| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| // |
| // The intrinsic code below is executed before a method has built its frame. |
| // The return address is on the stack and the arguments below it. |
| // Registers EDX (arguments descriptor) and ECX (function) must be preserved. |
| // Each intrinsification method returns true if the corresponding |
| // Dart method was intrinsified. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32. |
| #if defined(TARGET_ARCH_IA32) |
| |
| #include "vm/intrinsifier.h" |
| |
| #include "vm/assembler.h" |
| #include "vm/object.h" |
| #include "vm/object_store.h" |
| #include "vm/os.h" |
| #include "vm/stub_code.h" |
| #include "vm/symbols.h" |
| |
| namespace dart { |
| |
| DECLARE_FLAG(bool, enable_type_checks); |
| |
| |
| #define __ assembler-> |
| |
| bool Intrinsifier::ObjectArray_Allocate(Assembler* assembler) { |
| // This snippet of inlined code uses the following registers: |
| // EAX, EBX, EDI |
| // and the newly allocated object is returned in EAX. |
| const intptr_t kTypeArgumentsOffset = 2 * kWordSize; |
| const intptr_t kArrayLengthOffset = 1 * kWordSize; |
| Label fall_through; |
| |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)). |
| __ movl(EDI, Address(ESP, kArrayLengthOffset)); // Array length. |
| // Check that length is a positive Smi. |
| __ testl(EDI, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); |
| __ cmpl(EDI, Immediate(0)); |
| __ j(LESS, &fall_through); |
| // Check for maximum allowed length. |
| const Immediate& max_len = |
| Immediate(reinterpret_cast<int32_t>(Smi::New(Array::kMaxElements))); |
| __ cmpl(EDI, max_len); |
| __ j(GREATER, &fall_through); |
| const intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1; |
| __ leal(EDI, Address(EDI, TIMES_2, fixed_size)); // EDI is a Smi. |
| ASSERT(kSmiTagShift == 1); |
| __ andl(EDI, Immediate(-kObjectAlignment)); |
| |
| Isolate* isolate = Isolate::Current(); |
| Heap* heap = isolate->heap(); |
| |
| __ movl(EAX, Address::Absolute(heap->TopAddress())); |
| __ movl(EBX, EAX); |
| |
| // EDI: allocation size. |
| __ addl(EBX, EDI); |
| __ j(CARRY, &fall_through); |
| |
| // Check if the allocation fits into the remaining space. |
| // EAX: potential new object start. |
| // EBX: potential next object start. |
| // EDI: allocation size. |
| __ cmpl(EBX, Address::Absolute(heap->EndAddress())); |
| __ j(ABOVE_EQUAL, &fall_through); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movl(Address::Absolute(heap->TopAddress()), EBX); |
| __ addl(EAX, Immediate(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // EAX: new object start as a tagged pointer. |
| // EBX: new object end address. |
| // EDI: allocation size. |
| { |
| Label size_tag_overflow, done; |
| __ cmpl(EDI, Immediate(RawObject::SizeTag::kMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shll(EDI, Immediate(RawObject::kSizeTagBit - kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ movl(EDI, Immediate(0)); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| const Class& cls = Class::Handle(isolate->object_store()->array_class()); |
| __ orl(EDI, Immediate(RawObject::ClassIdTag::encode(cls.id()))); |
| __ movl(FieldAddress(EAX, Array::tags_offset()), EDI); // Tags. |
| } |
| |
| // EAX: new object start as a tagged pointer. |
| // EBX: new object end address. |
| // Store the type argument field. |
| __ movl(EDI, Address(ESP, kTypeArgumentsOffset)); // type argument. |
| __ StoreIntoObjectNoBarrier(EAX, |
| FieldAddress(EAX, Array::type_arguments_offset()), |
| EDI); |
| |
| // Set the length field. |
| __ movl(EDI, Address(ESP, kArrayLengthOffset)); // Array Length. |
| __ StoreIntoObjectNoBarrier(EAX, |
| FieldAddress(EAX, Array::length_offset()), |
| EDI); |
| |
| // Initialize all array elements to raw_null. |
| // EAX: new object start as a tagged pointer. |
| // EBX: new object end address. |
| // EDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ leal(EDI, FieldAddress(EAX, sizeof(RawArray))); |
| Label done; |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ cmpl(EDI, EBX); |
| __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); |
| __ movl(Address(EDI, 0), raw_null); |
| __ addl(EDI, Immediate(kWordSize)); |
| __ jmp(&init_loop, Assembler::kNearJump); |
| __ Bind(&done); |
| __ ret(); // returns the newly allocated object in EAX. |
| |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Array_getLength(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ movl(EAX, FieldAddress(EAX, Array::length_offset())); |
| __ ret(); |
| return true; |
| } |
| |
| |
| bool Intrinsifier::ImmutableArray_getLength(Assembler* assembler) { |
| return Array_getLength(assembler); |
| } |
| |
| |
| bool Intrinsifier::Array_getIndexed(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EBX, Address(ESP, + 1 * kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Array. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi index. |
| // Range check. |
| __ cmpl(EBX, FieldAddress(EAX, Array::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through, Assembler::kNearJump); |
| // Note that EBX is Smi, i.e, times 2. |
| ASSERT(kSmiTagShift == 1); |
| __ movl(EAX, FieldAddress(EAX, EBX, TIMES_2, Array::data_offset())); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::ImmutableArray_getIndexed(Assembler* assembler) { |
| return Array_getIndexed(assembler); |
| } |
| |
| |
| static intptr_t ComputeObjectArrayTypeArgumentsOffset() { |
| const Library& core_lib = Library::Handle(Library::CoreLibrary()); |
| const Class& cls = |
| Class::Handle(core_lib.LookupClassAllowPrivate(Symbols::ObjectArray())); |
| ASSERT(!cls.IsNull()); |
| ASSERT(cls.HasTypeArguments()); |
| ASSERT(cls.NumTypeArguments() == 1); |
| const intptr_t field_offset = cls.type_arguments_field_offset(); |
| ASSERT(field_offset != Class::kNoTypeArguments); |
| return field_offset; |
| } |
| |
| |
| // Intrinsify only for Smi value and index. Non-smi values need a store buffer |
| // update. Array length is always a Smi. |
| bool Intrinsifier::Array_setIndexed(Assembler* assembler) { |
| Label fall_through; |
| if (FLAG_enable_type_checks) { |
| const intptr_t type_args_field_offset = |
| ComputeObjectArrayTypeArgumentsOffset(); |
| // Inline simple tests (Smi, null), fallthrough if not positive. |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| Label checked_ok; |
