| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/disassembler.h" |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32. |
| #if defined(TARGET_ARCH_X64) |
| #include "platform/utils.h" |
| #include "vm/allocation.h" |
| #include "vm/heap.h" |
| #include "vm/os.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| |
| namespace dart { |
| |
| |
| enum OperandType { |
| UNSET_OP_ORDER = 0, |
| // Operand size decides between 16, 32 and 64 bit operands. |
| REG_OPER_OP_ORDER = 1, // Register destination, operand source. |
| OPER_REG_OP_ORDER = 2, // Operand destination, register source. |
| // Fixed 8-bit operands. |
| BYTE_SIZE_OPERAND_FLAG = 4, |
| BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG, |
| BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG |
| }; |
| |
| //------------------------------------------------------------------ |
| // Tables |
| //------------------------------------------------------------------ |
| struct ByteMnemonic { |
| int b; // -1 terminates, otherwise must be in range (0..255) |
| OperandType op_order_; |
| const char* mnem; |
| }; |
| |
| |
| static const ByteMnemonic two_operands_instr[] = { |
| { 0x00, BYTE_OPER_REG_OP_ORDER, "add" }, |
| { 0x01, OPER_REG_OP_ORDER, "add" }, |
| { 0x02, BYTE_REG_OPER_OP_ORDER, "add" }, |
| { 0x03, REG_OPER_OP_ORDER, "add" }, |
| { 0x08, BYTE_OPER_REG_OP_ORDER, "or" }, |
| { 0x09, OPER_REG_OP_ORDER, "or" }, |
| { 0x0A, BYTE_REG_OPER_OP_ORDER, "or" }, |
| { 0x0B, REG_OPER_OP_ORDER, "or" }, |
| { 0x10, BYTE_OPER_REG_OP_ORDER, "adc" }, |
| { 0x11, OPER_REG_OP_ORDER, "adc" }, |
| { 0x12, BYTE_REG_OPER_OP_ORDER, "adc" }, |
| { 0x13, REG_OPER_OP_ORDER, "adc" }, |
| { 0x18, BYTE_OPER_REG_OP_ORDER, "sbb" }, |
| { 0x19, OPER_REG_OP_ORDER, "sbb" }, |
| { 0x1A, BYTE_REG_OPER_OP_ORDER, "sbb" }, |
| { 0x1B, REG_OPER_OP_ORDER, "sbb" }, |
| { 0x20, BYTE_OPER_REG_OP_ORDER, "and" }, |
| { 0x21, OPER_REG_OP_ORDER, "and" }, |
| { 0x22, BYTE_REG_OPER_OP_ORDER, "and" }, |
| { 0x23, REG_OPER_OP_ORDER, "and" }, |
| { 0x28, BYTE_OPER_REG_OP_ORDER, "sub" }, |
| { 0x29, OPER_REG_OP_ORDER, "sub" }, |
| { 0x2A, BYTE_REG_OPER_OP_ORDER, "sub" }, |
| { 0x2B, REG_OPER_OP_ORDER, "sub" }, |
| { 0x30, BYTE_OPER_REG_OP_ORDER, "xor" }, |
| { 0x31, OPER_REG_OP_ORDER, "xor" }, |
| { 0x32, BYTE_REG_OPER_OP_ORDER, "xor" }, |
| { 0x33, REG_OPER_OP_ORDER, "xor" }, |
| { 0x38, BYTE_OPER_REG_OP_ORDER, "cmp" }, |
| { 0x39, OPER_REG_OP_ORDER, "cmp" }, |
| { 0x3A, BYTE_REG_OPER_OP_ORDER, "cmp" }, |
| { 0x3B, REG_OPER_OP_ORDER, "cmp" }, |
| { 0x63, REG_OPER_OP_ORDER, "movsxd" }, |
| { 0x84, BYTE_REG_OPER_OP_ORDER, "test" }, |
| { 0x85, REG_OPER_OP_ORDER, "test" }, |
| { 0x86, BYTE_REG_OPER_OP_ORDER, "xchg" }, |
| { 0x87, REG_OPER_OP_ORDER, "xchg" }, |
| { 0x88, BYTE_OPER_REG_OP_ORDER, "mov" }, |
| { 0x89, OPER_REG_OP_ORDER, "mov" }, |
| { 0x8A, BYTE_REG_OPER_OP_ORDER, "mov" }, |
| { 0x8B, REG_OPER_OP_ORDER, "mov" }, |
| { 0x8D, REG_OPER_OP_ORDER, "lea" }, |
| { -1, UNSET_OP_ORDER, "" } |
| }; |
| |
| |
| static const ByteMnemonic zero_operands_instr[] = { |
| { 0xC3, UNSET_OP_ORDER, "ret" }, |
| { 0xC9, UNSET_OP_ORDER, "leave" }, |
| { 0xF4, UNSET_OP_ORDER, "hlt" }, |
| { 0xFC, UNSET_OP_ORDER, "cld" }, |
| { 0xCC, UNSET_OP_ORDER, "int3" }, |
| { 0x60, UNSET_OP_ORDER, "pushad" }, |
| { 0x61, UNSET_OP_ORDER, "popad" }, |
| { 0x9C, UNSET_OP_ORDER, "pushfd" }, |
| { 0x9D, UNSET_OP_ORDER, "popfd" }, |
| { 0x9E, UNSET_OP_ORDER, "sahf" }, |
| { 0x99, UNSET_OP_ORDER, "cdq" }, |
| { 0x9B, UNSET_OP_ORDER, "fwait" }, |
| { 0xA4, UNSET_OP_ORDER, "movs" }, |
| { 0xA5, UNSET_OP_ORDER, "movs" }, |
| { 0xA6, UNSET_OP_ORDER, "cmps" }, |
| { 0xA7, UNSET_OP_ORDER, "cmps" }, |
| { -1, UNSET_OP_ORDER, "" } |
| }; |
| |
| |
| static const ByteMnemonic call_jump_instr[] = { |
| { 0xE8, UNSET_OP_ORDER, "call" }, |
| { 0xE9, UNSET_OP_ORDER, "jmp" }, |
| { -1, UNSET_OP_ORDER, "" } |
| }; |
| |
| |
| static const ByteMnemonic short_immediate_instr[] = { |
| { 0x05, UNSET_OP_ORDER, "add" }, |
| { 0x0D, UNSET_OP_ORDER, "or" }, |
| { 0x15, UNSET_OP_ORDER, "adc" }, |
| { 0x1D, UNSET_OP_ORDER, "sbb" }, |
| { 0x25, UNSET_OP_ORDER, "and" }, |
| { 0x2D, UNSET_OP_ORDER, "sub" }, |
| { 0x35, UNSET_OP_ORDER, "xor" }, |
| { 0x3D, UNSET_OP_ORDER, "cmp" }, |
| { -1, UNSET_OP_ORDER, "" } |
| }; |
| |
| |
| static const char* const conditional_code_suffix[] = { |
| "o", "no", "c", "nc", "z", "nz", "na", "a", |
| "s", "ns", "pe", "po", "l", "ge", "le", "g" |
| }; |
| |
| |
| enum InstructionType { |
| NO_INSTR, |
| ZERO_OPERANDS_INSTR, |
| TWO_OPERANDS_INSTR, |
| JUMP_CONDITIONAL_SHORT_INSTR, |
| REGISTER_INSTR, |
| PUSHPOP_INSTR, // Has implicit 64-bit operand size. |
| MOVE_REG_INSTR, |
| CALL_JUMP_INSTR, |
| SHORT_IMMEDIATE_INSTR |
| }; |
| |
| |
| enum Prefixes { |
| ESCAPE_PREFIX = 0x0F, |
| OPERAND_SIZE_OVERRIDE_PREFIX = 0x66, |
| ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67, |
| REPNE_PREFIX = 0xF2, |
| REP_PREFIX = 0xF3, |
| REPEQ_PREFIX = REP_PREFIX |
| }; |
| |
| |
| struct InstructionDesc { |
| const char* mnem; |
| InstructionType type; |
| OperandType op_order_; |
| bool byte_size_operation; // Fixed 8-bit operation. |
| }; |
| |
| |
| class InstructionTable : public ValueObject { |
| public: |
| InstructionTable(); |
| const InstructionDesc& Get(uint8_t x) const { |
| return instructions_[x]; |
| } |
| |
| private: |
| InstructionDesc instructions_[256]; |
| void Clear(); |
| void Init(); |
| void CopyTable(const ByteMnemonic bm[], InstructionType type); |
| void SetTableRange(InstructionType type, |
| uint8_t start, |
| uint8_t end, |
| bool byte_size, |
| const char* mnem); |
| void AddJumpConditionalShort(); |
| |
| DISALLOW_COPY_AND_ASSIGN(InstructionTable); |
| }; |
| |
| |
| InstructionTable::InstructionTable() { |
| Clear(); |
| Init(); |
| } |
| |
| |
| void InstructionTable::Clear() { |
| for (int i = 0; i < 256; i++) { |
| instructions_[i].mnem = "(bad)"; |
| instructions_[i].type = NO_INSTR; |
| instructions_[i].op_order_ = UNSET_OP_ORDER; |
| instructions_[i].byte_size_operation = false; |
| } |
| } |
| |
| |
| void InstructionTable::Init() { |
| CopyTable(two_operands_instr, TWO_OPERANDS_INSTR); |
| CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR); |
| CopyTable(call_jump_instr, CALL_JUMP_INSTR); |
| CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR); |
| AddJumpConditionalShort(); |
| SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push"); |
| SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop"); |
| SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov"); |
| } |
| |
| |
| void InstructionTable::CopyTable(const ByteMnemonic bm[], |
| InstructionType type) { |
| for (int i = 0; bm[i].b >= 0; i++) { |
| InstructionDesc* id = &instructions_[bm[i].b]; |
| id->mnem = bm[i].mnem; |
| OperandType op_order = bm[i].op_order_; |
| id->op_order_ = |
| static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG); |
| ASSERT(NO_INSTR == id->type); // Information not already entered |
| id->type = type; |
| id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0); |
| } |
| } |
| |
| |
| void InstructionTable::SetTableRange(InstructionType type, |
| uint8_t start, |
| uint8_t end, |
| bool byte_size, |
| const char* mnem) { |
| for (uint8_t b = start; b <= end; b++) { |
| InstructionDesc* id = &instructions_[b]; |
| ASSERT(NO_INSTR == id->type); // Information not already entered |
| id->mnem = mnem; |
| id->type = type; |
| id->byte_size_operation = byte_size; |
| } |
| } |
| |
| |
| void InstructionTable::AddJumpConditionalShort() { |
| for (uint8_t b = 0x70; b <= 0x7F; b++) { |
| InstructionDesc* id = &instructions_[b]; |
| ASSERT(NO_INSTR == id->type); // Information not already entered |
| id->mnem = NULL; // Computed depending on condition code. |
| id->type = JUMP_CONDITIONAL_SHORT_INSTR; |
| } |
| } |
| |
| |
| static InstructionTable instruction_table; |
| |
| |
| static InstructionDesc cmov_instructions[16] = { |
| {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false} |
| }; |
| |
| |
| //------------------------------------------------- |
| // DisassemblerX64 implementation. |
| |
| |
| static const int kMaxXmmRegisters = 16; |
| static const char* xmm_regs[kMaxXmmRegisters] = { |
| "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", |
| "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15" |
| }; |
| |
| class DisassemblerX64 : public ValueObject { |
| public: |
| DisassemblerX64(char* buffer, intptr_t buffer_size) |
| : buffer_(buffer), |
| buffer_size_(buffer_size), |
| buffer_pos_(0), |
| rex_(0), |
| operand_size_(0), |
| group_1_prefix_(0), |
| byte_size_operand_(false) { |
| buffer_[buffer_pos_] = '\0'; |
| } |
| |
| virtual ~DisassemblerX64() { |
| } |
| |
| int InstructionDecode(uword pc); |
| |
| private: |
| enum OperandSize { |
| BYTE_SIZE = 0, |
| WORD_SIZE = 1, |
| DOUBLEWORD_SIZE = 2, |
| QUADWORD_SIZE = 3 |
| }; |
| |
| void setRex(uint8_t rex) { |
| ASSERT(0x40 == (rex & 0xF0)); |
| rex_ = rex; |
| } |
| |
| bool rex() { return rex_ != 0; } |
| |
| bool rex_b() { return (rex_ & 0x01) != 0; } |
| |
| // Actual number of base register given the low bits and the rex.b state. |
| int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); } |
| |
| bool rex_x() { return (rex_ & 0x02) != 0; } |
| |
| bool rex_r() { return (rex_ & 0x04) != 0; } |
| |
| bool rex_w() { return (rex_ & 0x08) != 0; } |
| |
| OperandSize operand_size() { |
| if (byte_size_operand_) return BYTE_SIZE; |
| if (rex_w()) return QUADWORD_SIZE; |
| if (operand_size_ != 0) return WORD_SIZE; |
| return DOUBLEWORD_SIZE; |
| } |
| |
| char operand_size_code() { |
| return "bwlq"[operand_size()]; |
| } |
| |
| // Disassembler helper functions. |
| void get_modrm(uint8_t data, |
| int* mod, |
| int* regop, |
| int* rm) { |
| *mod = (data >> 6) & 3; |
| *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0); |
| *rm = (data & 7) | (rex_b() ? 8 : 0); |
| } |
| |
| void get_sib(uint8_t data, |
| int* scale, |
| int* index, |
| int* base) { |
| *scale = (data >> 6) & 3; |
| *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0); |
| *base = (data & 7) | (rex_b() ? 8 : 0); |
| } |
| |
| const char* NameOfCPURegister(int reg) const { |
| return Assembler::RegisterName(static_cast<Register>(reg)); |
| } |
| |
| const char* NameOfByteCPURegister(int reg) const { |
| return NameOfCPURegister(reg); |
| } |
| |
| const char* NameOfXMMRegister(int reg) const { |
| ASSERT((0 <= reg) && (reg < kMaxXmmRegisters)); |
| return xmm_regs[reg]; |
| } |
| |
| void AppendToBuffer(const char* format, ...) PRINTF_ATTRIBUTE(2, 3); |
| void AppendAddressToBuffer(uint8_t* addr); |
| |
| int PrintOperands(const char* mnem, |
| OperandType op_order, |
| uint8_t* data); |
| |
| typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const; |
| |
| int PrintRightOperandHelper(uint8_t* modrmp, |
| RegisterNameMapping register_name); |
| int PrintRightOperand(uint8_t* modrmp); |
| int PrintRightByteOperand(uint8_t* modrmp); |
| int PrintRightXMMOperand(uint8_t* modrmp); |
| int PrintImmediate(uint8_t* data, OperandSize size); |
| int PrintImmediateOp(uint8_t* data); |
| const char* TwoByteMnemonic(uint8_t opcode); |
| int TwoByteOpcodeInstruction(uint8_t* data); |
| |
| int F6F7Instruction(uint8_t* data); |
| int ShiftInstruction(uint8_t* data); |
| int JumpShort(uint8_t* data); |
| int JumpConditional(uint8_t* data); |
| int JumpConditionalShort(uint8_t* data); |
| int SetCC(uint8_t* data); |
| int FPUInstruction(uint8_t* data); |
| int MemoryFPUInstruction(int escape_opcode, int regop, uint8_t* modrm_start); |
| int RegisterFPUInstruction(int escape_opcode, uint8_t modrm_byte); |
| |
| bool DecodeInstructionType(uint8_t** data); |
| |
| void UnimplementedInstruction() { |
| AppendToBuffer("'Unimplemented Instruction'"); |
| } |
| |
| char* buffer_; // Decode instructions into this buffer. |
| intptr_t buffer_size_; // The size of the buffer_. |
| intptr_t buffer_pos_; // Current character position in the buffer_. |
| |
| // Prefixes parsed |
| uint8_t rex_; |
| uint8_t operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0. |
| // 0xF2, 0xF3, or (if no group 1 prefix is present) 0. |
| uint8_t group_1_prefix_; |
| // Byte size operand override. |
| bool byte_size_operand_; |
| |
| DISALLOW_COPY_AND_ASSIGN(DisassemblerX64); |
| }; |
| |
| |
| // Append the str to the output buffer. |
| void DisassemblerX64::AppendToBuffer(const char* format, ...) { |
| intptr_t available = buffer_size_ - buffer_pos_; |
| if (available <= 1) { |
| ASSERT(buffer_[buffer_pos_] == '\0'); |
| return; |
| } |
| char* buf = buffer_ + buffer_pos_; |
| va_list args; |
| va_start(args, format); |
| int length = OS::VSNPrint(buf, available, format, args); |
| va_end(args); |
| buffer_pos_ = |
| (length >= available) ? (buffer_size_ - 1) : (buffer_pos_ + length); |
| ASSERT(buffer_pos_ < buffer_size_); |
