, but only at run time, when type parameters can be matched to actual
// types.
// An instance of InstantiatedTypeArguments consists of a pair of
// AbstractTypeArguments objects. The first type argument vector is
// uninstantiated, because it contains type expressions referring to at least
// one TypeParameter object, i.e. to a type that is not known at compile time.
// The second type argument vector is the instantiator, because each type
// parameter with index i in the first vector can be substituted (or
// "instantiated") with the type at index i in the second type argument vector.
class InstantiatedTypeArguments : public AbstractTypeArguments {
public:
virtual intptr_t Length() const;
virtual RawAbstractType* TypeAt(intptr_t index) const;
virtual void SetTypeAt(intptr_t index, const AbstractType& value) const;
virtual bool IsResolved() const { return true; }
virtual bool IsInstantiated() const { return true; }
virtual bool IsUninstantiatedIdentity() const { return false; }
virtual bool IsBounded() const { return false; } // Bounds were checked.
RawAbstractTypeArguments* uninstantiated_type_arguments() const {
return raw_ptr()->uninstantiated_type_arguments_;
}
static intptr_t uninstantiated_type_arguments_offset() {
return OFFSET_OF(RawInstantiatedTypeArguments,
uninstantiated_type_arguments_);
}
RawAbstractTypeArguments* instantiator_type_arguments() const {
return raw_ptr()->instantiator_type_arguments_;
}
static intptr_t instantiator_type_arguments_offset() {
return OFFSET_OF(RawInstantiatedTypeArguments,
instantiator_type_arguments_);
}
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawInstantiatedTypeArguments));
}
static RawInstantiatedTypeArguments* New(
const AbstractTypeArguments& uninstantiated_type_arguments,
const AbstractTypeArguments& instantiator_type_arguments);
private:
void set_uninstantiated_type_arguments(
const AbstractTypeArguments& value) const;
void set_instantiator_type_arguments(
const AbstractTypeArguments& value) const;
static RawInstantiatedTypeArguments* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(InstantiatedTypeArguments,
AbstractTypeArguments);
friend class Class;
};
class PatchClass : public Object {
public:
RawClass* patched_class() const { return raw_ptr()->patched_class_; }
RawClass* source_class() const { return raw_ptr()->source_class_; }
RawScript* Script() const;
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawPatchClass));
}
static RawPatchClass* New(const Class& patched_class,
const Class& source_class);
private:
void set_patched_class(const Class& value) const;
void set_source_class(const Class& value) const;
static RawPatchClass* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(PatchClass, Object);
friend class Class;
};
class Function : public Object {
public:
RawString* name() const { return raw_ptr()->name_; }
RawString* UserVisibleName() const;
RawString* QualifiedUserVisibleName() const;
virtual RawString* DictionaryName() const { return name(); }
// Build a string of the form 'C<T, R>(T, {b: B, c: C}) => R' representing the
// internal signature of the given function. In this example, T and R are
// type parameters of class C, the owner of the function.
RawString* Signature() const {
const bool instantiate = false;
return BuildSignature(instantiate, kInternalName, TypeArguments::Handle());
}
// Build a string of the form '(A, {b: B, c: C}) => D' representing the
// signature of the given function, where all generic types (e.g. '<T, R>' in
// 'C<T, R>(T, {b: B, c: C}) => R') are instantiated using the given
// instantiator type argument vector of a C instance (e.g. '<A, D>').
RawString* InstantiatedSignatureFrom(
const AbstractTypeArguments& instantiator,
NameVisibility name_visibility) const {
const bool instantiate = true;
return BuildSignature(instantiate, name_visibility, instantiator);
}
// Returns true if the signature of this function is instantiated, i.e. if it
// does not involve generic parameter types or generic result type.
bool HasInstantiatedSignature() const;
RawClass* Owner() const;
RawClass* origin() const;
RawScript* script() const;
RawAbstractType* result_type() const { return raw_ptr()->result_type_; }
void set_result_type(const AbstractType& value) const;
RawAbstractType* ParameterTypeAt(intptr_t index) const;
void SetParameterTypeAt(intptr_t index, const AbstractType& value) const;
RawArray* parameter_types() const { return raw_ptr()->parameter_types_; }
void set_parameter_types(const Array& value) const;
// Parameter names are valid for all valid parameter indices, and are not
// limited to named optional parameters.
RawString* ParameterNameAt(intptr_t index) const;
void SetParameterNameAt(intptr_t index, const String& value) const;
RawArray* parameter_names() const { return raw_ptr()->parameter_names_; }
void set_parameter_names(const Array& value) const;
// Sets function's code and code's function.
void SetCode(const Code& value) const;
// Disables optimized code and switches to unoptimized code.
void SwitchToUnoptimizedCode() const;
// Return the most recently compiled and installed code for this function.
// It is not the only Code object that points to this function.
RawCode* CurrentCode() const { return raw_ptr()->code_; }
RawCode* unoptimized_code() const { return raw_ptr()->unoptimized_code_; }
void set_unoptimized_code(const Code& value) const;
static intptr_t code_offset() { return OFFSET_OF(RawFunction, code_); }
inline bool HasCode() const;
// Returns true if there is at least one debugger breakpoint
// set in this function.
bool HasBreakpoint() const;
RawContextScope* context_scope() const;
void set_context_scope(const ContextScope& value) const;
// Enclosing function of this local function.
RawFunction* parent_function() const;
// Signature class of this closure function or signature function.
RawClass* signature_class() const;
void set_signature_class(const Class& value) const;
RawInstance* implicit_static_closure() const;
void set_implicit_static_closure(const Instance& closure) const;
RawCode* closure_allocation_stub() const;
void set_closure_allocation_stub(const Code& value) const;
void set_extracted_method_closure(const Function& function) const;
RawFunction* extracted_method_closure() const;
bool IsMethodExtractor() const {
return kind() == RawFunction::kMethodExtractor;
}
// Returns true iff an implicit closure function has been created
// for this function.
bool HasImplicitClosureFunction() const {
return implicit_closure_function() != null();
}
// Return the closure function implicitly created for this function.
// If none exists yet, create one and remember it.