| __ movl(EDI, Address(ESP, + 1 * kWordSize)); // Value. |
| // Null value is valid for any type. |
| __ cmpl(EDI, raw_null); |
| __ j(EQUAL, &checked_ok, Assembler::kNearJump); |
| |
| __ movl(EBX, Address(ESP, + 3 * kWordSize)); // Array. |
| __ movl(EBX, FieldAddress(EBX, type_args_field_offset)); |
| // EBX: Type arguments of array. |
| __ cmpl(EBX, raw_null); |
| __ j(EQUAL, &checked_ok, Assembler::kNearJump); |
| // Check if it's dynamic. |
| // For now handle only TypeArguments and bail out if InstantiatedTypeArgs. |
| __ CompareClassId(EBX, kTypeArgumentsCid, EAX); |
| __ j(NOT_EQUAL, &fall_through); |
| // Get type at index 0. |
| __ movl(EAX, FieldAddress(EBX, TypeArguments::type_at_offset(0))); |
| __ CompareObject(EAX, Type::ZoneHandle(Type::DynamicType())); |
| __ j(EQUAL, &checked_ok, Assembler::kNearJump); |
| // Check for int and num. |
| __ testl(EDI, Immediate(kSmiTagMask)); // Value is Smi? |
| __ j(NOT_ZERO, &fall_through); // Non-smi value. |
| __ CompareObject(EAX, Type::ZoneHandle(Type::IntType())); |
| __ j(EQUAL, &checked_ok, Assembler::kNearJump); |
| __ CompareObject(EAX, Type::ZoneHandle(Type::Number())); |
| __ j(NOT_EQUAL, &fall_through); |
| __ Bind(&checked_ok); |
| } |
| __ movl(EBX, Address(ESP, + 2 * kWordSize)); // Index. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| // Index not Smi. |
| __ j(NOT_ZERO, &fall_through); |
| __ movl(EAX, Address(ESP, + 3 * kWordSize)); // Array. |
| // Range check. |
| __ cmpl(EBX, FieldAddress(EAX, Array::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through); |
| // Note that EBX is Smi, i.e, times 2. |
| ASSERT(kSmiTagShift == 1); |
| // Destroy ECX as we will not continue in the function. |
| __ movl(ECX, Address(ESP, + 1 * kWordSize)); // Value. |
| __ StoreIntoObject(EAX, |
| FieldAddress(EAX, EBX, TIMES_2, Array::data_offset()), |
| ECX); |
| // Caller is responsible of preserving the value if necessary. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // Allocate a GrowableObjectArray using the backing array specified. |
| // On stack: type argument (+2), data (+1), return-address (+0). |
| bool Intrinsifier::GrowableArray_Allocate(Assembler* assembler) { |
| // This snippet of inlined code uses the following registers: |
| // EAX, EBX |
| // and the newly allocated object is returned in EAX. |
| const intptr_t kTypeArgumentsOffset = 2 * kWordSize; |
| const intptr_t kArrayOffset = 1 * kWordSize; |
| Label fall_through; |
| |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize(sizeof(RawGrowableObjectArray)) + |
| intptr_t fixed_size = GrowableObjectArray::InstanceSize(); |
| |
| Isolate* isolate = Isolate::Current(); |
| Heap* heap = isolate->heap(); |
| |
| __ movl(EAX, Address::Absolute(heap->TopAddress())); |
| __ leal(EBX, Address(EAX, fixed_size)); |
| |
| // Check if the allocation fits into the remaining space. |
| // EAX: potential new backing array object start. |
| // EBX: potential next object start. |
| __ cmpl(EBX, Address::Absolute(heap->EndAddress())); |
| __ j(ABOVE_EQUAL, &fall_through); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movl(Address::Absolute(heap->TopAddress()), EBX); |
| __ addl(EAX, Immediate(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // EAX: new growable array object start as a tagged pointer. |
| const Class& cls = Class::Handle( |
| isolate->object_store()->growable_object_array_class()); |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(fixed_size, tags); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ movl(FieldAddress(EAX, GrowableObjectArray::tags_offset()), |
| Immediate(tags)); |
| |
| // Store backing array object in growable array object. |
| __ movl(EBX, Address(ESP, kArrayOffset)); // data argument. |
| // EAX is new, no barrier needed. |
| __ StoreIntoObjectNoBarrier( |
| EAX, |
| FieldAddress(EAX, GrowableObjectArray::data_offset()), |
| EBX); |
| |
| // EAX: new growable array object start as a tagged pointer. |
| // Store the type argument field in the growable array object. |
| __ movl(EBX, Address(ESP, kTypeArgumentsOffset)); // type argument. |
| __ StoreIntoObjectNoBarrier( |
| EAX, |
| FieldAddress(EAX, GrowableObjectArray::type_arguments_offset()), |
| EBX); |
| |
| // Set the length field in the growable array object to 0. |
| __ movl(FieldAddress(EAX, GrowableObjectArray::length_offset()), |
| Immediate(0)); |
| __ ret(); // returns the newly allocated object in EAX. |
| |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // Get length of growable object array. |
| // On stack: growable array (+1), return-address (+0). |
| bool Intrinsifier::GrowableArray_getLength(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ movl(EAX, FieldAddress(EAX, GrowableObjectArray::length_offset())); |
| __ ret(); |
| return true; |
| } |
| |
| |
| // Get capacity of growable object array. |
| // On stack: growable array (+1), return-address (+0). |
| bool Intrinsifier::GrowableArray_getCapacity(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ movl(EAX, FieldAddress(EAX, GrowableObjectArray::data_offset())); |
| __ movl(EAX, FieldAddress(EAX, Array::length_offset())); |
| __ ret(); |
| return true; |
| } |
| |
| |
| // Access growable object array at specified index. |
| // On stack: growable array (+2), index (+1), return-address (+0). |
| bool Intrinsifier::GrowableArray_getIndexed(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EBX, Address(ESP, + 1 * kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // GrowableArray. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi index. |
| // Range check using _length field. |
| __ cmpl(EBX, FieldAddress(EAX, GrowableObjectArray::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through, Assembler::kNearJump); |
| __ movl(EAX, FieldAddress(EAX, GrowableObjectArray::data_offset())); // data. |
| |
| // Note that EBX is Smi, i.e, times 2. |
| ASSERT(kSmiTagShift == 1); |
| __ movl(EAX, FieldAddress(EAX, EBX, TIMES_2, Array::data_offset())); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // Set value into growable object array at specified index. |
| // On stack: growable array (+3), index (+2), value (+1), return-address (+0). |
| bool Intrinsifier::GrowableArray_setIndexed(Assembler* assembler) { |
| if (FLAG_enable_type_checks) { |
| return false; |
| } |
| Label fall_through; |
