blob: 238574920f2dab52fc0116bf904812c7ebdd5dfc [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_ARCH_X64)
#include "vm/assembler.h"
#include "vm/heap.h"
#include "vm/memory_region.h"
#include "vm/runtime_entry.h"
#include "vm/stub_code.h"
namespace dart {
DEFINE_FLAG(bool, print_stop_message, true, "Print stop message.");
DEFINE_FLAG(bool, use_sse41, true, "Use SSE 4.1 if available");
DECLARE_FLAG(bool, inline_alloc);
bool CPUFeatures::sse4_1_supported_ = false;
#ifdef DEBUG
bool CPUFeatures::initialized_ = false;
#endif
bool CPUFeatures::sse4_1_supported() {
DEBUG_ASSERT(initialized_);
return sse4_1_supported_ && FLAG_use_sse41;
}
#define __ assembler.
void CPUFeatures::InitOnce() {
Assembler assembler;
__ pushq(RBP);
__ pushq(RBX);
__ movq(RBP, RSP);
// Get feature information in ECX:EDX and return it in RAX.
// Note that cpuid operates the same in 64-bit and 32-bit mode.
__ movq(RAX, Immediate(1));
__ cpuid();
__ movl(RAX, RCX); // Zero extended.
__ shlq(RAX, Immediate(32));
__ movl(RCX, RDX); // Zero extended.
__ orq(RAX, RCX);
__ movq(RSP, RBP);
__ popq(RBX);
__ popq(RBP);
__ ret();
const Code& code =
Code::Handle(Code::FinalizeCode("DetectCPUFeatures", &assembler));
Instructions& instructions = Instructions::Handle(code.instructions());
typedef uint64_t (*DetectCPUFeatures)();
uint64_t features =
reinterpret_cast<DetectCPUFeatures>(instructions.EntryPoint())();
sse4_1_supported_ = (features & kSSE4_1BitMask) != 0;
#ifdef DEBUG
initialized_ = true;
#endif
}
#undef __
void Assembler::InitializeMemoryWithBreakpoints(uword data, int length) {
memset(reinterpret_cast<void*>(data), Instr::kBreakPointInstruction, length);
}
void Assembler::call(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg);
EmitOperandREX(2, operand, REX_NONE);
EmitUint8(0xFF);
EmitOperand(2, operand);
}
void Assembler::call(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(2, address, REX_NONE);
EmitUint8(0xFF);
EmitOperand(2, address);
}
void Assembler::call(Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
static const int kSize = 5;
EmitUint8(0xE8);
EmitLabel(label, kSize);
}
void Assembler::call(const ExternalLabel* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
intptr_t call_start = buffer_.GetPosition();
// Encode movq(TMP, Immediate(label->address())), but always as imm64.
EmitRegisterREX(TMP, REX_W);
EmitUint8(0xB8 | (TMP & 7));
EmitInt64(label->address());
// Encode call(TMP).
Operand operand(TMP);
EmitOperandREX(2, operand, REX_NONE);
EmitUint8(0xFF);
EmitOperand(2, operand);
ASSERT((buffer_.GetPosition() - call_start) == kCallExternalLabelSize);
}
void Assembler::pushq(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_NONE);
EmitUint8(0x50 | (reg & 7));
}
void Assembler::pushq(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(6, address, REX_NONE);
EmitUint8(0xFF);
EmitOperand(6, address);
}
void Assembler::pushq(const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x68);
EmitImmediate(imm);
} else {
movq(TMP, imm);
pushq(TMP);
}
}
void Assembler::popq(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_NONE);
EmitUint8(0x58 | (reg & 7));
}
void Assembler::popq(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(0, address, REX_NONE);
EmitUint8(0x8F);
EmitOperand(0, address);
}
void Assembler::setcc(Condition condition, ByteRegister dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0x90 + condition);
EmitUint8(0xC0 + dst);
}
void Assembler::movl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x8B);
EmitOperand(dst & 7, operand);
}
void Assembler::movl(Register dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(dst);
EmitOperandREX(0, operand, REX_NONE);
EmitUint8(0xC7);
EmitOperand(0, operand);
ASSERT(imm.is_int32());
EmitImmediate(imm);
}
void Assembler::movl(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_NONE);
EmitUint8(0x8B);
EmitOperand(dst & 7, src);
}
void Assembler::movl(const Address& dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(src, dst, REX_NONE);
EmitUint8(0x89);
EmitOperand(src & 7, dst);
}
void Assembler::movzxb(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x0F);
EmitUint8(0xB6);
EmitOperand(dst & 7, operand);
}
void Assembler::movzxb(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_W);
EmitUint8(0x0F);
EmitUint8(0xB6);
EmitOperand(dst & 7, src);
}
void Assembler::movsxb(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x0F);