RawFunction* ImplicitClosureFunction() const;
// Redirection information for a redirecting factory.
bool IsRedirectingFactory() const;
RawType* RedirectionType() const;
void SetRedirectionType(const Type& type) const;
RawString* RedirectionIdentifier() const;
void SetRedirectionIdentifier(const String& identifier) const;
RawFunction* RedirectionTarget() const;
void SetRedirectionTarget(const Function& target) const;
RawFunction::Kind kind() const {
return KindBits::decode(raw_ptr()->kind_tag_);
}
bool is_static() const { return StaticBit::decode(raw_ptr()->kind_tag_); }
bool is_const() const { return ConstBit::decode(raw_ptr()->kind_tag_); }
bool is_external() const { return ExternalBit::decode(raw_ptr()->kind_tag_); }
bool IsConstructor() const {
return (kind() == RawFunction::kConstructor) && !is_static();
}
bool IsImplicitConstructor() const;
bool IsFactory() const {
return (kind() == RawFunction::kConstructor) && is_static();
}
bool IsDynamicFunction() const {
if (is_static() || is_abstract()) {
return false;
}
switch (kind()) {
case RawFunction::kRegularFunction:
case RawFunction::kGetterFunction:
case RawFunction::kSetterFunction:
case RawFunction::kImplicitGetter:
case RawFunction::kImplicitSetter:
case RawFunction::kMethodExtractor:
return true;
case RawFunction::kClosureFunction:
case RawFunction::kConstructor:
case RawFunction::kConstImplicitGetter:
return false;
default:
UNREACHABLE();
return false;
}
}
bool IsStaticFunction() const {
if (!is_static()) {
return false;
}
switch (kind()) {
case RawFunction::kRegularFunction:
case RawFunction::kGetterFunction:
case RawFunction::kSetterFunction:
case RawFunction::kImplicitGetter:
case RawFunction::kImplicitSetter:
case RawFunction::kConstImplicitGetter:
return true;
case RawFunction::kClosureFunction:
case RawFunction::kConstructor:
return false;
default:
UNREACHABLE();
return false;
}
}
bool IsInFactoryScope() const;
intptr_t token_pos() const { return raw_ptr()->token_pos_; }
intptr_t end_token_pos() const { return raw_ptr()->end_token_pos_; }
void set_end_token_pos(intptr_t value) const {
raw_ptr()->end_token_pos_ = value;
}
intptr_t num_fixed_parameters() const {
return raw_ptr()->num_fixed_parameters_;
}
void set_num_fixed_parameters(intptr_t value) const;
bool HasOptionalParameters() const {
return raw_ptr()->num_optional_parameters_ != 0;
}
bool HasOptionalPositionalParameters() const {
return raw_ptr()->num_optional_parameters_ > 0;
}
bool HasOptionalNamedParameters() const {
return raw_ptr()->num_optional_parameters_ < 0;
}
intptr_t NumOptionalParameters() const {
const intptr_t num_opt_params = raw_ptr()->num_optional_parameters_;
return (num_opt_params >= 0) ? num_opt_params : -num_opt_params;
}
void SetNumOptionalParameters(intptr_t num_optional_parameters,
bool are_optional_positional) const;
intptr_t NumOptionalPositionalParameters() const {
const intptr_t num_opt_params = raw_ptr()->num_optional_parameters_;
return (num_opt_params > 0) ? num_opt_params : 0;
}
intptr_t NumOptionalNamedParameters() const {
const intptr_t num_opt_params = raw_ptr()->num_optional_parameters_;
return (num_opt_params < 0) ? -num_opt_params : 0;
}
intptr_t NumParameters() const;
intptr_t NumImplicitParameters() const;
static intptr_t usage_counter_offset() {
return OFFSET_OF(RawFunction, usage_counter_);
}
intptr_t usage_counter() const {
return raw_ptr()->usage_counter_;
}
void set_usage_counter(intptr_t value) const {
raw_ptr()->usage_counter_ = value;
}
int16_t deoptimization_counter() const {
return raw_ptr()->deoptimization_counter_;
}
void set_deoptimization_counter(int16_t value) const {
raw_ptr()->deoptimization_counter_ = value;
}
static const intptr_t kMaxInstructionCount = (1 << 16) - 1;
intptr_t optimized_instruction_count() const {
return raw_ptr()->optimized_instruction_count_;
}
void set_optimized_instruction_count(intptr_t value) const {
ASSERT(value >= 0);
if (value > kMaxInstructionCount) {
value = kMaxInstructionCount;
}
raw_ptr()->optimized_instruction_count_ = static_cast<uint16_t>(value);
}
intptr_t optimized_call_site_count() const {
return raw_ptr()->optimized_call_site_count_;
}
void set_optimized_call_site_count(intptr_t value) const {
ASSERT(value >= 0);
if (value > kMaxInstructionCount) {
value = kMaxInstructionCount;
}
raw_ptr()->optimized_call_site_count_ = static_cast<uint16_t>(value);
}
bool is_optimizable() const;
void set_is_optimizable(bool value) const;
bool has_finally() const {
return HasFinallyBit::decode(raw_ptr()->kind_tag_);
}
void set_has_finally(bool value) const;
bool is_native() const { return NativeBit::decode(raw_ptr()->kind_tag_); }
void set_is_native(bool value) const;
bool is_abstract() const { return AbstractBit::decode(raw_ptr()->kind_tag_); }
void set_is_abstract(bool value) const;
bool IsInlineable() const;
void set_is_inlinable(bool value) const;
bool is_visible() const {
return VisibleBit::decode(raw_ptr()->kind_tag_);
}
void set_is_visible(bool value) const;
bool is_intrinsic() const {
return IntrinsicBit::decode(raw_ptr()->kind_tag_);
}
void set_is_intrinsic(bool value) const;
bool HasOptimizedCode() const;
// Returns true if the argument counts are valid for calling this function.
// Otherwise, it returns false and the reason (if error_message is not NULL).
bool AreValidArgumentCounts(int num_arguments,
int num_named_arguments,
String* error_message) const;
// Returns true if the total argument count and the names of optional
// arguments are valid for calling this function.