| __ movl(EBX, Address(ESP, + 2 * kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, + 3 * kWordSize)); // GrowableArray. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); // Non-smi index. |
| // Range check using _length field. |
| __ cmpl(EBX, FieldAddress(EAX, GrowableObjectArray::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through); |
| __ movl(EAX, FieldAddress(EAX, GrowableObjectArray::data_offset())); // data. |
| __ movl(EDI, Address(ESP, + 1 * kWordSize)); // Value. |
| // Note that EBX is Smi, i.e, times 2. |
| ASSERT(kSmiTagShift == 1); |
| __ StoreIntoObject(EAX, |
| FieldAddress(EAX, EBX, TIMES_2, Array::data_offset()), |
| EDI); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // Set length of growable object array. The length cannot |
| // be greater than the length of the data container. |
| // On stack: growable array (+2), length (+1), return-address (+0). |
| bool Intrinsifier::GrowableArray_setLength(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Growable array. |
| __ movl(EBX, Address(ESP, + 1 * kWordSize)); // Length value. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi length. |
| __ movl(FieldAddress(EAX, GrowableObjectArray::length_offset()), EBX); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // Set data of growable object array. |
| // On stack: growable array (+2), data (+1), return-address (+0). |
| bool Intrinsifier::GrowableArray_setData(Assembler* assembler) { |
| if (FLAG_enable_type_checks) { |
| return false; |
| } |
| Label fall_through; |
| __ movl(EBX, Address(ESP, + 1 * kWordSize)); // Data. |
| // Check that data is an ObjectArray. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(ZERO, &fall_through); // Data is Smi. |
| __ CompareClassId(EBX, kArrayCid, EAX); |
| __ j(NOT_EQUAL, &fall_through); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Growable array. |
| __ StoreIntoObject(EAX, |
| FieldAddress(EAX, GrowableObjectArray::data_offset()), |
| EBX); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // Add an element to growable array if it doesn't need to grow, otherwise |
| // call into regular code. |
| // On stack: growable array (+2), value (+1), return-address (+0). |
| bool Intrinsifier::GrowableArray_add(Assembler* assembler) { |
| // In checked mode we need to type-check the incoming argument. |
| if (FLAG_enable_type_checks) return false; |
| Label fall_through; |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Array. |
| __ movl(EBX, FieldAddress(EAX, GrowableObjectArray::length_offset())); |
| // EBX: length. |
| __ movl(EDI, FieldAddress(EAX, GrowableObjectArray::data_offset())); |
| // EDI: data. |
| // Compare length with capacity. |
| __ cmpl(EBX, FieldAddress(EDI, Array::length_offset())); |
| __ j(EQUAL, &fall_through); // Must grow data. |
| const Immediate& value_one = |
| Immediate(reinterpret_cast<int32_t>(Smi::New(1))); |
| // len = len + 1; |
| __ addl(FieldAddress(EAX, GrowableObjectArray::length_offset()), value_one); |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); // Value |
| ASSERT(kSmiTagShift == 1); |
| __ StoreIntoObject(EDI, |
| FieldAddress(EDI, EBX, TIMES_2, Array::data_offset()), |
| EAX); |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<int32_t>(Object::null())); |
| __ movl(EAX, raw_null); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| #define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_factor) \ |
| Label fall_through; \ |
| const intptr_t kArrayLengthStackOffset = 1 * kWordSize; \ |
| __ movl(EDI, Address(ESP, kArrayLengthStackOffset)); /* Array length. */ \ |
| /* Check that length is a positive Smi. */ \ |
| /* EDI: requested array length argument. */ \ |
| __ testl(EDI, Immediate(kSmiTagMask)); \ |
| __ j(NOT_ZERO, &fall_through); \ |
| __ cmpl(EDI, Immediate(0)); \ |
| __ j(LESS, &fall_through); \ |
| __ SmiUntag(EDI); \ |
| /* Check for maximum allowed length. */ \ |
| /* EDI: untagged array length. */ \ |
| __ cmpl(EDI, Immediate(max_len)); \ |
| __ j(GREATER, &fall_through); \ |
| /* Special case for scaling by 16. */ \ |
| if (scale_factor == TIMES_16) { \ |
| /* double length of array. */ \ |
| __ addl(EDI, EDI); \ |
| /* only scale by 8. */ \ |
| scale_factor = TIMES_8; \ |
| } \ |
| const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \ |
| __ leal(EDI, Address(EDI, scale_factor, fixed_size)); \ |
| __ andl(EDI, Immediate(-kObjectAlignment)); \ |
| Heap* heap = Isolate::Current()->heap(); \ |
| \ |
| __ movl(EAX, Address::Absolute(heap->TopAddress())); \ |
| __ movl(EBX, EAX); \ |
| \ |
| /* EDI: allocation size. */ \ |
| __ addl(EBX, EDI); \ |
| __ j(CARRY, &fall_through); \ |
| \ |
| /* Check if the allocation fits into the remaining space. */ \ |
| /* EAX: potential new object start. */ \ |
| /* EBX: potential next object start. */ \ |
| /* EDI: allocation size. */ \ |
| __ cmpl(EBX, Address::Absolute(heap->EndAddress())); \ |
| __ j(ABOVE_EQUAL, &fall_through); \ |
| \ |
| /* Successfully allocated the object(s), now update top to point to */ \ |
| /* next object start and initialize the object. */ \ |
| __ movl(Address::Absolute(heap->TopAddress()), EBX); \ |
| __ addl(EAX, Immediate(kHeapObjectTag)); \ |
| \ |
| /* Initialize the tags. */ \ |
| /* EAX: new object start as a tagged pointer. */ \ |
| /* EBX: new object end address. */ \ |
| /* EDI: allocation size. */ \ |
| { \ |
| Label size_tag_overflow, done; \ |
| __ cmpl(EDI, Immediate(RawObject::SizeTag::kMaxSizeTag)); \ |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); \ |
| __ shll(EDI, Immediate(RawObject::kSizeTagBit - kObjectAlignmentLog2)); \ |
| __ jmp(&done, Assembler::kNearJump); \ |
| \ |
| __ Bind(&size_tag_overflow); \ |
| __ movl(EDI, Immediate(0)); \ |
| __ Bind(&done); \ |
| \ |
| /* Get the class index and insert it into the tags. */ \ |
| __ orl(EDI, Immediate(RawObject::ClassIdTag::encode(cid))); \ |
| __ movl(FieldAddress(EAX, type_name::tags_offset()), EDI); /* Tags. */ \ |
| } \ |
| /* Set the length field. */ \ |
| /* EAX: new object start as a tagged pointer. */ \ |
| /* EBX: new object end address. */ \ |
| __ movl(EDI, Address(ESP, kArrayLengthStackOffset)); /* Array length. */ \ |
| __ StoreIntoObjectNoBarrier(EAX, \ |
| FieldAddress(EAX, type_name::length_offset()), \ |
| EDI); \ |
| /* Initialize all array elements to 0. */ \ |
| /* EAX: new object start as a tagged pointer. */ \ |
| /* EBX: new object end address. */ \ |