EmitUint8(0xBE);
EmitOperand(dst & 7, operand);
}
void Assembler::movsxb(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_W);
EmitUint8(0x0F);
EmitUint8(0xBE);
EmitOperand(dst & 7, src);
}
void Assembler::movb(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_NONE);
EmitUint8(0x8A);
EmitOperand(dst & 7, src);
}
void Assembler::movb(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(0, dst, REX_NONE);
EmitUint8(0xC6);
EmitOperand(0, dst);
ASSERT(imm.is_int8());
EmitUint8(imm.value() & 0xFF);
}
void Assembler::movb(const Address& dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(src, dst, REX_NONE);
EmitUint8(0x88);
EmitOperand(src & 7, dst);
}
void Assembler::movzxw(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x0F);
EmitUint8(0xB7);
EmitOperand(dst & 7, operand);
}
void Assembler::movzxw(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_W);
EmitUint8(0x0F);
EmitUint8(0xB7);
EmitOperand(dst & 7, src);
}
void Assembler::movsxw(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x0F);
EmitUint8(0xBF);
EmitOperand(dst & 7, operand);
}
void Assembler::movsxw(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_W);
EmitUint8(0x0F);
EmitUint8(0xBF);
EmitOperand(dst & 7, src);
}
void Assembler::movw(Register dst, const Address& src) {
FATAL("Use movzxw or movsxw instead.");
}
void Assembler::movw(const Address& dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOperandREX(src, dst, REX_NONE);
EmitUint8(0x89);
EmitOperand(src & 7, dst);
}
void Assembler::movq(Register dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (imm.is_int32()) {
Operand operand(dst);
EmitOperandREX(0, operand, REX_W);
EmitUint8(0xC7);
EmitOperand(0, operand);
} else {
EmitRegisterREX(dst, REX_W);
EmitUint8(0xB8 | (dst & 7));
}
EmitImmediate(imm);
}
// Use 0x89 encoding (instead of 0x8B encoding), which is expected by gdb64
// older than 7.3.1-gg5 when disassembling a function's prologue (movq rbp, rsp)
// for proper unwinding of Dart frames (use --generate_gdb_symbols and -O0).
void Assembler::movq(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(dst);
EmitOperandREX(src, operand, REX_W);
EmitUint8(0x89);
EmitOperand(src & 7, operand);
}
void Assembler::movq(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_W);
EmitUint8(0x8B);
EmitOperand(dst & 7, src);
}
void Assembler::movq(const Address& dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(src, dst, REX_W);
EmitUint8(0x89);
EmitOperand(src & 7, dst);
}
void Assembler::movq(const Address& dst, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(dst);
EmitOperandREX(0, operand, REX_W);
EmitUint8(0xC7);
EmitOperand(0, operand);
EmitImmediate(imm);
} else {
movq(TMP, imm);
movq(dst, TMP);
}
}
void Assembler::movsxd(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x63);
EmitOperand(dst & 7, operand);
}
void Assembler::movsxd(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_W);
EmitUint8(0x63);
EmitOperand(dst & 7, src);
}
void Assembler::rep_movsb() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0xA4);
}
void Assembler::leaq(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, src, REX_W);
EmitUint8(0x8D);
EmitOperand(dst & 7, src);
}
void Assembler::movss(XmmRegister dst, const Address& src) {
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst & 7, src);
}
void Assembler::movss(const Address& dst, XmmRegister src) {
ASSERT(src <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitREX_RB(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src & 7, dst);
}
void Assembler::movss(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitREX_RB(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitXmmRegisterOperand(src & 7, dst);
}
void Assembler::movd(XmmRegister dst, Register src) {
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x6E);
EmitOperand(dst & 7, Operand(src));
}
void Assembler::movd(Register dst, XmmRegister src) {
ASSERT(src <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitREX_RB(src, dst);
EmitUint8(0x0F);
EmitUint8(0x7E);
EmitOperand(src & 7, Operand(dst));
}
void Assembler::addss(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::subss(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::mulss(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::divss(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::movsd(XmmRegister dst, const Address& src) {