| } |
| |
| |
| int DisassemblerX64::PrintRightOperandHelper( |
| uint8_t* modrmp, |
| RegisterNameMapping direct_register_name) { |
| int mod, regop, rm; |
| get_modrm(*modrmp, &mod, ®op, &rm); |
| RegisterNameMapping register_name = (mod == 3) ? direct_register_name : |
| &DisassemblerX64::NameOfCPURegister; |
| switch (mod) { |
| case 0: |
| if ((rm & 7) == 5) { |
| int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1); |
| AppendToBuffer("[%#x]", disp); |
| return 5; |
| } else if ((rm & 7) == 4) { |
| // Codes for SIB byte. |
| uint8_t sib = *(modrmp + 1); |
| int scale, index, base; |
| get_sib(sib, &scale, &index, &base); |
| if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) { |
| // index == rsp means no index. Only use sib byte with no index for |
| // rsp and r12 base. |
| AppendToBuffer("[%s]", NameOfCPURegister(base)); |
| return 2; |
| } else if (base == 5) { |
| // base == rbp means no base register (when mod == 0). |
| int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2); |
| AppendToBuffer("[%s*%d+%#x]", |
| NameOfCPURegister(index), |
| 1 << scale, disp); |
| return 6; |
| } else if (index != 4 && base != 5) { |
| // [base+index*scale] |
| AppendToBuffer("[%s+%s*%d]", |
| NameOfCPURegister(base), |
| NameOfCPURegister(index), |
| 1 << scale); |
| return 2; |
| } else { |
| UnimplementedInstruction(); |
| return 1; |
| } |
| } else { |
| AppendToBuffer("[%s]", NameOfCPURegister(rm)); |
| return 1; |
| } |
| break; |
| case 1: // fall through |
| case 2: |
| if ((rm & 7) == 4) { |
| uint8_t sib = *(modrmp + 1); |
| int scale, index, base; |
| get_sib(sib, &scale, &index, &base); |
| int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2) |
| : *reinterpret_cast<char*>(modrmp + 2); |
| if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) { |
| if (-disp > 0) { |
| AppendToBuffer("[%s-%#x]", NameOfCPURegister(base), -disp); |
| } else { |
| AppendToBuffer("[%s+%#x]", NameOfCPURegister(base), disp); |
| } |
| } else { |
| if (-disp > 0) { |
| AppendToBuffer("[%s+%s*%d-%#x]", |
| NameOfCPURegister(base), |
| NameOfCPURegister(index), |
| 1 << scale, |
| -disp); |
| } else { |
| AppendToBuffer("[%s+%s*%d+%#x]", |
| NameOfCPURegister(base), |
| NameOfCPURegister(index), |
| 1 << scale, |
| disp); |
| } |
| } |
| return mod == 2 ? 6 : 3; |
| } else { |
| // No sib. |
| int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1) |
| : *reinterpret_cast<char*>(modrmp + 1); |
| if (-disp > 0) { |
| AppendToBuffer("[%s-%#x]", NameOfCPURegister(rm), -disp); |
| } else { |
| AppendToBuffer("[%s+%#x]", NameOfCPURegister(rm), disp); |
| } |
| return (mod == 2) ? 5 : 2; |
| } |
| break; |
| case 3: |
| AppendToBuffer("%s", (this->*register_name)(rm)); |
| return 1; |
| default: |
| UnimplementedInstruction(); |
| return 1; |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| int DisassemblerX64::PrintImmediate(uint8_t* data, OperandSize size) { |
| int64_t value; |
| int count; |
| switch (size) { |
| case BYTE_SIZE: |
| value = *data; |
| count = 1; |
| break; |
| case WORD_SIZE: |
| value = *reinterpret_cast<int16_t*>(data); |
| count = 2; |
| break; |
| case DOUBLEWORD_SIZE: |
| value = *reinterpret_cast<uint32_t*>(data); |
| count = 4; |
| break; |
| case QUADWORD_SIZE: |
| value = *reinterpret_cast<int32_t*>(data); |
| count = 4; |
| break; |
| default: |
| UNREACHABLE(); |
| value = 0; // Initialize variables on all paths to satisfy the compiler. |
| count = 0; |
| } |
| AppendToBuffer("%#"Px64"", value); |
| return count; |
| } |
| |
| |
| // Returns number of bytes used by machine instruction, including *data byte. |
| // Writes immediate instructions to 'tmp_buffer_'. |
| int DisassemblerX64::PrintImmediateOp(uint8_t* data) { |
| bool byte_size_immediate = (*data & 0x02) != 0; |
| uint8_t modrm = *(data + 1); |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| const char* mnem = "Imm???"; |
| switch (regop) { |
| case 0: |
| mnem = "add"; |
| break; |
| case 1: |
| mnem = "or"; |
| break; |
| case 2: |
| mnem = "adc"; |
| break; |
| case 3: |
| mnem = "sbb"; |
| break; |
| case 4: |
| mnem = "and"; |
| break; |
| case 5: |
| mnem = "sub"; |
| break; |
| case 6: |
| mnem = "xor"; |
| break; |
| case 7: |
| mnem = "cmp"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| AppendToBuffer("%s%c ", mnem, operand_size_code()); |
| int count = PrintRightOperand(data + 1); |
| AppendToBuffer(","); |
| OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size(); |
| count += PrintImmediate(data + 1 + count, immediate_size); |
| return 1 + count; |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::F6F7Instruction(uint8_t* data) { |
| ASSERT(*data == 0xF7 || *data == 0xF6); |
| uint8_t modrm = *(data + 1); |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| if (mod == 3 && regop != 0) { |
| const char* mnem = NULL; |
| switch (regop) { |
| case 2: |
| mnem = "not"; |
| break; |
| case 3: |
| mnem = "neg"; |
| break; |
| case 4: |
| mnem = "mul"; |
| break; |
| case 7: |
| mnem = "idiv"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| AppendToBuffer("%s%c %s", |
| mnem, |
| operand_size_code(), |
| NameOfCPURegister(rm)); |
| return 2; |
| } else if (regop == 0) { |
| AppendToBuffer("test%c ", operand_size_code()); |
| int count = PrintRightOperand(data + 1); // Use name of 64-bit register. |
| AppendToBuffer(",0x"); |
| count += PrintImmediate(data + 1 + count, operand_size()); |
| return 1 + count; |
| } else { |
| UnimplementedInstruction(); |
| return 2; |
| } |
| } |
| |
| |
| int DisassemblerX64::ShiftInstruction(uint8_t* data) { |
| uint8_t op = *data & (~1); |
| if (op != 0xD0 && op != 0xD2 && op != 0xC0) { |
| UnimplementedInstruction(); |
| return 1; |
| } |
| uint8_t modrm = *(data + 1); |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| regop &= 0x7; // The REX.R bit does not affect the operation. |
| int imm8 = -1; |
| int num_bytes = 2; |
| if (mod != 3) { |
| UnimplementedInstruction(); |
| return num_bytes; |
| } |
| const char* mnem = NULL; |
| switch (regop) { |
| case 0: |
| mnem = "rol"; |
| break; |
| case 1: |
| mnem = "ror"; |
| break; |
| case 2: |
| mnem = "rcl"; |
| break; |
| case 3: |
| mnem = "rcr"; |
| break; |
| case 4: |
| mnem = "shl"; |
| break; |
| case 5: |
| mnem = "shr"; |
| break; |
| case 7: |
| mnem = "sar"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| return num_bytes; |
| } |