| /* EDI: iterator which initially points to the start of the variable */ \ |
| /* ECX: scratch register. */ \ |
| /* data area to be initialized. */ \ |
| __ xorl(ECX, ECX); /* Zero. */ \ |
| __ leal(EDI, FieldAddress(EAX, sizeof(Raw##type_name))); \ |
| Label done, init_loop; \ |
| __ Bind(&init_loop); \ |
| __ cmpl(EDI, EBX); \ |
| __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); \ |
| __ movl(Address(EDI, 0), ECX); \ |
| __ addl(EDI, Immediate(kWordSize)); \ |
| __ jmp(&init_loop, Assembler::kNearJump); \ |
| __ Bind(&done); \ |
| \ |
| __ ret(); \ |
| __ Bind(&fall_through); \ |
| |
| |
| |
| // Gets the length of a TypedData. |
| bool Intrinsifier::TypedData_getLength(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ movl(EAX, FieldAddress(EAX, TypedData::length_offset())); |
| __ ret(); |
| return true; |
| } |
| |
| |
| static ScaleFactor GetScaleFactor(intptr_t size) { |
| switch (size) { |
| case 1: return TIMES_1; |
| case 2: return TIMES_2; |
| case 4: return TIMES_4; |
| case 8: return TIMES_8; |
| case 16: return TIMES_16; |
| } |
| UNREACHABLE(); |
| return static_cast<ScaleFactor>(0); |
| }; |
| |
| |
| #define TYPED_DATA_ALLOCATOR(clazz) \ |
| bool Intrinsifier::TypedData_##clazz##_new(Assembler* assembler) { \ |
| intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
| intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
| ScaleFactor scale = GetScaleFactor(size); \ |
| TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, scale); \ |
| return false; \ |
| } \ |
| bool Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \ |
| intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
| intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
| ScaleFactor scale = GetScaleFactor(size); \ |
| TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, scale); \ |
| return false; \ |
| } |
| CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
| #undef TYPED_DATA_ALLOCATOR |
| |
| |
| // Tests if two top most arguments are smis, jumps to label not_smi if not. |
| // Topmost argument is in EAX. |
| static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ movl(EBX, Address(ESP, + 2 * kWordSize)); |
| __ orl(EBX, EAX); |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi, Assembler::kNearJump); |
| } |
| |
| |
| bool Intrinsifier::Integer_addFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ addl(EAX, Address(ESP, + 2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_add(Assembler* assembler) { |
| return Integer_addFromInteger(assembler); |
| } |
| |
| |
| bool Intrinsifier::Integer_subFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ subl(EAX, Address(ESP, + 2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_sub(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, EAX); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); |
| __ subl(EAX, EBX); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| |
| bool Intrinsifier::Integer_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| __ SmiUntag(EAX); |
| __ imull(EAX, Address(ESP, + 2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_mul(Assembler* assembler) { |
| return Integer_mulFromInteger(assembler); |
| } |
| |
| |
| // Optimizations: |
| // - result is 0 if: |
| // - left is 0 |
| // - left equals right |
| // - result is left if |
| // - left > 0 && left < right |
| // EAX: Tagged left (dividend). |
| // EBX: Tagged right (divisor). |
| // EDX: Untagged result (remainder). |
| void EmitRemainderOperation(Assembler* assembler) { |
| Label return_zero, modulo; |
| // Check for quick zero results. |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &return_zero, Assembler::kNearJump); |
| __ cmpl(EAX, EBX); |
| __ j(EQUAL, &return_zero, Assembler::kNearJump); |
| |
| // Check if result equals left. |
| __ cmpl(EAX, Immediate(0)); |
| __ j(LESS, &modulo, Assembler::kNearJump); |
| // left is positive. |
| __ cmpl(EAX, EBX); |
| __ j(GREATER, &modulo, Assembler::kNearJump); |
| // left is less than right, result is left (EAX). |
| __ ret(); |
| |
| __ Bind(&return_zero); |
| __ xorl(EAX, EAX); |
| __ ret(); |
| |
| __ Bind(&modulo); |
| __ SmiUntag(EBX); |
| __ SmiUntag(EAX); |
| __ cdq(); |
| __ idivl(EBX); |
| } |
| |
| |
| // Implementation: |
| // res = left % right; |
| // if (res < 0) { |
| // if (right < 0) { |
| // res = res - right; |
| // } else { |
| // res = res + right; |
| // } |
| // } |
| bool Intrinsifier::Integer_modulo(Assembler* assembler) { |
| Label fall_through, subtract; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // EAX: right argument (divisor) |
| __ movl(EBX, EAX); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Left argument (dividend). |
| // EAX: Tagged left (dividend). |
| // EBX: Tagged right (divisor). |
| // Check if modulo by zero -> exception thrown in main function. |
| __ cmpl(EBX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| EmitRemainderOperation(assembler); |
| // Untagged remainder result in EDX. |
| Label done; |
| __ movl(EAX, EDX); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(GREATER_EQUAL, &done, Assembler::kNearJump); |
| // Result is negative, adjust it. |
| __ cmpl(EBX, Immediate(0)); |
| __ j(LESS, &subtract, Assembler::kNearJump); |
| __ addl(EAX, EBX); |
| __ SmiTag(EAX); |
| __ ret(); |
| |
| __ Bind(&subtract); |
| __ subl(EAX, EBX); |
| |
| __ Bind(&done); |
| // The remainder of two Smi-s is always a Smi, no overflow check needed. |
| __ SmiTag(EAX); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_remainder(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // EAX: right argument (divisor) |
| __ movl(EBX, EAX); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Left argument (dividend). |
| // EAX: Tagged left (dividend). |
| // EBX: Tagged right (divisor). |
| // Check if modulo by zero -> exception thrown in main function. |
| __ cmpl(EBX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| EmitRemainderOperation(assembler); |
| // Untagged remainder result in EDX. |
| __ movl(EAX, EDX); |
| __ SmiTag(EAX); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_truncDivide(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // EAX: right argument (divisor) |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| __ movl(EBX, EAX); |
| __ SmiUntag(EBX); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Left argument (dividend). |
| __ SmiUntag(EAX); |