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst & 7, src);
}
void Assembler::movsd(const Address& dst, XmmRegister src) {
ASSERT(src <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src & 7, dst);
}
void Assembler::movsd(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitXmmRegisterOperand(src & 7, dst);
}
void Assembler::movaps(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x28);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::movups(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst & 7, src);
}
void Assembler::movups(const Address& dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src & 7, dst);
}
void Assembler::addsd(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::subsd(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::mulsd(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::divsd(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::addps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::subps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::divps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::mulps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::minps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5D);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::maxps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5F);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::andps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x54);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::andps(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x54);
EmitOperand(dst & 7, src);
}
void Assembler::orps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x56);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::notps(XmmRegister dst) {
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_not_constant =
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
movq(TMP, Immediate(reinterpret_cast<intptr_t>(&float_not_constant)));
xorps(dst, Address(TMP, 0));
}
void Assembler::negateps(XmmRegister dst) {
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_negate_constant =
{ 0x80000000, 0x80000000, 0x80000000, 0x80000000 };
movq(TMP, Immediate(reinterpret_cast<intptr_t>(&float_negate_constant)));
xorps(dst, Address(TMP, 0));
}
void Assembler::absps(XmmRegister dst) {
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_absolute_constant =
{ 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF };
movq(TMP, Immediate(reinterpret_cast<intptr_t>(&float_absolute_constant)));
andps(dst, Address(TMP, 0));
}
void Assembler::zerowps(XmmRegister dst) {
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_zerow_constant =
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 };
movq(TMP, Immediate(reinterpret_cast<intptr_t>(&float_zerow_constant)));
andps(dst, Address(TMP, 0));
}
void Assembler::cmppseq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC2);
EmitXmmRegisterOperand(dst & 7, src);
EmitUint8(0x0);
}
void Assembler::cmppsneq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC2);
EmitXmmRegisterOperand(dst & 7, src);
EmitUint8(0x4);
}
void Assembler::cmppslt(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC2);
EmitXmmRegisterOperand(dst & 7, src);
EmitUint8(0x1);
}
void Assembler::cmppsle(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC2);
EmitXmmRegisterOperand(dst & 7, src);
EmitUint8(0x2);
}
void Assembler::cmppsnlt(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC2);
EmitXmmRegisterOperand(dst & 7, src);
EmitUint8(0x5);
}
void Assembler::cmppsnle(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC2);
EmitXmmRegisterOperand(dst & 7, src);
EmitUint8(0x6);
}
void Assembler::sqrtps(XmmRegister dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, dst);
EmitUint8(0x0F);
EmitUint8(0x51);
EmitXmmRegisterOperand(dst & 7, dst);
}
void Assembler::rsqrtps(XmmRegister dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, dst);
EmitUint8(0x0F);
EmitUint8(0x52);
EmitXmmRegisterOperand(dst & 7, dst);
}
void Assembler::reciprocalps(XmmRegister dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, dst);
EmitUint8(0x0F);
EmitUint8(0x53);
EmitXmmRegisterOperand(dst & 7, dst);
}
void Assembler::set1ps(XmmRegister dst, Register tmp1, const Immediate& imm) {
// Load 32-bit immediate value into tmp1.
movl(tmp1, imm);
// Move value from tmp1 into dst.
movd(dst, tmp1);
// Broadcast low lane into other three lanes.