| ASSERT(NULL != mnem); |
| if (op == 0xD0) { |
| imm8 = 1; |
| } else if (op == 0xC0) { |
| imm8 = *(data + 2); |
| num_bytes = 3; |
| } |
| AppendToBuffer("%s%c %s,", |
| mnem, |
| operand_size_code(), |
| byte_size_operand_ ? NameOfByteCPURegister(rm) |
| : NameOfCPURegister(rm)); |
| if (op == 0xD2) { |
| AppendToBuffer("cl"); |
| } else { |
| AppendToBuffer("%d", imm8); |
| } |
| return num_bytes; |
| } |
| |
| |
| int DisassemblerX64::PrintRightOperand(uint8_t* modrmp) { |
| return PrintRightOperandHelper(modrmp, |
| &DisassemblerX64::NameOfCPURegister); |
| } |
| |
| |
| int DisassemblerX64::PrintRightByteOperand(uint8_t* modrmp) { |
| return PrintRightOperandHelper(modrmp, |
| &DisassemblerX64::NameOfByteCPURegister); |
| } |
| |
| |
| int DisassemblerX64::PrintRightXMMOperand(uint8_t* modrmp) { |
| return PrintRightOperandHelper(modrmp, |
| &DisassemblerX64::NameOfXMMRegister); |
| } |
| |
| |
| // Returns number of bytes used including the current *data. |
| // Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'. |
| int DisassemblerX64::PrintOperands(const char* mnem, |
| OperandType op_order, |
| uint8_t* data) { |
| uint8_t modrm = *data; |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| int advance = 0; |
| const char* register_name = |
| byte_size_operand_ ? NameOfByteCPURegister(regop) |
| : NameOfCPURegister(regop); |
| switch (op_order) { |
| case REG_OPER_OP_ORDER: { |
| AppendToBuffer("%s%c %s,", |
| mnem, |
| operand_size_code(), |
| register_name); |
| advance = byte_size_operand_ ? PrintRightByteOperand(data) |
| : PrintRightOperand(data); |
| break; |
| } |
| case OPER_REG_OP_ORDER: { |
| AppendToBuffer("%s%c ", mnem, operand_size_code()); |
| advance = byte_size_operand_ ? PrintRightByteOperand(data) |
| : PrintRightOperand(data); |
| AppendToBuffer(",%s", register_name); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| return advance; |
| } |
| |
| |
| static const char* ObjectToCStringNoGC(const Object& obj) { |
| if (obj.IsSmi() || |
| obj.IsMint() || |
| obj.IsDouble() || |
| obj.IsString() || |
| obj.IsNull() || |
| obj.IsBool() || |
| obj.IsClass() || |
| obj.IsFunction() || |
| obj.IsICData() || |
| obj.IsField()) { |
| return obj.ToCString(); |
| } |
| |
| const Class& clazz = Class::Handle(obj.clazz()); |
| const char* full_class_name = clazz.ToCString(); |
| const char* format = "instance of %s"; |
| intptr_t len = OS::SNPrint(NULL, 0, format, full_class_name) + 1; |
| char* chars = Isolate::Current()->current_zone()->Alloc<char>(len); |
| OS::SNPrint(chars, len, format, full_class_name); |
| return chars; |
| } |
| |
| |
| void DisassemblerX64::AppendAddressToBuffer(uint8_t* addr_byte_ptr) { |
| NoGCScope no_gc; |
| uword addr = reinterpret_cast<uword>(addr_byte_ptr); |
| AppendToBuffer("%#"Px"", addr); |
| // Try to print as heap object or stub name |
| if (((addr & kSmiTagMask) == kHeapObjectTag) && |
| !Isolate::Current()->heap()->CodeContains(addr) && |
| Isolate::Current()->heap()->Contains(addr - kHeapObjectTag)) { |
| const Object& obj = Object::Handle(reinterpret_cast<RawObject*>(addr)); |
| if (obj.IsArray()) { |
| const Array& arr = Array::Cast(obj); |
| intptr_t len = arr.Length(); |
| if (len > 5) len = 5; // Print a max of 5 elements. |
| AppendToBuffer(" Array["); |
| int i = 0; |
| Object& element = Object::Handle(); |
| while (i < len) { |
| element = arr.At(i); |
| if (i > 0) AppendToBuffer(", "); |
| AppendToBuffer("%s", ObjectToCStringNoGC(element)); |
| i++; |
| } |
| if (i < arr.Length()) AppendToBuffer(", ..."); |
| AppendToBuffer("]"); |
| return; |
| } |
| AppendToBuffer(" '%s'", ObjectToCStringNoGC(obj)); |
| } else { |
| // 'addr' is not an object, but probably a code address. |
| const char* name_of_stub = StubCode::NameOfStub(addr); |
| if (name_of_stub != NULL) { |
| AppendToBuffer(" [stub: %s]", name_of_stub); |
| } else { |
| // Print only if jumping to entry point. |
| const Code& code = Code::Handle(Code::LookupCode(addr)); |
| if (!code.IsNull() && (code.EntryPoint() == addr)) { |
| const Function& function = Function::Handle(code.function()); |
| if (function.IsNull()) { |
| AppendToBuffer(" [ stub ]"); |
| } else { |
| const char* name_of_function = function.ToFullyQualifiedCString(); |
| AppendToBuffer(" [%s]", name_of_function); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpShort(uint8_t* data) { |
| ASSERT(0xEB == *data); |
| uint8_t b = *(data + 1); |
| uint8_t* dest = data + static_cast<int8_t>(b) + 2; |
| AppendToBuffer("jmp "); |
| AppendAddressToBuffer(dest); |
| return 2; |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpConditional(uint8_t* data) { |
| ASSERT(0x0F == *data); |
| uint8_t cond = *(data + 1) & 0x0F; |
| uint8_t* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6; |
| const char* mnem = conditional_code_suffix[cond]; |
| AppendToBuffer("j%s ", mnem); |
| AppendAddressToBuffer(dest); |
| return 6; // includes 0x0F |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpConditionalShort(uint8_t* data) { |
| uint8_t cond = *data & 0x0F; |
| uint8_t b = *(data + 1); |
| uint8_t* dest = data + static_cast<uint8_t>(b) + 2; |
| const char* mnem = conditional_code_suffix[cond]; |
| AppendToBuffer("j%s ", mnem); |
| AppendAddressToBuffer(dest); |
| return 2; |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::SetCC(uint8_t* data) { |
| ASSERT(0x0F == *data); |
| uint8_t cond = *(data + 1) & 0x0F; |
| const char* mnem = conditional_code_suffix[cond]; |
| AppendToBuffer("set%s%c ", mnem, operand_size_code()); |
| PrintRightByteOperand(data + 2); |
| return 3; // includes 0x0F |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::FPUInstruction(uint8_t* data) { |
| uint8_t escape_opcode = *data; |
| ASSERT(0xD8 == (escape_opcode & 0xF8)); |
| uint8_t modrm_byte = *(data+1); |
| |
| if (modrm_byte >= 0xC0) { |
| return RegisterFPUInstruction(escape_opcode, modrm_byte); |
| } else { |
| return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1); |
| } |
| } |
| |
| |
| int DisassemblerX64::MemoryFPUInstruction(int escape_opcode, |
| int modrm_byte, |
| uint8_t* modrm_start) { |
| const char* mnem = "?"; |
| int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte. |
| switch (escape_opcode) { |
| case 0xD9: switch (regop) { |
| case 0: mnem = "fld_s"; break; |
| case 3: mnem = "fstp_s"; break; |
| case 7: mnem = "fstcw"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDB: switch (regop) { |