// Otherwise, it returns false and the reason (if error_message is not NULL).
bool AreValidArguments(int num_arguments,
const Array& argument_names,
String* error_message) const;
// Fully qualified name uniquely identifying the function under gdb and during
// ast printing. The special ':' character, if present, is replaced by '_'.
const char* ToFullyQualifiedCString() const;
// Returns true if this function has parameters that are compatible with the
// parameters of the other function in order for this function to override the
// other function. Parameter types are ignored.
bool HasCompatibleParametersWith(const Function& other) const;
// Returns true if the type of this function is a subtype of the type of
// the other function.
bool IsSubtypeOf(const AbstractTypeArguments& type_arguments,
const Function& other,
const AbstractTypeArguments& other_type_arguments,
Error* malformed_error) const {
return TypeTest(kIsSubtypeOf,
type_arguments,
other,
other_type_arguments,
malformed_error);
}
// Returns true if the type of this function is more specific than the type of
// the other function.
bool IsMoreSpecificThan(const AbstractTypeArguments& type_arguments,
const Function& other,
const AbstractTypeArguments& other_type_arguments,
Error* malformed_error) const {
return TypeTest(kIsMoreSpecificThan,
type_arguments,
other,
other_type_arguments,
malformed_error);
}
// Returns true if this function represents an explicit getter function.
bool IsGetterFunction() const {
return kind() == RawFunction::kGetterFunction;
}
// Returns true if this function represents an implicit getter function.
bool IsImplicitGetterFunction() const {
return kind() == RawFunction::kImplicitGetter;
}
// Returns true if this function represents an explicit setter function.
bool IsSetterFunction() const {
return kind() == RawFunction::kSetterFunction;
}
// Returns true if this function represents a (possibly implicit) closure
// function.
bool IsClosureFunction() const {
return kind() == RawFunction::kClosureFunction;
}
// Returns true if this function represents an implicit closure function.
bool IsImplicitClosureFunction() const;
// Returns true if this function represents a non implicit closure function.
bool IsNonImplicitClosureFunction() const {
return IsClosureFunction() && !IsImplicitClosureFunction();
}
// Returns true if this function represents an implicit static closure
// function.
bool IsImplicitStaticClosureFunction() const {
return is_static() && IsImplicitClosureFunction();
}
// Returns true if this function represents an implicit instance closure
// function.
bool IsImplicitInstanceClosureFunction() const {
return !is_static() && IsImplicitClosureFunction();
}
// Returns true if this function represents a local function.
bool IsLocalFunction() const {
return parent_function() != Function::null();
}
// Returns true if this function represents a signature function without code.
bool IsSignatureFunction() const {
return kind() == RawFunction::kSignatureFunction;
}
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawFunction));
}
static RawFunction* New(const String& name,
RawFunction::Kind kind,
bool is_static,
bool is_const,
bool is_abstract,
bool is_external,
const Object& owner,
intptr_t token_pos);
// Allocates a new Function object representing a closure function, as well as
// a new associated Class object representing the signature class of the
// function.
// The function and the class share the same given name.
static RawFunction* NewClosureFunction(const String& name,
const Function& parent,
intptr_t token_pos);
// Allocate new function object, clone values from this function. The
// owner of the clone is new_owner.
RawFunction* Clone(const Class& new_owner) const;
// Slow function, use in asserts to track changes in important library
// functions.
int32_t SourceFingerprint() const;
// Return false and report an error if the fingerprint does not match.
bool CheckSourceFingerprint(int32_t fp) const;
static const int kCtorPhaseInit = 1 << 0;
static const int kCtorPhaseBody = 1 << 1;
static const int kCtorPhaseAll = (kCtorPhaseInit | kCtorPhaseBody);
private:
enum KindTagBits {
kStaticBit = 0,
kConstBit = 1,
kOptimizableBit = 2,
kInlinableBit = 3,
kHasFinallyBit = 4,
kNativeBit = 5,
kAbstractBit = 6,
kExternalBit = 7,
kVisibleBit = 8,
kIntrinsicBit = 9,
kKindTagBit = 10,
kKindTagSize = 4,
};
class StaticBit : public BitField<bool, kStaticBit, 1> {};
class ConstBit : public BitField<bool, kConstBit, 1> {};
class OptimizableBit : public BitField<bool, kOptimizableBit, 1> {};
class InlinableBit : public BitField<bool, kInlinableBit, 1> {};
class HasFinallyBit : public BitField<bool, kHasFinallyBit, 1> {};
class NativeBit : public BitField<bool, kNativeBit, 1> {};
class AbstractBit : public BitField<bool, kAbstractBit, 1> {};
class ExternalBit : public BitField<bool, kExternalBit, 1> {};
class VisibleBit : public BitField<bool, kVisibleBit, 1> {};
class IntrinsicBit : public BitField<bool, kIntrinsicBit, 1> {};
class KindBits :
public BitField<RawFunction::Kind, kKindTagBit, kKindTagSize> {}; // NOLINT
void set_name(const String& value) const;
void set_kind(RawFunction::Kind value) const;
void set_is_static(bool value) const;
void set_is_const(bool value) const;
void set_is_external(bool value) const;
void set_parent_function(const Function& value) const;
void set_owner(const Object& value) const;
void set_token_pos(intptr_t value) const;
RawFunction* implicit_closure_function() const;
void set_implicit_closure_function(const Function& value) const;
void set_num_optional_parameters(intptr_t value) const; // Encoded value.
void set_kind_tag(intptr_t value) const;
void set_data(const Object& value) const;
static RawFunction* New();
RawString* BuildSignature(bool instantiate,
NameVisibility name_visibility,
const AbstractTypeArguments& instantiator) const;
// Check the subtype or 'more specific' relationship.
bool TypeTest(TypeTestKind test_kind,
const AbstractTypeArguments& type_arguments,
const Function& other,
const AbstractTypeArguments& other_type_arguments,
Error* malformed_error) const;
// Checks the type of the formal parameter at the given position for
// subtyping or 'more specific' relationship between the type of this function
// and the type of the other function.
bool TestParameterType(TypeTestKind test_kind,
intptr_t parameter_position,
intptr_t other_parameter_position,
const AbstractTypeArguments& type_arguments,
const Function& other,
const AbstractTypeArguments& other_type_arguments,
Error* malformed_error) const;
FINAL_HEAP_OBJECT_IMPLEMENTATION(Function, Object);
friend class Class;
};
class ClosureData: public Object {
public:
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawClosureData));
}
private:
RawContextScope* context_scope() const { return raw_ptr()->context_scope_; }
void set_context_scope(const ContextScope& value) const;
// Enclosing function of this local function.
RawFunction* parent_function() const { return raw_ptr()->parent_function_; }
void set_parent_function(const Function& value) const;
// Signature class of this closure function or signature function.