| __ pushl(EDX); // Preserve EDX in case of 'fall_through'. |
| __ cdq(); |
| __ idivl(EBX); |
| __ popl(EDX); |
| // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
| // cannot tag the result. |
| __ cmpl(EAX, Immediate(0x40000000)); |
| __ j(EQUAL, &fall_through); |
| __ SmiTag(EAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_negate(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi value. |
| __ negl(EAX); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, Address(ESP, + 2 * kWordSize)); |
| __ andl(EAX, EBX); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_bitAnd(Assembler* assembler) { |
| return Integer_bitAndFromInteger(assembler); |
| } |
| |
| |
| bool Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, Address(ESP, + 2 * kWordSize)); |
| __ orl(EAX, EBX); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_bitOr(Assembler* assembler) { |
| return Integer_bitOrFromInteger(assembler); |
| } |
| |
| |
| bool Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, Address(ESP, + 2 * kWordSize)); |
| __ xorl(EAX, EBX); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_bitXor(Assembler* assembler) { |
| return Integer_bitXorFromInteger(assembler); |
| } |
| |
| |
| bool Intrinsifier::Integer_shl(Assembler* assembler) { |
| ASSERT(kSmiTagShift == 1); |
| ASSERT(kSmiTag == 0); |
| Label fall_through, overflow; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // Shift value is in EAX. Compare with tagged Smi. |
| __ cmpl(EAX, Immediate(Smi::RawValue(Smi::kBits))); |
| __ j(ABOVE_EQUAL, &fall_through, Assembler::kNearJump); |
| |
| __ SmiUntag(EAX); |
| __ movl(ECX, EAX); // Shift amount must be in ECX. |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Value. |
| |
| // Overflow test - all the shifted-out bits must be same as the sign bit. |
| __ movl(EBX, EAX); |
| __ shll(EAX, ECX); |
| __ sarl(EAX, ECX); |
| __ cmpl(EAX, EBX); |
| __ j(NOT_EQUAL, &overflow, Assembler::kNearJump); |
| |
| __ shll(EAX, ECX); // Shift for result now we know there is no overflow. |
| |
| // EAX is a correctly tagged Smi. |
| __ ret(); |
| |
| __ Bind(&overflow); |
| // Arguments are Smi but the shift produced an overflow to Mint. |
| __ cmpl(EBX, Immediate(0)); |
| // TODO(srdjan): Implement negative values, for now fall through. |
| __ j(LESS, &fall_through, Assembler::kNearJump); |
| __ SmiUntag(EBX); |
| __ movl(EAX, EBX); |
| __ shll(EBX, ECX); |
| __ xorl(EDI, EDI); |
| __ shld(EDI, EAX); |
| // Result in EDI (high) and EBX (low). |
| const Class& mint_class = Class::Handle( |
| Isolate::Current()->object_store()->mint_class()); |
| __ TryAllocate(mint_class, |
| &fall_through, |
| Assembler::kNearJump, |
| EAX); // Result register. |
| // EBX and EDI are not objects but integer values. |
| __ movl(FieldAddress(EAX, Mint::value_offset()), EBX); |
| __ movl(FieldAddress(EAX, Mint::value_offset() + kWordSize), EDI); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| static void Push64SmiOrMint(Assembler* assembler, |
| Register reg, |
| Register tmp, |
| Label* not_smi_or_mint) { |
| Label not_smi, done; |
| __ testl(reg, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, ¬_smi, Assembler::kNearJump); |
| __ SmiUntag(reg); |
| // Sign extend to 64 bit |
| __ movl(tmp, reg); |
| __ sarl(tmp, Immediate(31)); |
| __ pushl(tmp); |
| __ pushl(reg); |
| __ jmp(&done); |
| __ Bind(¬_smi); |
| __ CompareClassId(reg, kMintCid, tmp); |
| __ j(NOT_EQUAL, not_smi_or_mint); |
| // Mint. |
| __ pushl(FieldAddress(reg, Mint::value_offset() + kWordSize)); |
| __ pushl(FieldAddress(reg, Mint::value_offset())); |
| __ Bind(&done); |
| } |
| |
| |
| static bool CompareIntegers(Assembler* assembler, Condition true_condition) { |
| Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; |
| TestBothArgumentsSmis(assembler, &try_mint_smi); |
| // EAX contains the right argument. |
| __ cmpl(Address(ESP, + 2 * kWordSize), EAX); |
| __ j(true_condition, &is_true, Assembler::kNearJump); |
| __ Bind(&is_false); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| |
| // 64-bit comparison |
| Condition hi_true_cond, hi_false_cond, lo_false_cond; |
| switch (true_condition) { |
| case LESS: |
| case LESS_EQUAL: |
| hi_true_cond = LESS; |
| hi_false_cond = GREATER; |
| lo_false_cond = (true_condition == LESS) ? ABOVE_EQUAL : ABOVE; |
| break; |
| case GREATER: |
| case GREATER_EQUAL: |
| hi_true_cond = GREATER; |
| hi_false_cond = LESS; |
| lo_false_cond = (true_condition == GREATER) ? BELOW_EQUAL : BELOW; |
| break; |
| default: |
| UNREACHABLE(); |
| hi_true_cond = hi_false_cond = lo_false_cond = OVERFLOW; |
| } |
| __ Bind(&try_mint_smi); |
| // Note that EDX and ECX must be preserved in case we fall through to main |
| // method. |
| // EAX contains the right argument. |
| __ movl(EBX, Address(ESP, + 2 * kWordSize)); // Left argument. |
| // Push left as 64 bit integer. |
| Push64SmiOrMint(assembler, EBX, EDI, &fall_through); |
| // Push right as 64 bit integer. |
| Push64SmiOrMint(assembler, EAX, EDI, &drop_two_fall_through); |
| __ popl(EBX); // Right.LO. |
| __ popl(ECX); // Right.HI. |
| __ popl(EAX); // Left.LO. |
| __ popl(EDX); // Left.HI. |
| __ cmpl(EDX, ECX); // cmpl left.HI, right.HI. |
| __ j(hi_false_cond, &is_false, Assembler::kNearJump); |
| __ j(hi_true_cond, &is_true, Assembler::kNearJump); |
| __ cmpl(EAX, EBX); // cmpl left.LO, right.LO. |
| __ j(lo_false_cond, &is_false, Assembler::kNearJump); |
| // Else is true. |
| __ jmp(&is_true); |
| |
| __ Bind(&drop_two_fall_through); |
| __ Drop(2); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| |
| bool Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) { |
| return CompareIntegers(assembler, LESS); |
| } |
| |
| |
| bool Intrinsifier::Integer_lessThan(Assembler* assembler) { |
| return Integer_greaterThanFromInt(assembler); |
| } |
| |
| |
| bool Intrinsifier::Integer_greaterThan(Assembler* assembler) { |
| return CompareIntegers(assembler, GREATER); |
| } |
| |
| |
| bool Intrinsifier::Integer_lessEqualThan(Assembler* assembler) { |
| return CompareIntegers(assembler, LESS_EQUAL); |
| } |
| |
| |
| bool Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) { |
| return CompareIntegers(assembler, GREATER_EQUAL); |
| } |
| |
| |
| // This is called for Smi, Mint and Bigint receivers. The right argument |
| // can be Smi, Mint, Bigint or double. |
| bool Intrinsifier::Integer_equalToInteger(Assembler* assembler) { |