shufps(dst, dst, Immediate(0x0));
}
void Assembler::shufps(XmmRegister dst, XmmRegister src, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC6);
EmitXmmRegisterOperand(dst & 7, src);
ASSERT(imm.is_uint8());
EmitUint8(imm.value());
}
void Assembler::comisd(XmmRegister a, XmmRegister b) {
ASSERT(a <= XMM15);
ASSERT(b <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitREX_RB(a, b);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitXmmRegisterOperand(a & 7, b);
}
void Assembler::movmskpd(Register dst, XmmRegister src) {
ASSERT(src <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x50);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::movmskps(Register dst, XmmRegister src) {
ASSERT(src <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x50);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::sqrtsd(XmmRegister dst, XmmRegister src) {
ASSERT(dst <= XMM15);
ASSERT(src <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x51);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::xorpd(XmmRegister dst, const Address& src) {
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOperandREX(dst, src, REX_NONE);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitOperand(dst & 7, src);
}
void Assembler::xorpd(XmmRegister dst, XmmRegister src) {
ASSERT(dst <= XMM15);
ASSERT(src <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::xorps(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitOperand(dst & 7, src);
}
void Assembler::xorps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::andpd(XmmRegister dst, const Address& src) {
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOperandREX(dst, src, REX_NONE);
EmitUint8(0x0F);
EmitUint8(0x54);
EmitOperand(dst & 7, src);
}
void Assembler::cvtsi2sd(XmmRegister dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
ASSERT(dst <= XMM15);
Operand operand(src);
EmitUint8(0xF2);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst & 7, operand);
}
void Assembler::cvttsd2siq(Register dst, XmmRegister src) {
ASSERT(src <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
Operand operand(dst);
EmitREX_RB(dst, src, REX_W);
EmitUint8(0x0F);
EmitUint8(0x2C);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::cvtss2sd(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::cvtsd2ss(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitXmmRegisterOperand(dst & 7, src);
}
void Assembler::pxor(XmmRegister dst, XmmRegister src) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0xEF);
EmitXmmRegisterOperand(dst, src);
}
void Assembler::roundsd(XmmRegister dst, XmmRegister src, RoundingMode mode) {
ASSERT(src <= XMM15);
ASSERT(dst <= XMM15);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitREX_RB(dst, src);
EmitUint8(0x0F);
EmitUint8(0x3A);
EmitUint8(0x0B);
EmitXmmRegisterOperand(dst, src);
// Mask precision exeption.
EmitUint8(static_cast<uint8_t>(mode) | 0x8);
}
void Assembler::fldl(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(0, src);
}
void Assembler::fstpl(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(3, dst);
}
void Assembler::fildl(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDF);
EmitOperand(5, src);
}
void Assembler::fincstp() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xF7);
}
void Assembler::ffree(intptr_t value) {
ASSERT(value < 7);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitUint8(0xC0 + value);
}
void Assembler::fsin() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xFE);
}
void Assembler::fcos() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xFF);
}
void Assembler::xchgl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x87);
EmitOperand(dst & 7, operand);
}
void Assembler::xchgq(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x87);
EmitOperand(dst & 7, operand);
}
void Assembler::cmpl(Register reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_NONE);
EmitComplex(7, Operand(reg), imm);
}
void Assembler::cmpl(Register reg0, Register reg1) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg1);
EmitOperandREX(reg0, operand, REX_NONE);
EmitUint8(0x3B);
EmitOperand(reg0 & 7, operand);
}
void Assembler::cmpl(Register reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(reg, address, REX_NONE);
EmitUint8(0x3B);
EmitOperand(reg & 7, address);
}
void Assembler::cmpl(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(address);
EmitOperandREX(7, operand, REX_NONE);
EmitComplex(7, operand, imm);
}
void Assembler::cmpq(const Address& address, Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(reg, address, REX_W);
EmitUint8(0x39);
EmitOperand(reg & 7, address);
}
void Assembler::cmpq(const Address& address, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(address);
EmitOperandREX(7, operand, REX_W);
EmitComplex(7, operand, imm);
} else {
movq(TMP, imm);
cmpq(address, TMP);
}
}
void Assembler::cmpq(Register reg, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_W);
EmitComplex(7, Operand(reg), imm);
} else {
movq(TMP, imm);
cmpq(reg, TMP);
}
}
void Assembler::cmpq(Register reg0, Register reg1) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg1);
EmitOperandREX(reg0, operand, REX_W);
EmitUint8(0x3B);
EmitOperand(reg0 & 7, operand);
}
void Assembler::cmpq(Register reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(reg, address, REX_W);
EmitUint8(0x3B);
EmitOperand(reg & 7, address);
}
void Assembler::testl(Register reg1, Register reg2) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg2);
EmitOperandREX(reg1, operand, REX_NONE);
EmitUint8(0x85);
EmitOperand(reg1 & 7, operand);
}
void Assembler::testl(Register reg, const Immediate& imm) {
// TODO(kasperl): Deal with registers r8-r15 using the short
// encoding form of the immediate?
// We are using RBP for the exception marker. See testl(Label*).