| case 0: mnem = "fild_s"; break; |
| case 1: mnem = "fisttp_s"; break; |
| case 2: mnem = "fist_s"; break; |
| case 3: mnem = "fistp_s"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDD: switch (regop) { |
| case 0: mnem = "fld_d"; break; |
| case 3: mnem = "fstp_d"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDF: switch (regop) { |
| case 5: mnem = "fild_d"; break; |
| case 7: mnem = "fistp_d"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| default: UnimplementedInstruction(); |
| } |
| AppendToBuffer("%s ", mnem); |
| int count = PrintRightOperand(modrm_start); |
| return count + 1; |
| } |
| |
| int DisassemblerX64::RegisterFPUInstruction(int escape_opcode, |
| uint8_t modrm_byte) { |
| bool has_register = false; // Is the FPU register encoded in modrm_byte? |
| const char* mnem = "?"; |
| |
| switch (escape_opcode) { |
| case 0xD8: |
| UnimplementedInstruction(); |
| break; |
| |
| case 0xD9: |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: |
| mnem = "fld"; |
| has_register = true; |
| break; |
| case 0xC8: |
| mnem = "fxch"; |
| has_register = true; |
| break; |
| default: |
| switch (modrm_byte) { |
| case 0xE0: mnem = "fchs"; break; |
| case 0xE1: mnem = "fabs"; break; |
| case 0xE3: mnem = "fninit"; break; |
| case 0xE4: mnem = "ftst"; break; |
| case 0xE8: mnem = "fld1"; break; |
| case 0xEB: mnem = "fldpi"; break; |
| case 0xED: mnem = "fldln2"; break; |
| case 0xEE: mnem = "fldz"; break; |
| case 0xF0: mnem = "f2xm1"; break; |
| case 0xF1: mnem = "fyl2x"; break; |
| case 0xF2: mnem = "fptan"; break; |
| case 0xF5: mnem = "fprem1"; break; |
| case 0xF7: mnem = "fincstp"; break; |
| case 0xF8: mnem = "fprem"; break; |
| case 0xFD: mnem = "fscale"; break; |
| case 0xFE: mnem = "fsin"; break; |
| case 0xFF: mnem = "fcos"; break; |
| default: UnimplementedInstruction(); |
| } |
| } |
| break; |
| |
| case 0xDA: |
| if (modrm_byte == 0xE9) { |
| mnem = "fucompp"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDB: |
| if ((modrm_byte & 0xF8) == 0xE8) { |
| mnem = "fucomi"; |
| has_register = true; |
| } else if (modrm_byte == 0xE2) { |
| mnem = "fclex"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDC: |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: mnem = "fadd"; break; |
| case 0xE8: mnem = "fsub"; break; |
| case 0xC8: mnem = "fmul"; break; |
| case 0xF8: mnem = "fdiv"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDD: |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: mnem = "ffree"; break; |
| case 0xD8: mnem = "fstp"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDE: |
| if (modrm_byte == 0xD9) { |
| mnem = "fcompp"; |
| } else { |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: mnem = "faddp"; break; |
| case 0xE8: mnem = "fsubp"; break; |
| case 0xC8: mnem = "fmulp"; break; |
| case 0xF8: mnem = "fdivp"; break; |
| default: UnimplementedInstruction(); |
| } |
| } |
| break; |
| |
| case 0xDF: |
| if (modrm_byte == 0xE0) { |
| mnem = "fnstsw_ax"; |
| } else if ((modrm_byte & 0xF8) == 0xE8) { |
| mnem = "fucomip"; |
| has_register = true; |
| } |
| break; |
| |
| default: UnimplementedInstruction(); |
| } |
| |
| if (has_register) { |
| AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7); |
| } else { |
| AppendToBuffer("%s", mnem); |
| } |
| return 2; |
| } |
| |
| |
| // TODO(srdjan): Should we add a branch hint argument? |
| bool DisassemblerX64::DecodeInstructionType(uint8_t** data) { |
| uint8_t current; |
| |
| // Scan for prefixes. |
| while (true) { |
| current = **data; |
| if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix. |
| operand_size_ = current; |
| } else if ((current & 0xF0) == 0x40) { // REX prefix. |
| setRex(current); |
| // TODO(srdjan): Should we enable printing of REX.W? |
| // if (rex_w()) AppendToBuffer("REX.W "); |
| } else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3). |
| group_1_prefix_ = current; |
| } else { // Not a prefix - an opcode. |
| break; |
| } |
| (*data)++; |
| } |
| |
| const InstructionDesc& idesc = instruction_table.Get(current); |
| byte_size_operand_ = idesc.byte_size_operation; |
| |
| switch (idesc.type) { |
| case ZERO_OPERANDS_INSTR: |
| if (current >= 0xA4 && current <= 0xA7) { |
| // String move or compare operations. |
| if (group_1_prefix_ == REP_PREFIX) { |
| // REP. |
| AppendToBuffer("rep "); |
| } |
| // TODO(srdjan): Should we enable printing of REX.W? |
| // if (rex_w()) AppendToBuffer("REX.W "); |
| AppendToBuffer("%s%c", idesc.mnem, operand_size_code()); |
| } else { |
| AppendToBuffer("%s%c", idesc.mnem, operand_size_code()); |
| } |
| (*data)++; |
| break; |
| |
| case TWO_OPERANDS_INSTR: |
| (*data)++; |
| (*data) += PrintOperands(idesc.mnem, idesc.op_order_, *data); |
| break; |
| |
| case JUMP_CONDITIONAL_SHORT_INSTR: |
| (*data) += JumpConditionalShort(*data); |
| break; |
| |
| case REGISTER_INSTR: |
| AppendToBuffer("%s%c %s", |
| idesc.mnem, |
| operand_size_code(), |
| NameOfCPURegister(base_reg(current & 0x07))); |
| (*data)++; |
| break; |
| case PUSHPOP_INSTR: |
| AppendToBuffer("%s %s", |
| idesc.mnem, |
| NameOfCPURegister(base_reg(current & 0x07))); |
| (*data)++; |
| break; |
| case MOVE_REG_INSTR: { |
| uint8_t* addr = NULL; |
| switch (operand_size()) { |
| case WORD_SIZE: |
| addr = reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int16_t*>(*data + 1)); |
| (*data) += 3; |
| break; |
| case DOUBLEWORD_SIZE: |
| addr = reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int32_t*>(*data + 1)); |
| (*data) += 5; |
| break; |
| case QUADWORD_SIZE: |
| addr = reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int64_t*>(*data + 1)); |
| (*data) += 9; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| AppendToBuffer("mov%c %s,", |
| operand_size_code(), |
| NameOfCPURegister(base_reg(current & 0x07))); |
| AppendAddressToBuffer(addr); |
| break; |
| } |
| |
| case CALL_JUMP_INSTR: { |
| uint8_t* addr = *data + *reinterpret_cast<int32_t*>(*data + 1) + 5; |
| AppendToBuffer("%s ", idesc.mnem); |
| AppendAddressToBuffer(addr); |
| (*data) += 5; |
| break; |
| } |
| |
| case SHORT_IMMEDIATE_INSTR: { |
| uint8_t* addr = |
| reinterpret_cast<uint8_t*>(*reinterpret_cast<int32_t*>(*data + 1)); |
| AppendToBuffer("%s rax, ", idesc.mnem); |
| AppendAddressToBuffer(addr); |
| (*data) += 5; |
| break; |
| } |
| |
| case NO_INSTR: |
| return false; |
| |
| default: |
| UNIMPLEMENTED(); // This type is not implemented. |