| Label fall_through, true_label, check_for_mint; |
| // For integer receiver '===' check first. |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ cmpl(EAX, Address(ESP, + 2 * kWordSize)); |
| __ j(EQUAL, &true_label, Assembler::kNearJump); |
| __ movl(EBX, Address(ESP, + 2 * kWordSize)); |
| __ orl(EAX, EBX); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &check_for_mint, Assembler::kNearJump); |
| // Both arguments are smi, '===' is good enough. |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| |
| // At least one of the arguments was not Smi. |
| Label receiver_not_smi; |
| __ Bind(&check_for_mint); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Receiver. |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &receiver_not_smi); |
| |
| // Left (receiver) is Smi, return false if right is not Double. |
| // Note that an instance of Mint or Bigint never contains a value that can be |
| // represented by Smi. |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); // Right argument. |
| __ CompareClassId(EAX, kDoubleCid, EDI); |
| __ j(EQUAL, &fall_through); |
| __ LoadObject(EAX, Bool::False()); // Smi == Mint -> false. |
| __ ret(); |
| |
| __ Bind(&receiver_not_smi); |
| // EAX:: receiver. |
| __ CompareClassId(EAX, kMintCid, EDI); |
| __ j(NOT_EQUAL, &fall_through); |
| // Receiver is Mint, return false if right is Smi. |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); // Right argument. |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| // TODO(srdjan): Implement Mint == Mint comparison. |
| |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Integer_equal(Assembler* assembler) { |
| return Integer_equalToInteger(assembler); |
| } |
| |
| |
| bool Intrinsifier::Integer_sar(Assembler* assembler) { |
| Label fall_through, shift_count_ok; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // Can destroy ECX since we are not falling through. |
| const Immediate& count_limit = Immediate(0x1F); |
| // Check that the count is not larger than what the hardware can handle. |
| // For shifting right a Smi the result is the same for all numbers |
| // >= count_limit. |
| __ SmiUntag(EAX); |
| // Negative counts throw exception. |
| __ cmpl(EAX, Immediate(0)); |
| __ j(LESS, &fall_through, Assembler::kNearJump); |
| __ cmpl(EAX, count_limit); |
| __ j(LESS_EQUAL, &shift_count_ok, Assembler::kNearJump); |
| __ movl(EAX, count_limit); |
| __ Bind(&shift_count_ok); |
| __ movl(ECX, EAX); // Shift amount must be in ECX. |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Value. |
| __ SmiUntag(EAX); // Value. |
| __ sarl(EAX, ECX); |
| __ SmiTag(EAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // Argument is Smi (receiver). |
| bool Intrinsifier::Smi_bitNegate(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); // Index. |
| __ notl(EAX); |
| __ andl(EAX, Immediate(~kSmiTagMask)); // Remove inverted smi-tag. |
| __ ret(); |
| return true; |
| } |
| |
| |
| // Check if the last argument is a double, jump to label 'is_smi' if smi |
| // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| // Returns the last argument in EAX. |
| static void TestLastArgumentIsDouble(Assembler* assembler, |
| Label* is_smi, |
| Label* not_double_smi) { |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(ZERO, is_smi, Assembler::kNearJump); // Jump if Smi. |
| __ CompareClassId(EAX, kDoubleCid, EBX); |
| __ j(NOT_EQUAL, not_double_smi, Assembler::kNearJump); |
| // Fall through if double. |
| } |
| |
| |
| // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
| // type. Return true or false object in the register EAX. Any NaN argument |
| // returns false. Any non-double arg1 causes control flow to fall through to the |
| // slow case (compiled method body). |
| static bool CompareDoubles(Assembler* assembler, Condition true_condition) { |
| Label fall_through, is_false, is_true, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Both arguments are double, right operand is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, Double::value_offset())); |
| __ Bind(&double_op); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Left argument. |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ comisd(XMM0, XMM1); |
| __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false; |
| __ j(true_condition, &is_true, Assembler::kNearJump); |
| // Fall through false. |
| __ Bind(&is_false); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ jmp(&double_op); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| bool Intrinsifier::Double_greaterThan(Assembler* assembler) { |
| return CompareDoubles(assembler, ABOVE); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| bool Intrinsifier::Double_greaterEqualThan(Assembler* assembler) { |
| return CompareDoubles(assembler, ABOVE_EQUAL); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| bool Intrinsifier::Double_lessThan(Assembler* assembler) { |
| return CompareDoubles(assembler, BELOW); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| bool Intrinsifier::Double_equal(Assembler* assembler) { |
| return CompareDoubles(assembler, EQUAL); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| bool Intrinsifier::Double_lessEqualThan(Assembler* assembler) { |
| return CompareDoubles(assembler, BELOW_EQUAL); |
| } |
| |
| |
| // Expects left argument to be double (receiver). Right argument is unknown. |
| // Both arguments are on stack. |
| static bool DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) { |
| Label fall_through; |
| TestLastArgumentIsDouble(assembler, &fall_through, &fall_through); |
| // Both arguments are double, right operand is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, Double::value_offset())); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // Left argument. |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| switch (kind) { |
| case Token::kADD: __ addsd(XMM0, XMM1); break; |
| case Token::kSUB: __ subsd(XMM0, XMM1); break; |
| case Token::kMUL: __ mulsd(XMM0, XMM1); break; |
| case Token::kDIV: __ divsd(XMM0, XMM1); break; |
| default: UNREACHABLE(); |
| } |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, |
| &fall_through, |
| Assembler::kNearJump, |
| EAX); // Result register. |
| __ movsd(FieldAddress(EAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Double_add(Assembler* assembler) { |