ASSERT(reg != RBP);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// For registers that have a byte variant (RAX, RBX, RCX, and RDX)
// we only test the byte register to keep the encoding short.
if (imm.is_uint8() && reg < 4) {
// Use zero-extended 8-bit immediate.
if (reg == RAX) {
EmitUint8(0xA8);
} else {
EmitUint8(0xF6);
EmitUint8(0xC0 + reg);
}
EmitUint8(imm.value() & 0xFF);
} else {
ASSERT(imm.is_int32());
if (reg == RAX) {
EmitUint8(0xA9);
} else {
EmitRegisterREX(reg, REX_NONE);
EmitUint8(0xF7);
EmitUint8(0xC0 | (reg & 7));
}
EmitImmediate(imm);
}
}
void Assembler::testq(Register reg1, Register reg2) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg2);
EmitOperandREX(reg1, operand, REX_W);
EmitUint8(0x85);
EmitOperand(reg1 & 7, operand);
}
void Assembler::testq(Register reg, const Immediate& imm) {
// TODO(kasperl): Deal with registers r8-r15 using the short
// encoding form of the immediate?
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// For registers that have a byte variant (RAX, RBX, RCX, and RDX)
// we only test the byte register to keep the encoding short.
if (imm.is_uint8() && reg < 4) {
// Use zero-extended 8-bit immediate.
if (reg == RAX) {
EmitUint8(0xA8);
} else {
EmitUint8(0xF6);
EmitUint8(0xC0 + reg);
}
EmitUint8(imm.value() & 0xFF);
} else {
ASSERT(imm.is_int32());
if (reg == RAX) {
EmitUint8(0xA9 | REX_W);
} else {
EmitRegisterREX(reg, REX_W);
EmitUint8(0xF7);
EmitUint8(0xC0 | (reg & 7));
}
EmitImmediate(imm);
}
}
void Assembler::andl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x23);
EmitOperand(dst & 7, operand);
}
void Assembler::andl(Register dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(dst, REX_NONE);
EmitComplex(4, Operand(dst), imm);
}
void Assembler::orl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x0B);
EmitOperand(dst & 7, operand);
}
void Assembler::orl(Register dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(dst, REX_NONE);
EmitComplex(1, Operand(dst), imm);
}
void Assembler::xorl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x33);
EmitOperand(dst & 7, operand);
}
void Assembler::andq(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x23);
EmitOperand(dst & 7, operand);
}
void Assembler::andq(Register dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, address, REX_W);
EmitUint8(0x23);
EmitOperand(dst & 7, address);
}
void Assembler::andq(Register dst, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(dst, REX_W);
EmitComplex(4, Operand(dst), imm);
} else {
movq(TMP, imm);
andq(dst, TMP);
}
}
void Assembler::orq(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x0B);
EmitOperand(dst & 7, operand);
}
void Assembler::orq(Register dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, address, REX_W);
EmitUint8(0x0B);
EmitOperand(dst & 7, address);
}
void Assembler::orq(Register dst, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(dst, REX_W);
EmitComplex(1, Operand(dst), imm);
} else {
movq(TMP, imm);
orq(dst, TMP);
}
}
void Assembler::xorq(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x33);
EmitOperand(dst & 7, operand);
}
void Assembler::xorq(Register dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, address, REX_W);
EmitUint8(0x33);
EmitOperand(dst & 7, address);
}
void Assembler::xorq(const Address& dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(src, dst, REX_W);
EmitUint8(0x31);
EmitOperand(src & 7, dst);
}
void Assembler::xorq(Register dst, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(dst, REX_W);
EmitComplex(6, Operand(dst), imm);
} else {
movq(TMP, imm);
xorq(dst, TMP);
}
}
void Assembler::addl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x03);
EmitOperand(dst & 7, operand);
}
void Assembler::addq(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x03);
EmitOperand(dst & 7, operand);
}
void Assembler::addq(Register dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, address, REX_W);
EmitUint8(0x03);
EmitOperand(dst & 7, address);
}
void Assembler::addl(const Address& address, const Immediate& imm) {
UNIMPLEMENTED();
}
void Assembler::addq(Register reg, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_W);
EmitComplex(0, Operand(reg), imm);
} else {
movq(TMP, imm);
addq(reg, TMP);
}
}
void Assembler::addq(const Address& address, const Immediate& imm) {
// TODO(srdjan): Implement shorter version for imm32.