| } |
| return true; |
| } |
| |
| |
| // Handle all two-byte opcodes, which start with 0x0F. |
| // These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix. |
| // We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A. |
| int DisassemblerX64::TwoByteOpcodeInstruction(uint8_t* data) { |
| uint8_t opcode = *(data + 1); |
| uint8_t* current = data + 2; |
| // At return, "current" points to the start of the next instruction. |
| const char* mnemonic = TwoByteMnemonic(opcode); |
| if (operand_size_ == 0x66) { |
| // 0x66 0x0F prefix. |
| int mod, regop, rm; |
| if (opcode == 0x3A) { |
| uint8_t third_byte = *current; |
| current = data + 3; |
| if (third_byte == 0x17) { |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("extractps "); // reg/m32, xmm, imm8 |
| current += PrintRightOperand(current); |
| AppendToBuffer(", %s, %d", NameOfCPURegister(regop), (*current) & 3); |
| current += 1; |
| } else if (third_byte == 0x0b) { |
| get_modrm(*current, &mod, ®op, &rm); |
| // roundsd xmm, xmm/m64, imm8 |
| AppendToBuffer("roundsd %s, ", NameOfCPURegister(regop)); |
| current += PrintRightOperand(current); |
| AppendToBuffer(", %d", (*current) & 3); |
| current += 1; |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else { |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x1f) { |
| current++; |
| if (rm == 4) { // SIB byte present. |
| current++; |
| } |
| if (mod == 1) { // Byte displacement. |
| current += 1; |
| } else if (mod == 2) { // 32-bit displacement. |
| current += 4; |
| } // else no immediate displacement. |
| AppendToBuffer("nop"); |
| } else if (opcode == 0x28) { |
| AppendToBuffer("movapd %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x29) { |
| AppendToBuffer("movapd "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x6E) { |
| AppendToBuffer("mov%c %s,", |
| rex_w() ? 'q' : 'd', |
| NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x6F) { |
| AppendToBuffer("movdqa %s,", |
| NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x7E) { |
| AppendToBuffer("mov%c ", |
| rex_w() ? 'q' : 'd'); |
| current += PrintRightOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x7F) { |
| AppendToBuffer("movdqa "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0xD6) { |
| AppendToBuffer("movq "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x50) { |
| AppendToBuffer("movmskpd %s,", NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else { |
| const char* mnemonic = "?"; |
| if (opcode == 0x54) { |
| mnemonic = "andpd"; |
| } else if (opcode == 0x56) { |
| mnemonic = "orpd"; |
| } else if (opcode == 0x57) { |
| mnemonic = "xorpd"; |
| } else if (opcode == 0x2E) { |
| mnemonic = "ucomisd"; |
| } else if (opcode == 0x2F) { |
| mnemonic = "comisd"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } |
| } |
| } else if (group_1_prefix_ == 0xF2) { |
| // Beginning of instructions with prefix 0xF2. |
| |
| if (opcode == 0x11 || opcode == 0x10) { |
| // MOVSD: Move scalar double-precision fp to/from/between XMM registers. |
| AppendToBuffer("movsd "); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x11) { |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(",%s", NameOfXMMRegister(regop)); |
| } else { |
| AppendToBuffer("%s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } |
| } else if (opcode == 0x2A) { |
| // CVTSI2SD: integer to XMM double conversion. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("%sd %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x2C) { |
| // CVTTSD2SI: |
| // Convert with truncation scalar double-precision FP to integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("cvttsd2si%c %s,", |
| operand_size_code(), NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x2D) { |
| // CVTSD2SI: Convert scalar double-precision FP to integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("cvtsd2si%c %s,", |
| operand_size_code(), NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) { |
| // XMM arithmetic. Mnemonic was retrieved at the start of this function. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else if (group_1_prefix_ == 0xF3) { |
| // Instructions with prefix 0xF3. |
| if (opcode == 0x11 || opcode == 0x10) { |
| // MOVSS: Move scalar double-precision fp to/from/between XMM registers. |
| AppendToBuffer("movss "); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x11) { |
| current += PrintRightOperand(current); |
| AppendToBuffer(",%s", NameOfXMMRegister(regop)); |
| } else { |
| AppendToBuffer("%s,", NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } |
| } else if (opcode == 0x2A) { |
| // CVTSI2SS: integer to XMM single conversion. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("%ss %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x2C) { |
| // CVTTSS2SI: |
| // Convert with truncation scalar single-precision FP to dword integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("cvttss2si%c %s,", |
| operand_size_code(), NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x5A) { |
| // CVTSS2SD: |
| // Convert scalar single-precision FP to scalar double-precision FP. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("cvtss2sd %s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x7E) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("movq %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else if (opcode == 0x1F) { |
| // NOP |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| current++; |
| if (rm == 4) { // SIB byte present. |
| current++; |
| } |
| if (mod == 1) { // Byte displacement. |
| current += 1; |
| } else if (mod == 2) { // 32-bit displacement. |
| current += 4; |
| } // else no immediate displacement. |
| AppendToBuffer("nop"); |
| |
| } else if (opcode == 0x28) { |
| // movaps xmm, xmm/m128 |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("movaps %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x29) { |
| // movaps xmm/m128, xmm |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("movaps "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x11) { |
| // movups xmm/m128, xmm |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("movups "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x10) { |
| // movups xmm, xmm/m128 |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("movups %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0xA2 || opcode == 0x31) { |
| // RDTSC or CPUID |
| AppendToBuffer("%s", mnemonic); |