RawClass* signature_class() const { return raw_ptr()->signature_class_; }
void set_signature_class(const Class& value) const;
RawInstance* implicit_static_closure() const {
return raw_ptr()->closure_;
}
void set_implicit_static_closure(const Instance& closure) const;
RawCode* closure_allocation_stub() const {
return raw_ptr()->closure_allocation_stub_;
}
void set_closure_allocation_stub(const Code& value) const;
static RawClosureData* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(ClosureData, Object);
friend class Class;
friend class Function;
friend class HeapProfiler;
};
class RedirectionData: public Object {
public:
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawRedirectionData));
}
private:
// The type specifies the class and type arguments of the target constructor.
RawType* type() const { return raw_ptr()->type_; }
void set_type(const Type& value) const;
// The optional identifier specifies a named constructor.
RawString* identifier() const { return raw_ptr()->identifier_; }
void set_identifier(const String& value) const;
// The resolved constructor or factory target of the redirection.
RawFunction* target() const { return raw_ptr()->target_; }
void set_target(const Function& value) const;
static RawRedirectionData* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(RedirectionData, Object);
friend class Class;
friend class Function;
friend class HeapProfiler;
};
class Field : public Object {
public:
RawString* name() const { return raw_ptr()->name_; }
RawString* UserVisibleName() const;
virtual RawString* DictionaryName() const { return name(); }
bool is_static() const { return StaticBit::decode(raw_ptr()->kind_bits_); }
bool is_final() const { return FinalBit::decode(raw_ptr()->kind_bits_); }
bool is_const() const { return ConstBit::decode(raw_ptr()->kind_bits_); }
inline intptr_t Offset() const;
inline void SetOffset(intptr_t value_in_bytes) const;
RawInstance* value() const;
void set_value(const Instance& value) const;
RawClass* owner() const;
RawClass* origin() const; // Either mixin class, or same as owner().
RawAbstractType* type() const { return raw_ptr()->type_; }
void set_type(const AbstractType& value) const;
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawField));
}
static RawField* New(const String& name,
bool is_static,
bool is_final,
bool is_const,
const Class& owner,
intptr_t token_pos);
// Allocate new field object, clone values from this field. The
// owner of the clone is new_owner.
RawField* Clone(const Class& new_owner) const;
static intptr_t value_offset() { return OFFSET_OF(RawField, value_); }
intptr_t token_pos() const { return raw_ptr()->token_pos_; }
bool has_initializer() const {
return HasInitializerBit::decode(raw_ptr()->kind_bits_);
}
void set_has_initializer(bool has_initializer) const {
set_kind_bits(HasInitializerBit::update(has_initializer,
raw_ptr()->kind_bits_));
}
// Return class id that any non-null value read from this field is guaranteed
// to have or kDynamicCid if such class id is not known.
// Stores to this field must update this information hence the name.
intptr_t guarded_cid() const { return raw_ptr()->guarded_cid_; }
void set_guarded_cid(intptr_t cid) const {
raw_ptr()->guarded_cid_ = cid;
}
static intptr_t guarded_cid_offset() {
return OFFSET_OF(RawField, guarded_cid_);
}
// Returns false if any value read from this field is guaranteed to be
// not null.
// Internally we is_nullable_ field contains either kNullCid (nullable) or
// any other value (non-nullable) instead of boolean. This is done to simplify
// guarding sequence in the generated code.
bool is_nullable() const {
return raw_ptr()->is_nullable_ == kNullCid;
}
void set_is_nullable(bool val) const {
raw_ptr()->is_nullable_ = val ? kNullCid : kIllegalCid;
}
static intptr_t is_nullable_offset() {
return OFFSET_OF(RawField, is_nullable_);
}
// Update guarded class id and nullability of the field to reflect assignment
// of the value with the given class id to this field.
void UpdateCid(intptr_t cid) const;
// Return the list of optimized code objects that were optimized under
// assumptions about guarded class id and nullability of this field.
// These code objects must be deoptimized when field's properties change.
// Code objects are held weakly via an indirection through WeakProperty.
RawArray* dependent_code() const;
void set_dependent_code(const Array& array) const;
// Add the given code object to the list of dependent ones.
void RegisterDependentCode(const Code& code) const;
// Deoptimize all dependent code objects.
void DeoptimizeDependentCode() const;
// Constructs getter and setter names for fields and vice versa.
static RawString* GetterName(const String& field_name);
static RawString* GetterSymbol(const String& field_name);
static RawString* SetterName(const String& field_name);
static RawString* SetterSymbol(const String& field_name);
static RawString* NameFromGetter(const String& getter_name);
static RawString* NameFromSetter(const String& setter_name);
static bool IsGetterName(const String& function_name);
static bool IsSetterName(const String& function_name);
private:
enum {
kConstBit = 1,
kStaticBit,
kFinalBit,
kHasInitializerBit,
};
class ConstBit : public BitField<bool, kConstBit, 1> {};
class StaticBit : public BitField<bool, kStaticBit, 1> {};
class FinalBit : public BitField<bool, kFinalBit, 1> {};
class HasInitializerBit : public BitField<bool, kHasInitializerBit, 1> {};
void set_name(const String& value) const;
void set_is_static(bool is_static) const {
set_kind_bits(StaticBit::update(is_static, raw_ptr()->kind_bits_));
}
void set_is_final(bool is_final) const {
set_kind_bits(FinalBit::update(is_final, raw_ptr()->kind_bits_));
}
void set_is_const(bool value) const {
set_kind_bits(ConstBit::update(value, raw_ptr()->kind_bits_));
}
void set_owner(const Object& value) const {
StorePointer(&raw_ptr()->owner_, value.raw());
}
void set_token_pos(intptr_t token_pos) const {
raw_ptr()->token_pos_ = token_pos;
}
void set_kind_bits(intptr_t value) const {
raw_ptr()->kind_bits_ = static_cast<uint8_t>(value);
}
static RawField* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(Field, Object);
friend class Class;
friend class HeapProfiler;
};
class LiteralToken : public Object {
public:
Token::Kind kind() const { return raw_ptr()->kind_; }
RawString* literal() const { return raw_ptr()->literal_; }
RawObject* value() const { return raw_ptr()->value_; }
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawLiteralToken));
}
static RawLiteralToken* New();
static RawLiteralToken* New(Token::Kind kind, const String& literal);
private:
void set_kind(Token::Kind kind) const { raw_ptr()->kind_ = kind; }
void set_literal(const String& literal) const;
void set_value(const Object& value) const;
FINAL_HEAP_OBJECT_IMPLEMENTATION(LiteralToken, Object);
friend class Class;
};
class TokenStream : public Object {
public:
RawArray* TokenObjects() const;
void SetTokenObjects(const Array& value) const;
RawExternalTypedData* GetStream() const;
void SetStream(const ExternalTypedData& stream) const;
RawString* GenerateSource() const;
intptr_t ComputeSourcePosition(intptr_t tok_pos) const;
intptr_t ComputeTokenPosition(intptr_t src_pos) const;
RawString* PrivateKey() const;
static const intptr_t kBytesPerElement = 1;
static const intptr_t kMaxElements = kSmiMax / kBytesPerElement;
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawTokenStream));
}
static RawTokenStream* New(intptr_t length);
static RawTokenStream* New(const Scanner::GrowableTokenStream& tokens,
const String& private_key);
// The class Iterator encapsulates iteration over the tokens
// in a TokenStream object.