movq(TMP, imm);
addq(address, TMP);
}
void Assembler::addq(const Address& address, Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(reg, address, REX_W);
EmitUint8(0x01);
EmitOperand(reg & 7, address);
}
void Assembler::adcl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x13);
EmitOperand(dst & 7, operand);
}
void Assembler::subl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x2B);
EmitOperand(dst & 7, operand);
}
void Assembler::cdq() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x99);
}
void Assembler::cqo() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(RAX, REX_W);
EmitUint8(0x99);
}
void Assembler::idivl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_NONE);
EmitUint8(0xF7);
EmitUint8(0xF8 | (reg & 7));
}
void Assembler::idivq(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_W);
EmitUint8(0xF7);
EmitUint8(0xF8 | (reg & 7));
}
void Assembler::imull(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_NONE);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(dst & 7, Operand(src));
}
void Assembler::imull(Register reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg);
EmitOperandREX(reg, operand, REX_NONE);
EmitUint8(0x69);
EmitOperand(reg & 7, Operand(reg));
EmitImmediate(imm);
}
void Assembler::imulq(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(dst & 7, operand);
}
void Assembler::imulq(Register reg, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg);
EmitOperandREX(reg, operand, REX_W);
EmitUint8(0x69);
EmitOperand(reg & 7, Operand(reg));
EmitImmediate(imm);
} else {
movq(TMP, imm);
imulq(reg, TMP);
}
}
void Assembler::imulq(Register dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(dst, address, REX_W);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(dst & 7, address);
}
void Assembler::subq(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(src);
EmitOperandREX(dst, operand, REX_W);
EmitUint8(0x2B);
EmitOperand(dst & 7, operand);
}
void Assembler::subq(Register reg, const Immediate& imm) {
if (imm.is_int32()) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_W);
EmitComplex(5, Operand(reg), imm);
} else {
movq(TMP, imm);
subq(reg, TMP);
}
}
void Assembler::subq(Register reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(reg, address, REX_W);
EmitUint8(0x2B);
EmitOperand(reg & 7, address);
}
void Assembler::shll(Register reg, const Immediate& imm) {
EmitGenericShift(false, 4, reg, imm);
}
void Assembler::shll(Register operand, Register shifter) {
EmitGenericShift(false, 4, operand, shifter);
}
void Assembler::shrl(Register reg, const Immediate& imm) {
EmitGenericShift(false, 5, reg, imm);
}
void Assembler::shrl(Register operand, Register shifter) {
EmitGenericShift(false, 5, operand, shifter);
}
void Assembler::sarl(Register reg, const Immediate& imm) {
EmitGenericShift(false, 7, reg, imm);
}
void Assembler::sarl(Register operand, Register shifter) {
EmitGenericShift(false, 7, operand, shifter);
}
void Assembler::shlq(Register reg, const Immediate& imm) {
EmitGenericShift(true, 4, reg, imm);
}
void Assembler::shlq(Register operand, Register shifter) {
EmitGenericShift(true, 4, operand, shifter);
}
void Assembler::shrq(Register reg, const Immediate& imm) {
EmitGenericShift(true, 5, reg, imm);
}
void Assembler::shrq(Register operand, Register shifter) {
EmitGenericShift(true, 5, operand, shifter);
}
void Assembler::sarq(Register reg, const Immediate& imm) {
EmitGenericShift(true, 7, reg, imm);
}
void Assembler::sarq(Register operand, Register shifter) {
EmitGenericShift(true, 7, operand, shifter);
}
void Assembler::incl(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(address);
EmitOperandREX(0, operand, REX_NONE);
EmitUint8(0xFF);
EmitOperand(0, operand);
}
void Assembler::decl(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(address);
EmitOperandREX(1, operand, REX_NONE);
EmitUint8(0xFF);
EmitOperand(1, operand);
}
void Assembler::incq(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg);
EmitOperandREX(0, operand, REX_W);
EmitUint8(0xFF);
EmitOperand(0, operand);
}
void Assembler::incq(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(address);
EmitOperandREX(0, operand, REX_W);
EmitUint8(0xFF);
EmitOperand(0, operand);
}
void Assembler::decq(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg);
EmitOperandREX(1, operand, REX_W);
EmitUint8(0xFF);
EmitOperand(1, operand);
}
void Assembler::decq(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(address);
EmitOperandREX(1, operand, REX_W);
EmitUint8(0xFF);
EmitOperand(1, operand);
}
void Assembler::negl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_NONE);
EmitUint8(0xF7);
EmitOperand(3, Operand(reg));
}
void Assembler::negq(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_W);
EmitUint8(0xF7);
EmitOperand(3, Operand(reg));
}
void Assembler::notl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_NONE);
EmitUint8(0xF7);
EmitUint8(0xD0 | (reg & 7));
}
void Assembler::notq(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(reg, REX_W);
EmitUint8(0xF7);
EmitUint8(0xD0 | (reg & 7));
}
void Assembler::enter(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC8);
ASSERT(imm.is_uint16());
EmitUint8(imm.value() & 0xFF);
EmitUint8((imm.value() >> 8) & 0xFF);
EmitUint8(0x00);
}
void Assembler::leave() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC9);
}
void Assembler::ret() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC3);
}
void Assembler::nop(int size) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// There are nops up to size 15, but for now just provide up to size 8.