| |
| } else if ((opcode & 0xF0) == 0x40) { |
| // CMOVcc: conditional move. |
| int condition = opcode & 0x0F; |
| const InstructionDesc& idesc = cmov_instructions[condition]; |
| byte_size_operand_ = idesc.byte_size_operation; |
| current += PrintOperands(idesc.mnem, idesc.op_order_, current); |
| |
| } else if (opcode == 0x51 || opcode == 0x52 || opcode == 0x53 || |
| opcode == 0x54 || opcode == 0x56 || opcode == 0x57 || |
| opcode == 0x58 || opcode == 0x59 || opcode == 0x5C || |
| opcode == 0x5D || opcode == 0x5E || opcode == 0x5F) { |
| const char* mnemonic = NULL; |
| switch (opcode) { |
| case 0x51: mnemonic = "sqrtps"; break; |
| case 0x52: mnemonic = "rsqrtps"; break; |
| case 0x53: mnemonic = "rcpps"; break; |
| case 0x54: mnemonic = "andps"; break; |
| case 0x56: mnemonic = "orps"; break; |
| case 0x57: mnemonic = "xorps"; break; |
| case 0x58: mnemonic = "addps"; break; |
| case 0x59: mnemonic = "mulps"; break; |
| case 0x5C: mnemonic = "subps"; break; |
| case 0x5D: mnemonic = "minps"; break; |
| case 0x5E: mnemonic = "divps"; break; |
| case 0x5F: mnemonic = "maxps"; break; |
| default: UNREACHABLE(); |
| } |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("%s %s, ", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0xC2 || opcode == 0xC6) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0xC2) { |
| AppendToBuffer("cmpps %s, ", NameOfXMMRegister(regop)); |
| } else { |
| ASSERT(opcode == 0xC6); |
| AppendToBuffer("shufps %s, ", NameOfXMMRegister(regop)); |
| } |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(" [%x]", *current); |
| current++; |
| } else if ((opcode & 0xF0) == 0x80) { |
| // Jcc: Conditional jump (branch). |
| current = data + JumpConditional(data); |
| |
| } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 || |
| opcode == 0xB7 || opcode == 0xAF) { |
| // Size-extending moves, IMUL. |
| current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current); |
| |
| } else if ((opcode & 0xF0) == 0x90) { |
| // SETcc: Set byte on condition. Needs pointer to beginning of instruction. |
| current = data + SetCC(data); |
| |
| } else if (opcode == 0xAB || opcode == 0xA5 || opcode == 0xAD) { |
| // SHLD, SHRD (double-precision shift), BTS (bit set). |
| AppendToBuffer("%s ", mnemonic); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| current += PrintRightOperand(current); |
| if (opcode == 0xAB) { |
| AppendToBuffer(",%s", NameOfCPURegister(regop)); |
| } else { |
| AppendToBuffer(",%s,cl", NameOfCPURegister(regop)); |
| } |
| } else { |
| UnimplementedInstruction(); |
| } |
| return static_cast<int>(current - data); |
| } |
| |
| |
| // Mnemonics for two-byte opcode instructions starting with 0x0F. |
| // The argument is the second byte of the two-byte opcode. |
| // Returns NULL if the instruction is not handled here. |
| const char* DisassemblerX64::TwoByteMnemonic(uint8_t opcode) { |
| switch (opcode) { |
| case 0x1F: |
| return "nop"; |
| case 0x2A: // F2/F3 prefix. |
| return "cvtsi2s"; |
| case 0x31: |
| return "rdtsc"; |
| case 0x51: // F2 prefix. |
| return "sqrtsd"; |
| case 0x58: // F2 prefix. |
| return "addsd"; |
| case 0x59: // F2 prefix. |
| return "mulsd"; |
| case 0x5C: // F2 prefix. |
| return "subsd"; |
| case 0x5E: // F2 prefix. |
| return "divsd"; |
| case 0xA2: |
| return "cpuid"; |
| case 0xA5: |
| return "shld"; |
| case 0xAB: |
| return "bts"; |
| case 0xAD: |
| return "shrd"; |
| case 0xAF: |
| return "imul"; |
| case 0xB6: |
| return "movzxb"; |
| case 0xB7: |
| return "movzxw"; |
| case 0xBE: |
| return "movsxb"; |
| case 0xBF: |
| return "movsxw"; |
| default: |
| return NULL; |
| } |
| } |
| |
| |
| int DisassemblerX64::InstructionDecode(uword pc) { |
| uint8_t* data = reinterpret_cast<uint8_t*>(pc); |
| |
| const bool processed = DecodeInstructionType(&data); |
| |
| if (!processed) { |
| switch (*data) { |
| case 0xC2: |
| AppendToBuffer("ret %#x", *reinterpret_cast<uint16_t*>(data + 1)); |
| data += 3; |
| break; |
| |
| case 0xC8: |
| AppendToBuffer("enter %d, %d", |
| *reinterpret_cast<uint16_t*>(data + 1), |
| data[3]); |
| data += 4; |
| break; |
| |
| case 0x69: // fall through |
| case 0x6B: { |
| int mod, regop, rm; |
| get_modrm(*(data + 1), &mod, ®op, &rm); |
| int32_t imm = *data == 0x6B ? *(data + 2) |
| : *reinterpret_cast<int32_t*>(data + 2); |
| AppendToBuffer("imul%c %s,%s,%#x", |
| operand_size_code(), |
| NameOfCPURegister(regop), |
| NameOfCPURegister(rm), imm); |
| data += 2 + (*data == 0x6B ? 1 : 4); |
| break; |
| } |
| |
| case 0x81: // fall through |
| case 0x83: // 0x81 with sign extension bit set |
| data += PrintImmediateOp(data); |
| break; |
| |
| case 0x0F: |
| data += TwoByteOpcodeInstruction(data); |
| break; |
| |
| case 0x8F: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (regop == 0) { |
| AppendToBuffer("pop "); |
| data += PrintRightOperand(data); |
| } |
| } |
| break; |
| |
| case 0xFF: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| const char* mnem = NULL; |
| switch (regop) { |
| case 0: |
| mnem = "inc"; |
| break; |
| case 1: |
| mnem = "dec"; |
| break; |
| case 2: |
| mnem = "call"; |
| break; |
| case 4: |
| mnem = "jmp"; |
| break; |
| case 6: |
| mnem = "push"; |
| break; |
| default: |
| mnem = "???"; |
| } |
| if (regop <= 1) { |
| AppendToBuffer("%s%c ", mnem, operand_size_code()); |
| } else { |
| AppendToBuffer("%s ", mnem); |
| } |
| data += PrintRightOperand(data); |
| } |
| break; |
| |
| case 0xC7: // imm32, fall through |
| case 0xC6: // imm8 |
| { |
| bool is_byte = *data == 0xC6; |
| data++; |
| if (is_byte) { |
| AppendToBuffer("movb "); |
| data += PrintRightByteOperand(data); |
| int32_t imm = *data; |
| AppendToBuffer(",%#x", imm); |
| data++; |
| } else { |
| AppendToBuffer("mov%c ", operand_size_code()); |
| data += PrintRightOperand(data); |
| int32_t imm = *reinterpret_cast<int32_t*>(data); |
| AppendToBuffer(",%#x", imm); |
| data += 4; |
| } |
| } |
| break; |
| |
| case 0x80: { |
| data++; |
| AppendToBuffer("cmpb "); |
| data += PrintRightByteOperand(data); |
| int32_t imm = *data; |
| AppendToBuffer(",%#x", imm); |
| data++; |
| } |
| break; |
| |
| case 0x88: // 8bit, fall through |
| case 0x89: // 32bit |
| { |
| bool is_byte = *data == 0x88; |
| int mod, regop, rm; |
| data++; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (is_byte) { |
| AppendToBuffer("movb "); |
| data += PrintRightByteOperand(data); |