class Iterator : ValueObject {
public:
Iterator(const TokenStream& tokens, intptr_t token_pos);
void SetStream(const TokenStream& tokens, intptr_t token_pos);
bool IsValid() const;
inline Token::Kind CurrentTokenKind() const {
return cur_token_kind_;
}
Token::Kind LookaheadTokenKind(intptr_t num_tokens);
intptr_t CurrentPosition() const;
void SetCurrentPosition(intptr_t value);
void Advance();
RawObject* CurrentToken() const;
RawString* CurrentLiteral() const;
RawString* MakeLiteralToken(const Object& obj) const;
private:
// Read token from the token stream (could be a simple token or an index
// into the token objects array for IDENT or literal tokens).
intptr_t ReadToken() {
int64_t value = stream_.ReadUnsigned();
ASSERT((value >= 0) && (value <= kIntptrMax));
return static_cast<intptr_t>(value);
}
TokenStream& tokens_;
ExternalTypedData& data_;
ReadStream stream_;
Array& token_objects_;
Object& obj_;
intptr_t cur_token_pos_;
Token::Kind cur_token_kind_;
intptr_t cur_token_obj_index_;
};
private:
void SetPrivateKey(const String& value) const;
static RawTokenStream* New();
static void DataFinalizer(Dart_Handle handle, void *peer);
FINAL_HEAP_OBJECT_IMPLEMENTATION(TokenStream, Object);
friend class Class;
};
class Script : public Object {
public:
RawString* url() const { return raw_ptr()->url_; }
bool HasSource() const;
RawString* Source() const;
RawString* GenerateSource() const; // Generates source code from Tokenstream.
RawScript::Kind kind() const {
return static_cast<RawScript::Kind>(raw_ptr()->kind_);
}
intptr_t line_offset() const { return raw_ptr()->line_offset_; }
intptr_t col_offset() const { return raw_ptr()->col_offset_; }
RawTokenStream* tokens() const { return raw_ptr()->tokens_; }
void Tokenize(const String& private_key) const;
RawString* GetLine(intptr_t line_number) const;
RawString* GetSnippet(intptr_t from_line,
intptr_t from_column,
intptr_t to_line,
intptr_t to_column) const;
void SetLocationOffset(intptr_t line_offset, intptr_t col_offset) const;
void GetTokenLocation(intptr_t token_pos,
intptr_t* line, intptr_t* column) const;
void TokenRangeAtLine(intptr_t line_number,
intptr_t* first_token_index,
intptr_t* last_token_index) const;
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawScript));
}
static RawScript* New(const String& url,
const String& source,
RawScript::Kind kind);
private:
void set_url(const String& value) const;
void set_source(const String& value) const;
void set_kind(RawScript::Kind value) const;
void set_tokens(const TokenStream& value) const;
static RawScript* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(Script, Object);
friend class Class;
};
class DictionaryIterator : public ValueObject {
public:
explicit DictionaryIterator(const Library& library);
bool HasNext() const { return next_ix_ < size_; }
// Returns next non-null raw object.
RawObject* GetNext();
private:
void MoveToNextObject();
const Array& array_;
const int size_; // Number of elements to iterate over.
int next_ix_; // Index of next element.
friend class ClassDictionaryIterator;
friend class LibraryPrefixIterator;
DISALLOW_COPY_AND_ASSIGN(DictionaryIterator);
};
class ClassDictionaryIterator : public DictionaryIterator {
public:
explicit ClassDictionaryIterator(const Library& library);
// Returns a non-null raw class.
RawClass* GetNextClass();
private:
void MoveToNextClass();
DISALLOW_COPY_AND_ASSIGN(ClassDictionaryIterator);
};
class LibraryPrefixIterator : public DictionaryIterator {
public:
explicit LibraryPrefixIterator(const Library& library);
RawLibraryPrefix* GetNext();
private:
void Advance();
DISALLOW_COPY_AND_ASSIGN(LibraryPrefixIterator);
};
class Library : public Object {
public:
RawString* name() const { return raw_ptr()->name_; }
void SetName(const String& name) const;
RawString* url() const { return raw_ptr()->url_; }
RawString* private_key() const { return raw_ptr()->private_key_; }
bool LoadNotStarted() const {
return raw_ptr()->load_state_ == RawLibrary::kAllocated;
}
bool LoadInProgress() const {
return raw_ptr()->load_state_ == RawLibrary::kLoadInProgress;
}
void SetLoadInProgress() const;
bool Loaded() const { return raw_ptr()->load_state_ == RawLibrary::kLoaded; }
void SetLoaded() const;
bool LoadError() const {
return raw_ptr()->load_state_ == RawLibrary::kLoadError;
}
void SetLoadError() const;
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawLibrary));
}
static RawLibrary* New(const String& url);
// Library scope name dictionary.