ASSERT(0 < size && size <= MAX_NOP_SIZE);
switch (size) {
case 1:
EmitUint8(0x90);
break;
case 2:
EmitUint8(0x66);
EmitUint8(0x90);
break;
case 3:
EmitUint8(0x0F);
EmitUint8(0x1F);
EmitUint8(0x00);
break;
case 4:
EmitUint8(0x0F);
EmitUint8(0x1F);
EmitUint8(0x40);
EmitUint8(0x00);
break;
case 5:
EmitUint8(0x0F);
EmitUint8(0x1F);
EmitUint8(0x44);
EmitUint8(0x00);
EmitUint8(0x00);
break;
case 6:
EmitUint8(0x66);
EmitUint8(0x0F);
EmitUint8(0x1F);
EmitUint8(0x44);
EmitUint8(0x00);
EmitUint8(0x00);
break;
case 7:
EmitUint8(0x0F);
EmitUint8(0x1F);
EmitUint8(0x80);
EmitUint8(0x00);
EmitUint8(0x00);
EmitUint8(0x00);
EmitUint8(0x00);
break;
case 8:
EmitUint8(0x0F);
EmitUint8(0x1F);
EmitUint8(0x84);
EmitUint8(0x00);
EmitUint8(0x00);
EmitUint8(0x00);
EmitUint8(0x00);
EmitUint8(0x00);
break;
default:
UNIMPLEMENTED();
}
}
void Assembler::int3() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xCC);
}
void Assembler::hlt() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF4);
}
void Assembler::j(Condition condition, Label* label, bool near) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
static const int kLongSize = 6;
int offset = label->Position() - buffer_.Size();
ASSERT(offset <= 0);
if (Utils::IsInt(8, offset - kShortSize)) {
EmitUint8(0x70 + condition);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0x0F);
EmitUint8(0x80 + condition);
EmitInt32(offset - kLongSize);
}
} else if (near) {
EmitUint8(0x70 + condition);
EmitNearLabelLink(label);
} else {
EmitUint8(0x0F);
EmitUint8(0x80 + condition);
EmitLabelLink(label);
}
}
void Assembler::j(Condition condition, const ExternalLabel* label) {
Label no_jump;
j(static_cast<Condition>(condition ^ 1), &no_jump); // Negate condition.
jmp(label);
Bind(&no_jump);
}
void Assembler::jmp(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
Operand operand(reg);
EmitOperandREX(4, operand, REX_NONE);
EmitUint8(0xFF);
EmitOperand(4, operand);
}
void Assembler::jmp(Label* label, bool near) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
static const int kLongSize = 5;
int offset = label->Position() - buffer_.Size();
ASSERT(offset <= 0);
if (Utils::IsInt(8, offset - kShortSize)) {
EmitUint8(0xEB);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0xE9);
EmitInt32(offset - kLongSize);
}
} else if (near) {
EmitUint8(0xEB);
EmitNearLabelLink(label);
} else {
EmitUint8(0xE9);
EmitLabelLink(label);
}
}
void Assembler::jmp(const ExternalLabel* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
intptr_t call_start = buffer_.GetPosition();
// Encode movq(TMP, Immediate(label->address())), but always as imm64.
EmitRegisterREX(TMP, REX_W);
EmitUint8(0xB8 | (TMP & 7));
EmitInt64(label->address());
// Encode jmp(TMP).