| return DoubleArithmeticOperations(assembler, Token::kADD); |
| } |
| |
| |
| bool Intrinsifier::Double_mul(Assembler* assembler) { |
| return DoubleArithmeticOperations(assembler, Token::kMUL); |
| } |
| |
| |
| bool Intrinsifier::Double_sub(Assembler* assembler) { |
| return DoubleArithmeticOperations(assembler, Token::kSUB); |
| } |
| |
| |
| bool Intrinsifier::Double_div(Assembler* assembler) { |
| return DoubleArithmeticOperations(assembler, Token::kDIV); |
| } |
| |
| |
| // Left is double right is integer (Bigint, Mint or Smi) |
| bool Intrinsifier::Double_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| // Only Smi-s allowed. |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); |
| // Is Smi. |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ mulsd(XMM0, XMM1); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, |
| &fall_through, |
| Assembler::kNearJump, |
| EAX); // Result register. |
| __ movsd(FieldAddress(EAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Double_fromInteger(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); |
| // Is Smi. |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM0, EAX); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, |
| &fall_through, |
| Assembler::kNearJump, |
| EAX); // Result register. |
| __ movsd(FieldAddress(EAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::Double_getIsNaN(Assembler* assembler) { |
| Label is_true; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ comisd(XMM0, XMM0); |
| __ j(PARITY_EVEN, &is_true, Assembler::kNearJump); // NaN -> true; |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| return true; // Method is complete, no slow case. |
| } |
| |
| |
| bool Intrinsifier::Double_getIsNegative(Assembler* assembler) { |
| Label is_false, is_true, is_zero; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ xorpd(XMM1, XMM1); // 0.0 -> XMM1. |
| __ comisd(XMM0, XMM1); |
| __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false. |
| __ j(EQUAL, &is_zero, Assembler::kNearJump); // Check for negative zero. |
| __ j(ABOVE_EQUAL, &is_false, Assembler::kNearJump); // >= 0 -> false. |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| __ Bind(&is_false); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_zero); |
| // Check for negative zero (get the sign bit). |
| __ movmskpd(EAX, XMM0); |
| __ testl(EAX, Immediate(1)); |
| __ j(NOT_ZERO, &is_true, Assembler::kNearJump); |
| __ jmp(&is_false, Assembler::kNearJump); |
| return true; // Method is complete, no slow case. |
| } |
| |
| |
| bool Intrinsifier::Double_toInt(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ cvttsd2si(EAX, XMM0); |
| // Overflow is signalled with minint. |
| Label fall_through; |
| // Check for overflow and that it fits into Smi. |
| __ cmpl(EAX, Immediate(0xC0000000)); |
| __ j(NEGATIVE, &fall_through, Assembler::kNearJump); |
| __ SmiTag(EAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| // Argument type is not known |
| bool Intrinsifier::Math_sqrt(Assembler* assembler) { |
| Label fall_through, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Argument is double and is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, Double::value_offset())); |
| __ Bind(&double_op); |
| __ sqrtsd(XMM0, XMM1); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, |
| &fall_through, |
| Assembler::kNearJump, |
| EAX); // Result register. |
| __ movsd(FieldAddress(EAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ jmp(&double_op); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| enum TrigonometricFunctions { |
| kSine, |
| kCosine, |
| }; |
| |
| |
| static void EmitTrigonometric(Assembler* assembler, |
| TrigonometricFunctions kind) { |
| Label fall_through, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Argument is double and is in EAX. |
| __ fldl(FieldAddress(EAX, Double::value_offset())); |
| __ Bind(&double_op); |
| switch (kind) { |
| case kSine: __ fsin(); break; |
| case kCosine: __ fcos(); break; |
| default: |
| UNREACHABLE(); |
| } |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| Label alloc_failed; |
| __ TryAllocate(double_class, |
| &alloc_failed, |
| Assembler::kNearJump, |
| EAX); // Result register. |
| __ fstpl(FieldAddress(EAX, Double::value_offset())); |
| __ ret(); |
| |
| __ Bind(&is_smi); // smi -> double. |
| __ SmiUntag(EAX); |
| __ pushl(EAX); |
| __ filds(Address(ESP, 0)); |
| __ popl(EAX); |
| __ jmp(&double_op); |
| |
| __ Bind(&alloc_failed); |
| __ ffree(0); |
| __ fincstp(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| bool Intrinsifier::Math_sin(Assembler* assembler) { |
| EmitTrigonometric(assembler, kSine); |
| return false; // Compile method for slow case. |
| } |
| |
| |
| bool Intrinsifier::Math_cos(Assembler* assembler) { |
| EmitTrigonometric(assembler, kCosine); |
| return false; // Compile method for slow case. |
| } |
| |
| |
| // Identity comparison. |
| bool Intrinsifier::Object_equal(Assembler* assembler) { |
| Label is_true; |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); |
| __ cmpl(EAX, Address(ESP, + 2 * kWordSize)); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| return true; |
| } |
| |
| |
| bool Intrinsifier::String_getHashCode(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); // String object. |
| __ movl(EAX, FieldAddress(EAX, String::hash_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(&fall_through); |
| // Hash not yet computed. |
| return false; |
| } |
| |
| |
| bool Intrinsifier::String_getLength(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); // String object. |
| __ movl(EAX, FieldAddress(EAX, String::length_offset())); |
| __ ret(); |
| return true; |
| } |
| |
| |
| // TODO(srdjan): Implement for two and four byte strings as well. |
| bool Intrinsifier::String_codeUnitAt(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EBX, Address(ESP, + 1 * kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, + 2 * kWordSize)); // String. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi index. |
| // Range check. |
| __ cmpl(EBX, FieldAddress(EAX, String::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through, Assembler::kNearJump); |
| __ CompareClassId(EAX, kOneByteStringCid, EDI); |
| __ j(NOT_EQUAL, &fall_through); |
| __ SmiUntag(EBX); |
| __ movzxb(EAX, FieldAddress(EAX, EBX, TIMES_1, OneByteString::data_offset())); |
| __ SmiTag(EAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| |