//
// TODO(turnidge): The Lookup functions are not consistent in how
// they deal with private names. Go through and make them a bit
// more regular.
void AddClass(const Class& cls) const;
void AddObject(const Object& obj, const String& name) const;
void ReplaceObject(const Object& obj, const String& name) const;
RawObject* LookupExport(const String& name) const;
RawObject* LookupObject(const String& name) const;
RawClass* LookupClass(const String& name) const;
RawClass* LookupClassAllowPrivate(const String& name) const;
RawObject* LookupLocalObject(const String& name) const;
RawClass* LookupLocalClass(const String& name) const;
RawField* LookupFieldAllowPrivate(const String& name) const;
RawField* LookupLocalField(const String& name) const;
RawFunction* LookupFunctionAllowPrivate(const String& name) const;
RawFunction* LookupLocalFunction(const String& name) const;
RawLibraryPrefix* LookupLocalLibraryPrefix(const String& name) const;
RawScript* LookupScript(const String& url) const;
RawArray* LoadedScripts() const;
void AddAnonymousClass(const Class& cls) const;
void AddExport(const Namespace& ns) const;
// Library imports.
void AddImport(const Namespace& ns) const;
intptr_t num_imports() const { return raw_ptr()->num_imports_; }
RawNamespace* ImportAt(intptr_t index) const;
RawLibrary* ImportLibraryAt(intptr_t index) const;
bool ImportsCorelib() const;
RawFunction* LookupFunctionInSource(const String& script_url,
intptr_t line_number) const;
RawFunction* LookupFunctionInScript(const Script& script,
intptr_t token_pos) const;
// Resolving native methods for script loaded in the library.
Dart_NativeEntryResolver native_entry_resolver() const {
return raw_ptr()->native_entry_resolver_;
}
void set_native_entry_resolver(Dart_NativeEntryResolver value) const {
raw_ptr()->native_entry_resolver_ = value;
}
RawError* Patch(const Script& script) const;
RawString* PrivateName(const String& name) const;
intptr_t index() const { return raw_ptr()->index_; }
void set_index(intptr_t value) const {
raw_ptr()->index_ = value;
}
void Register() const;
bool IsDebuggable() const {
return raw_ptr()->debuggable_;
}
void set_debuggable(bool value) const {
raw_ptr()->debuggable_ = value;
}
bool IsCoreLibrary() const {
return raw() == CoreLibrary();
}
static RawLibrary* LookupLibrary(const String& url);
static RawLibrary* GetLibrary(intptr_t index);
static bool IsKeyUsed(intptr_t key);
static void InitCoreLibrary(Isolate* isolate);
static void InitNativeWrappersLibrary(Isolate* isolate);
static RawLibrary* AsyncLibrary();
static RawLibrary* CoreLibrary();
static RawLibrary* CollectionLibrary();
static RawLibrary* CollectionDevLibrary();
static RawLibrary* CryptoLibrary();
static RawLibrary* IsolateLibrary();
static RawLibrary* JsonLibrary();
static RawLibrary* MathLibrary();
static RawLibrary* MirrorsLibrary();
static RawLibrary* NativeWrappersLibrary();
static RawLibrary* TypedDataLibrary();
static RawLibrary* UriLibrary();
static RawLibrary* UtfLibrary();
// Eagerly compile all classes and functions in the library.
static RawError* CompileAll();
// Checks function fingerprints. Prints mismatches and aborts if
// mismatch found.
static void CheckFunctionFingerprints();
private:
static const int kInitialImportsCapacity = 4;
static const int kImportsCapacityIncrement = 8;
static RawLibrary* New();
void set_num_imports(intptr_t value) const {
raw_ptr()->num_imports_ = value;
}
RawArray* imports() const { return raw_ptr()->imports_; }
RawArray* exports() const { return raw_ptr()->exports_; }
bool HasExports() const;
RawArray* loaded_scripts() const { return raw_ptr()->loaded_scripts_; }
RawArray* dictionary() const { return raw_ptr()->dictionary_; }
void InitClassDictionary() const;
void InitImportList() const;
void GrowDictionary(const Array& dict, intptr_t dict_size) const;
static RawLibrary* NewLibraryHelper(const String& url,
bool import_core_lib);
RawObject* LookupEntry(const String& name, intptr_t *index) const;
FINAL_HEAP_OBJECT_IMPLEMENTATION(Library, Object);
friend class Object;
friend class Class;
friend class Debugger;
friend class DictionaryIterator;
friend class Isolate;
friend class Namespace;
};
class LibraryPrefix : public Object {
public:
RawString* name() const { return raw_ptr()->name_; }
virtual RawString* DictionaryName() const { return name(); }
RawArray* imports() const { return raw_ptr()->imports_; }
intptr_t num_imports() const { return raw_ptr()->num_imports_; }
bool ContainsLibrary(const Library& library) const;
RawLibrary* GetLibrary(int index) const;
void AddImport(const Namespace& import) const;
RawClass* LookupLocalClass(const String& class_name) const;
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawLibraryPrefix));
}
static RawLibraryPrefix* New(const String& name, const Namespace& import);
private:
static const int kInitialSize = 2;
static const int kIncrementSize = 2;
void set_name(const String& value) const;
void set_imports(const Array& value) const;
void set_num_imports(intptr_t value) const;
static RawLibraryPrefix* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(LibraryPrefix, Object);
friend class Class;
friend class Isolate;
};
class Namespace : public Object {
public:
RawLibrary* library() const { return raw_ptr()->library_; }
RawArray* show_names() const { return raw_ptr()->show_names_; }
RawArray* hide_names() const { return raw_ptr()->hide_names_; }
static intptr_t InstanceSize() {
return RoundedAllocationSize(sizeof(RawNamespace));
}
bool HidesName(const String& name) const;
RawObject* Lookup(const String& name) const;
static RawNamespace* New(const Library& library,
const Array& show_names,
const Array& hide_names);
private:
static RawNamespace* New();
FINAL_HEAP_OBJECT_IMPLEMENTATION(Namespace, Object);
friend class Class;
};
class Instructions : public Object {
public:
intptr_t size() const { return raw_ptr()->size_; } // Excludes HeaderSize().
RawCode* code() const { return raw_ptr()->code_; }
RawArray* object_pool() const { return raw_ptr()->object_pool_; }
static intptr_t object_pool_offset() {
return OFFSET_OF(RawInstructions, object_pool_);
}
uword EntryPoint() const {
return reinterpret_cast<uword>(raw_ptr()) + HeaderSize();
}
static const intptr_t kMaxElements = (kIntptrMax -
(sizeof(RawInstructions) +
sizeof(RawObject) +
(2 * OS::kMaxPreferredCodeAlignment)));
static intptr_t InstanceSize() {
ASSERT(sizeof(RawInstructions) == OFFSET_OF(RawInstructions, data_));
return 0;
}
static intptr_t InstanceSize(intptr_t size) {
intptr_t instructions_size = Utils::RoundUp(size,
OS::PreferredCodeAlignment());
intptr_t result = instructions_size + HeaderSize();
ASSERT(result % OS::PreferredCodeAlignment() == 0);
return result;
}
static intptr_t HeaderSize() {
intptr_t alignment = OS::PreferredCodeAlignment();
return Utils::RoundUp(sizeof(RawInstructions), alignment);
}
static RawInstructions* FromEntryPoint(uword entry_point) {
return reinterpret_cast<RawInstructions*>(
entry_point - HeaderSize() + kHeapObjectTag);
}
private:
void set_size(intptr_t size) const {
raw_ptr()->size_ = size;
}
void set_code(RawCode* code) const {
raw_ptr()->code_ = code;
}
void set_object_pool(RawArray* object_pool) const {
StorePointer(&raw_ptr()->object_pool_, object_pool);
}
// New is a private method as RawInstruction and RawCode objects should
// only be created using the Code::FinalizeCode method. This method creates
// the RawInstruction and RawCode objects, sets up the pointer offsets
// and links the two in a GC safe manner.