| AppendToBuffer(",%s", NameOfByteCPURegister(regop)); |
| } else { |
| AppendToBuffer("mov%c ", operand_size_code()); |
| data += PrintRightOperand(data); |
| AppendToBuffer(",%s", NameOfCPURegister(regop)); |
| } |
| } |
| break; |
| |
| case 0x90: |
| case 0x91: |
| case 0x92: |
| case 0x93: |
| case 0x94: |
| case 0x95: |
| case 0x96: |
| case 0x97: { |
| int reg = (*data & 0x7) | (rex_b() ? 8 : 0); |
| if (reg == 0) { |
| AppendToBuffer("nop"); // Common name for xchg rax,rax. |
| } else { |
| AppendToBuffer("xchg%c rax, %s", |
| operand_size_code(), |
| NameOfCPURegister(reg)); |
| } |
| data++; |
| } |
| break; |
| case 0xB0: |
| case 0xB1: |
| case 0xB2: |
| case 0xB3: |
| case 0xB4: |
| case 0xB5: |
| case 0xB6: |
| case 0xB7: |
| case 0xB8: |
| case 0xB9: |
| case 0xBA: |
| case 0xBB: |
| case 0xBC: |
| case 0xBD: |
| case 0xBE: |
| case 0xBF: { |
| // mov reg8,imm8 or mov reg32,imm32 |
| uint8_t opcode = *data; |
| data++; |
| uint8_t is_32bit = (opcode >= 0xB8); |
| int reg = (opcode & 0x7) | (rex_b() ? 8 : 0); |
| if (is_32bit) { |
| AppendToBuffer("mov%c %s, ", |
| operand_size_code(), |
| NameOfCPURegister(reg)); |
| data += PrintImmediate(data, DOUBLEWORD_SIZE); |
| } else { |
| AppendToBuffer("movb %s, ", |
| NameOfByteCPURegister(reg)); |
| data += PrintImmediate(data, BYTE_SIZE); |
| } |
| break; |
| } |
| case 0xFE: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (regop == 1) { |
| AppendToBuffer("decb "); |
| data += PrintRightByteOperand(data); |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| } |
| case 0x68: |
| AppendToBuffer("push %#x", *reinterpret_cast<int32_t*>(data + 1)); |
| data += 5; |
| break; |
| |
| case 0x6A: |
| AppendToBuffer("push %#x", *reinterpret_cast<int8_t*>(data + 1)); |
| data += 2; |
| break; |
| |
| case 0xA1: // Fall through. |
| case 0xA3: |
| switch (operand_size()) { |
| case DOUBLEWORD_SIZE: { |
| AppendAddressToBuffer( |
| reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int32_t*>(data + 1))); |
| if (*data == 0xA1) { // Opcode 0xA1 |
| AppendToBuffer("movzxlq rax,("); |
| AppendAddressToBuffer( |
| reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int32_t*>(data + 1))); |
| AppendToBuffer(")"); |
| } else { // Opcode 0xA3 |
| AppendToBuffer("movzxlq ("); |
| AppendAddressToBuffer( |
| reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int32_t*>(data + 1))); |
| AppendToBuffer("),rax"); |
| } |
| data += 5; |
| break; |
| } |
| case QUADWORD_SIZE: { |
| // New x64 instruction mov rax,(imm_64). |
| if (*data == 0xA1) { // Opcode 0xA1 |
| AppendToBuffer("movq rax,("); |
| AppendAddressToBuffer(*reinterpret_cast<uint8_t**>(data + 1)); |
| AppendToBuffer(")"); |
| } else { // Opcode 0xA3 |
| AppendToBuffer("movq ("); |
| AppendAddressToBuffer(*reinterpret_cast<uint8_t**>(data + 1)); |
| AppendToBuffer("),rax"); |
| } |
| data += 9; |
| break; |
| } |
| default: |
| UnimplementedInstruction(); |
| data += 2; |
| } |
| break; |
| |
| case 0xA8: |
| AppendToBuffer("test al,%#x", *reinterpret_cast<uint8_t*>(data + 1)); |
| data += 2; |
| break; |
| |
| case 0xA9: { |
| int64_t value = 0; |
| switch (operand_size()) { |
| case WORD_SIZE: |
| value = *reinterpret_cast<uint16_t*>(data + 1); |
| data += 3; |
| break; |
| case DOUBLEWORD_SIZE: |
| value = *reinterpret_cast<uint32_t*>(data + 1); |
| data += 5; |
| break; |
| case QUADWORD_SIZE: |
| value = *reinterpret_cast<int32_t*>(data + 1); |
| data += 5; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| AppendToBuffer("test%c rax,%#"Px64"", |
| operand_size_code(), |
| value); |
| break; |
| } |
| case 0xD1: // fall through |
| case 0xD3: // fall through |
| case 0xC1: |
| data += ShiftInstruction(data); |
| break; |
| case 0xD0: // fall through |
| case 0xD2: // fall through |
| case 0xC0: |
| byte_size_operand_ = true; |
| data += ShiftInstruction(data); |
| break; |
| |
| case 0xD9: // fall through |
| case 0xDA: // fall through |
| case 0xDB: // fall through |
| case 0xDC: // fall through |
| case 0xDD: // fall through |
| case 0xDE: // fall through |
| case 0xDF: |
| data += FPUInstruction(data); |
| break; |
| |
| case 0xEB: |
| data += JumpShort(data); |
| break; |
| |
| case 0xF6: |
| byte_size_operand_ = true; // fall through |
| case 0xF7: |
| data += F6F7Instruction(data); |
| break; |
| |
| default: |
| UnimplementedInstruction(); |
| data += 1; |
| } |
| } // !processed |
| |
| ASSERT(buffer_[buffer_pos_] == '\0'); |
| |
| int instr_len = data - reinterpret_cast<uint8_t*>(pc); |
| ASSERT(instr_len > 0); // Ensure progress. |
| |
| return instr_len; |
| } |
| |
| |
| void Disassembler::DecodeInstruction(char* hex_buffer, intptr_t hex_size, |
| char* human_buffer, intptr_t human_size, |
| int* out_instr_len, uword pc) { |
| ASSERT(hex_size > 0); |
| ASSERT(human_size > 0); |
| DisassemblerX64 decoder(human_buffer, human_size); |
| int instruction_length = decoder.InstructionDecode(pc); |
| uint8_t* pc_ptr = reinterpret_cast<uint8_t*>(pc); |
| int hex_index = 0; |
| int remaining_size = hex_size - hex_index; |
| for (int i = 0; (i < instruction_length) && (remaining_size > 2); ++i) { |
| OS::SNPrint(&hex_buffer[hex_index], remaining_size, "%02x", pc_ptr[i]); |
| hex_index += 2; |
| remaining_size -= 2; |
| } |
| hex_buffer[hex_index] = '\0'; |
| if (out_instr_len) { |
| *out_instr_len = instruction_length; |
| } |
| } |
| |
| |
| void Disassembler::Disassemble(uword start, |
| uword end, |
| DisassemblyFormatter* formatter, |
| const Code::Comments& comments) { |
| ASSERT(formatter != NULL); |
| char hex_buffer[kHexadecimalBufferSize]; // Instruction in hexadecimal form. |
| char human_buffer[kUserReadableBufferSize]; // Human-readable instruction. |
| uword pc = start; |
| intptr_t comment_finger = 0; |
| while (pc < end) { |
| const intptr_t offset = pc - start; |
| while (comment_finger < comments.Length() && |
| comments.PCOffsetAt(comment_finger) <= offset) { |
| formatter->Print( |
| " ;; %s\n", |
| String::Handle(comments.CommentAt(comment_finger)).ToCString()); |
| comment_finger++; |
| } |
| int instruction_length; |
| DecodeInstruction(hex_buffer, |
| sizeof(hex_buffer), |
| human_buffer, |
| sizeof(human_buffer), |
| &instruction_length, pc); |
| formatter->ConsumeInstruction(hex_buffer, |
| sizeof(hex_buffer), |
| human_buffer, |
| sizeof(human_buffer), |
| pc); |
| pc += instruction_length; |
| } |
| |
| return; |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_X64 |