| bool Intrinsifier::String_getIsEmpty(Assembler* assembler) { |
| Label is_true; |
| // Get length. |
| __ movl(EAX, Address(ESP, + 1 * kWordSize)); // String object. |
| __ movl(EAX, FieldAddress(EAX, String::length_offset())); |
| __ cmpl(EAX, Immediate(Smi::RawValue(0))); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| return true; |
| } |
| |
| |
| bool Intrinsifier::OneByteString_getHashCode(Assembler* assembler) { |
| Label compute_hash; |
| __ movl(EBX, Address(ESP, + 1 * kWordSize)); // OneByteString object. |
| __ movl(EAX, FieldAddress(EBX, String::hash_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &compute_hash, Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(&compute_hash); |
| // Hash not yet computed, use algorithm of class StringHasher. |
| __ movl(ECX, FieldAddress(EBX, String::length_offset())); |
| __ SmiUntag(ECX); |
| __ xorl(EAX, EAX); |
| __ xorl(EDI, EDI); |
| // EBX: Instance of OneByteString. |
| // ECX: String length, untagged integer. |
| // EDI: Loop counter, untagged integer. |
| // EAX: Hash code, untagged integer. |
| Label loop, done, set_hash_code; |
| __ Bind(&loop); |
| __ cmpl(EDI, ECX); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| // Add to hash code: (hash_ is uint32) |
| // hash_ += ch; |
| // hash_ += hash_ << 10; |
| // hash_ ^= hash_ >> 6; |
| // Get one characters (ch). |
| __ movzxb(EDX, FieldAddress(EBX, EDI, TIMES_1, OneByteString::data_offset())); |
| // EDX: ch and temporary. |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(10)); |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shrl(EDX, Immediate(6)); |
| __ xorl(EAX, EDX); |
| |
| __ incl(EDI); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // Finalize: |
| // hash_ += hash_ << 3; |
| // hash_ ^= hash_ >> 11; |
| // hash_ += hash_ << 15; |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(3)); |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shrl(EDX, Immediate(11)); |
| __ xorl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(15)); |
| __ addl(EAX, EDX); |
| // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| __ andl(EAX, |
| Immediate(((static_cast<intptr_t>(1) << String::kHashBits) - 1))); |
| |
| // return hash_ == 0 ? 1 : hash_; |
| __ cmpl(EAX, Immediate(0)); |
| __ j(NOT_EQUAL, &set_hash_code, Assembler::kNearJump); |
| __ incl(EAX); |
| __ Bind(&set_hash_code); |
| __ SmiTag(EAX); |
| __ movl(FieldAddress(EBX, String::hash_offset()), EAX); |
| __ ret(); |
| return true; |
| } |
| |
| |
| // Allocates one-byte string of length 'end - start'. The content is not |
| // initialized. |
| static void TryAllocateOnebyteString(Assembler* assembler, |
| Label* failure, |
| intptr_t start_index_offset, |
| intptr_t end_index_offset) { |
| __ movl(EDI, Address(ESP, + end_index_offset)); |
| __ subl(EDI, Address(ESP, + start_index_offset)); |
| const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1; |
| __ SmiUntag(EDI); |
| __ leal(EDI, Address(EDI, TIMES_1, fixed_size)); // EDI is a Smi. |
| __ andl(EDI, Immediate(-kObjectAlignment)); |
| |
| Isolate* isolate = Isolate::Current(); |
| Heap* heap = isolate->heap(); |
| |
| __ movl(EAX, Address::Absolute(heap->TopAddress())); |
| __ movl(EBX, EAX); |
| |
| // EDI: allocation size. |
| __ addl(EBX, EDI); |
| __ j(CARRY, failure); |
| |
| // Check if the allocation fits into the remaining space. |
| // EAX: potential new object start. |
| // EBX: potential next object start. |
| // EDI: allocation size. |
| __ cmpl(EBX, Address::Absolute(heap->EndAddress())); |
| __ j(ABOVE_EQUAL, failure); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movl(Address::Absolute(heap->TopAddress()), EBX); |
| __ addl(EAX, Immediate(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // EAX: new object start as a tagged pointer. |
| // EBX: new object end address. |
| // EDI: allocation size. |
| { |
| Label size_tag_overflow, done; |
| __ cmpl(EDI, Immediate(RawObject::SizeTag::kMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shll(EDI, Immediate(RawObject::kSizeTagBit - kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ xorl(EDI, EDI); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| const Class& cls = |
| Class::Handle(isolate->object_store()->one_byte_string_class()); |
| __ orl(EDI, Immediate(RawObject::ClassIdTag::encode(cls.id()))); |
| __ movl(FieldAddress(EAX, String::tags_offset()), EDI); // Tags. |
| } |
| |
| // Set the length field. |
| __ movl(EDI, Address(ESP, + end_index_offset)); |
| __ subl(EDI, Address(ESP, + start_index_offset)); // Length. |
| __ StoreIntoObjectNoBarrier(EAX, |
| FieldAddress(EAX, String::length_offset()), |
| EDI); |
| // Clear hash. |
| __ movl(FieldAddress(EAX, String::hash_offset()), Immediate(0)); |
| } |
| |
| |
| // Arg0: Onebyte String |
| // Arg1: Start index as Smi. |
| // Arg2: End index as Smi. |
| // The indexes must be valid. |
| bool Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) { |
| const intptr_t kStringOffset = 3 * kWordSize; |
| const intptr_t kStartIndexOffset = 2 * kWordSize; |
| const intptr_t kEndIndexOffset = 1 * kWordSize; |
| Label fall_through; |
| TryAllocateOnebyteString( |
| assembler, &fall_through, kStartIndexOffset, kEndIndexOffset); |
| // EAX: new string as tagged pointer. |
| // Copy string. |
| __ movl(EDI, Address(ESP, + kStringOffset)); |
| __ movl(EBX, Address(ESP, + kStartIndexOffset)); |
| __ SmiUntag(EBX); |
| __ leal(EDI, FieldAddress(EDI, EBX, TIMES_1, OneByteString::data_offset())); |
| // EDI: Start address to copy from (untagged). |
| // EBX: Untagged start index. |
| __ movl(ECX, Address(ESP, + kEndIndexOffset)); |
| __ SmiUntag(ECX); |
| __ subl(ECX, EBX); |
| __ xorl(EDX, EDX); |
| // EDI: Start address to copy from (untagged). |
| // ECX: Untagged number of bytes to copy. |
| // EAX: Tagged result string. |
| // EDX: Loop counter. |
| // EBX: Scratch register. |
| Label loop, check; |
| __ jmp(&check, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ movzxb(EBX, Address(EDI, EDX, TIMES_1, 0)); |
| __ movb(FieldAddress(EAX, EDX, TIMES_1, OneByteString::data_offset()), BL); |
| __ incl(EDX); |
| __ Bind(&check); |
| __ cmpl(EDX, ECX); |
| __ j(LESS, &loop, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(&fall_through); |
| return false; |
| } |
| |
| #undef __ |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_IA32 |