static RawInstructions* New(intptr_t size);
FINAL_HEAP_OBJECT_IMPLEMENTATION(Instructions, Object);
friend class Class;
friend class Code;
};
class LocalVarDescriptors : public Object {
public:
intptr_t Length() const;
RawString* GetName(intptr_t var_index) const;
void SetVar(intptr_t var_index,
const String& name,
RawLocalVarDescriptors::VarInfo* info) const;
void GetInfo(intptr_t var_index, RawLocalVarDescriptors::VarInfo* info) const;
static const intptr_t kBytesPerElement =
sizeof(RawLocalVarDescriptors::VarInfo);
static const intptr_t kMaxElements = kSmiMax / kBytesPerElement;
static intptr_t InstanceSize() {
ASSERT(sizeof(RawLocalVarDescriptors) ==
OFFSET_OF(RawLocalVarDescriptors, data_));
return 0;
}
static intptr_t InstanceSize(intptr_t len) {
ASSERT(0 <= len && len <= kMaxElements);
return RoundedAllocationSize(
sizeof(RawLocalVarDescriptors) + (len * kBytesPerElement));
}
static RawLocalVarDescriptors* New(intptr_t num_variables);
private:
FINAL_HEAP_OBJECT_IMPLEMENTATION(LocalVarDescriptors, Object);
friend class Class;
};
class PcDescriptors : public Object {
private:
// Describes the layout of PC descriptor data.
enum {
kPcEntry = 0, // PC value of the descriptor, unique.
kKindEntry = 1,
kDeoptIdEntry = 2, // Deopt id.
kTokenPosEntry = 3, // Token position in source.
kTryIndexEntry = 4, // Try block index.
// We would potentially be adding other objects here like
// pointer maps for optimized functions, local variables information etc.
kNumberOfEntries = 5,
};
public:
enum Kind {
kDeopt, // Deoptimization continuation point.
kEntryPatch, // Location where to patch entry.
kPatchCode, // Buffer for patching code entry.
kLazyDeoptJump, // Lazy deoptimization trampoline.
kIcCall, // IC call.
kFuncCall, // Call to known target, e.g. static call, closure call.
kReturn, // Return from function.
kOther
};
intptr_t Length() const;
uword PC(intptr_t index) const;
PcDescriptors::Kind DescriptorKind(intptr_t index) const;
const char* KindAsStr(intptr_t index) const;
intptr_t DeoptId(intptr_t index) const;
intptr_t TokenPos(intptr_t index) const;
intptr_t TryIndex(intptr_t index) const;
void AddDescriptor(intptr_t index,
uword pc,
PcDescriptors::Kind kind,
intptr_t deopt_id,
intptr_t token_pos, // Or deopt reason.
intptr_t try_index) const { // Or deopt index.
SetPC(index, pc);
SetKind(index, kind);
SetDeoptId(index, deopt_id);
SetTokenPos(index, token_pos);
SetTryIndex(index, try_index);
}
static const intptr_t kBytesPerElement = (kNumberOfEntries * kWordSize);
static const intptr_t kMaxElements = kSmiMax / kBytesPerElement;
static intptr_t InstanceSize() {
ASSERT(sizeof(RawPcDescriptors) == OFFSET_OF(RawPcDescriptors, data_));
return 0;
}
static intptr_t InstanceSize(intptr_t len) {
ASSERT(0 <= len && len <= kMaxElements);
return RoundedAllocationSize(
sizeof(RawPcDescriptors) + (len * kBytesPerElement));
}
static RawPcDescriptors* New(intptr_t num_descriptors);
// Returns 0 if not found.
uword GetPcForKind(Kind kind) const;
// Verify (assert) assumptions about pc descriptors in debug mode.
void Verify(const Function& function) const;
static void PrintHeaderString();
// We would have a VisitPointers function here to traverse the
// pc descriptors table to visit objects if any in the table.
private:
void SetPC(intptr_t index, uword value) const;
void SetKind(intptr_t index, PcDescriptors::Kind kind) const;
void SetDeoptId(intptr_t index, intptr_t value) const;
void SetTokenPos(intptr_t index, intptr_t value) const;
void SetTryIndex(intptr_t index, intptr_t value) const;
void SetLength(intptr_t value) const;
intptr_t* EntryAddr(intptr_t index, intptr_t entry_offset) const {
ASSERT((index >=0) && (index < Length()));
intptr_t data_index = (index * kNumberOfEntries) + entry_offset;
return &raw_ptr()->data_[data_index];
}
RawSmi** SmiAddr(intptr_t index, intptr_t entry_offset) const {
return reinterpret_cast<RawSmi**>(EntryAddr(index, entry_offset));
}
FINAL_HEAP_OBJECT_IMPLEMENTATION(PcDescriptors, Object);
friend class Class;
};
class Stackmap : public Object {
public:
static const intptr_t kNoMaximum = -1;
static const intptr_t kNoMinimum = -1;
bool IsObject(intptr_t index) const {
ASSERT(InRange(index));
return GetBit(index);
}
RawCode* Code() const { return raw_ptr()->code_; }
void SetCode(const dart::Code& code) const;
intptr_t Length() const { return raw_ptr()->length_; }
uword PC() const { return raw_ptr()->pc_; }
void SetPC(uword value) const { raw_ptr()->pc_ = value; }
intptr_t RegisterBitCount() const { return raw_ptr()->register_bit_count_; }
void SetRegisterBitCount(intptr_t register_bit_count) const {
raw_ptr()->register_bit_count_ = register_bit_count;
}
static const intptr_t kMaxLengthInBytes = kSmiMax;
static intptr_t InstanceSize() {
ASSERT(sizeof(RawStackmap) == OFFSET_OF(RawStackmap, data_));
return 0;
}
static intptr_t InstanceSize(intptr_t length) {
ASSERT(length >= 0);
// The stackmap payload is in an array of bytes.
intptr_t payload_size =
Utils::RoundUp(length, kBitsPerByte) / kBitsPerByte;
return RoundedAllocationSize(sizeof(RawStackmap) + payload_size);
}
static RawStackmap* New(intptr_t pc_offset,
BitmapBuilder* bmap,
intptr_t register_bit_count);
private:
void SetLength(intptr_t length) const { raw_ptr()->length_ = length; }
bool InRange(intptr_t index) const { return index < Length(); }
bool GetBit(intptr_t bit_index) const;
void SetBit(intptr_t bit_index, bool value) const;
FINAL_HEAP_OBJECT_IMPLEMENTATION(Stackmap, Object);
friend class BitmapBuilder;
friend class Class;
};
class ExceptionHandlers : public Object {
public:
intptr_t Length() const;
void GetHandlerInfo(intptr_t try_index,
RawExceptionHandlers::HandlerInfo* info) const;
intptr_t HandlerPC(intptr_t try_index) const;
intptr_t OuterTryIndex(intptr_t try_index) const;
void SetHandlerInfo(intptr_t try_index,
intptr_t outer_try_index,
intptr_t handler_pc) const;
RawArray* GetHandledTypes(intptr_t try_index) const;
void SetHandledTypes(intptr_t try_index, const Array& handled_types) const;
static intptr_t InstanceSize() {
ASSERT(sizeof(RawExceptionHandlers) == OFFSET_OF(RawExceptionHandlers,
data_));
return 0;
}
static intptr_t InstanceSize(intptr_t len) {
return RoundedAllocationSize(
sizeof(RawExceptionHandlers) +
(len * sizeof(RawExceptionHandlers::HandlerInfo)));
}
static RawExceptionHandlers* New(intptr_t num_handlers);
// We would have a VisitPointers function here to traverse the
// exception handler table to visit objects if any in the table.
private:
// Pick somewhat arbitrary maximum number of exception handlers
// for a function. This value is used to catch potentially
// malicious code.
static const intptr_t kMaxHandlers = 1024 * 1024;
void set_handled_types_data(const Array& value) const;
FINAL_HEAP_OBJECT_IMPLEMENTATION(ExceptionHandlers, Object);
friend class Class;
};
// Holds deopt information at one deoptimization point. The information
// is a list of DeoptInstr objects, specifying transformation information
// for each slot in unoptimized frame(s).
class DeoptInfo : public Object {
private:
// Describes the layout of deopt info data. The index of a deopt-info entry
// is implicitly the target slot in which the value is written into.
enum {
kInstruction = 0,
kFromIndex,
kNumberOfEntries,
};
public:
// The number of instructions.
intptr_t Length() const;
// The number of real (non-suffix) instructions needed to execute the
// deoptimization translation.
intptr_t TranslationLength() const;
static RawDeoptInfo* New(intptr_t num_commands);
static const intptr_t kBytesPerElement = (kNumberOfEntries * kWordSize);
static const intptr_t kMaxElements = kSmiMax / kBytesPerElement;
static intptr_t InstanceSize() {
ASSERT(sizeof(RawDeoptInfo) == OFFSET_OF(RawDeoptInfo, data_));
return 0;
}
static intptr_t InstanceSize(intptr_t len) {
ASSERT(0 <= len && len <= kMaxElements);
return RoundedAllocationSize(sizeof(RawDeoptInfo) +
(len * kBytesPerElement));
}
// 'index' corresponds to target, to-index.
void SetAt(intptr_t index,
intptr_t instr_kind,
intptr_t from_index) const;
intptr_t Instruction(intptr_t index) const;
intptr_t FromIndex(intptr_t index) const;
intptr_t ToIndex(intptr_t index) const {
return index;
}
// Unpack the entire translation into an array of deoptimization
// instructions. This copies any shared suffixes into the array.
void ToInstructions(const Array& table,
GrowableArray<DeoptInstr*>* instructions) const;
private:
intptr_t* EntryAddr(intptr_t index, intptr_t entry_offset) const {
ASSERT((index >=0) && (index < Length()));
intptr_t data_index = (index * kNumberOfEntries) + entry_offset;
return &raw_ptr()->data_[data_index];
}
void SetLength(intptr_t value) const;
FINAL_HEAP_OBJECT_IMPLEMENTATION(DeoptInfo, Object);
friend class Class;
};
class Code : public Object {
public:
RawInstructions* instructions() const { return raw_ptr()->instructions_; }
static intptr_t instructions_offset() {
return OFFSET_OF(RawCode, instructions_);
}
intptr_t pointer_offsets_length() const {
return raw_ptr()->pointer_offsets_length_;
}
bool is_optimized() const {
return (raw_ptr()->is_optimized_ == 1);
}
void set_is_optimized(bool value) const {
raw_ptr()->is_optimized_ = value ? 1 : 0;
}
bool is_alive() const {
return (raw_ptr()->is_alive_ == 1);
}
void set_is_alive(bool value) const {
raw_ptr()->is_alive_ = value ? 1 : 0;
}
uword EntryPoint() const {
const Instructions& instr = Instructions::Handle(instructions());
return instr.EntryPoint();
}
intptr_t Size() const {
const Instructions& instr = Instructions::Handle(instructions());
return instr.size();
}
RawArray* ObjectPool() const {
const Instructions& instr = Instructions::Handle(instructions());
return instr.object_pool();
}
bool ContainsInstructionAt(uword addr) const {
const Instructions& instr = Instructions::Handle(instructions());
const uword offset = addr - instr.EntryPoint();
return offset < static_cast<uword>(instr.size());
}
RawPcDescriptors* pc_descriptors() const {
return raw_ptr()->pc_descriptors_;
}
void set_pc_descriptors(const PcDescriptors& descriptors) const {
StorePointer(&raw_ptr()->pc_descriptors_, descriptors.raw());
}
// Array of DeoptInfo objects.
RawArray* deopt_info_array() const {
return raw_ptr()->deopt_info_array_;
}
void set_deopt_info_array(const Array& array) const;
RawArray* object_table() const {
return raw_ptr()->object_table_;
}
void set_object_table(const Array& array) const;
RawArray* stackmaps() const {
return