Operand operand(TMP);
EmitOperandREX(4, operand, REX_NONE);
EmitUint8(0xFF);
EmitOperand(4, operand);
ASSERT((buffer_.GetPosition() - call_start) == kCallExternalLabelSize);
}
void Assembler::lock() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF0);
}
void Assembler::cmpxchgl(const Address& address, Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(reg, address, REX_NONE);
EmitUint8(0x0F);
EmitUint8(0xB1);
EmitOperand(reg & 7, address);
}
void Assembler::cmpxchgq(const Address& address, Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandREX(reg, address, REX_W);
EmitUint8(0x0F);
EmitUint8(0xB1);
EmitOperand(reg & 7, address);
}
void Assembler::cpuid() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xA2);
}
void Assembler::CompareRegisters(Register a, Register b) {
cmpq(a, b);
}
void Assembler::MoveRegister(Register to, Register from) {
if (to != from) {
movq(to, from);
}
}
void Assembler::PopRegister(Register r) {
popq(r);
}
void Assembler::AddImmediate(Register reg, const Immediate& imm) {
int64_t value = imm.value();
if (value > 0) {
if (value == 1) {
incq(reg);
} else if (value != 0) {
addq(reg, imm);
}
} else if (value < 0) {
value = -value;
if (value == 1) {
decq(reg);
} else if (value != 0) {
subq(reg, Immediate(value));
}
}
}
void Assembler::Drop(intptr_t stack_elements) {
ASSERT(stack_elements >= 0);
if (stack_elements <= 4) {
for (intptr_t i = 0; i < stack_elements; i++) {
popq(TMP);
}
return;
}
addq(RSP, Immediate(stack_elements * kWordSize));
}
void Assembler::LoadObject(Register dst, const Object& object) {
if (object.IsSmi() || object.InVMHeap()) {
movq(dst, Immediate(reinterpret_cast<int64_t>(object.raw())));
} else {
ASSERT(object.IsNotTemporaryScopedHandle());
ASSERT(object.IsOld());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRegisterREX(dst, REX_W);
EmitUint8(0xB8 | (dst & 7));
buffer_.EmitObject(object);
}
}
void Assembler::StoreObject(const Address& dst, const Object& object) {
if (object.IsSmi() || object.InVMHeap()) {
movq(dst, Immediate(reinterpret_cast<int64_t>(object.raw())));
} else {
ASSERT(object.IsNotTemporaryScopedHandle());
ASSERT(object.IsOld());
LoadObject(TMP, object);
movq(dst, TMP);
}
}
void Assembler::PushObject(const Object& object) {
if (object.IsSmi() || object.InVMHeap()) {
pushq(Immediate(reinterpret_cast<int64_t>(object.raw())));
} else {
LoadObject(TMP, object);
pushq(TMP);
}
}
void Assembler::CompareObject(Register reg, const Object& object) {
if (object.IsSmi() || object.InVMHeap()) {
cmpq(reg, Immediate(reinterpret_cast<int64_t>(object.raw())));
} else {
ASSERT(reg != TMP);
LoadObject(TMP, object);
cmpq(reg, TMP);
}
}
// Destroys the value register.
void Assembler::StoreIntoObjectFilterNoSmi(Register object,
Register value,
Label* no_update) {
COMPILE_ASSERT((kNewObjectAlignmentOffset == kWordSize) &&
(kOldObjectAlignmentOffset == 0), young_alignment);
// Write-barrier triggers if the value is in the new space (has bit set) and
// the object is in the old space (has bit cleared).
// To check that we could compute value & ~object and skip the write barrier
// if the bit is not set. However we can't destroy the object.
// However to preserve the object we compute negated expression
// ~value | object instead and skip the write barrier if the bit is set.
notl(value);
orl(value, object);
testl(value, Immediate(kNewObjectAlignmentOffset));
j(NOT_ZERO, no_update, Assembler::kNearJump);
}
// Destroys the value register.
void Assembler::StoreIntoObjectFilter(Register object,
Register value,
Label* no_update) {
// For the value we are only interested in the new/old bit and the tag bit.
andl(value, Immediate(kNewObjectAlignmentOffset | kHeapObjectTag));
// Shift the tag bit into the carry.
shrl(value, Immediate(1));
// Add the tag bits together, if the value is not a Smi the addition will
// overflow into the next bit, leaving us with a zero low bit.
adcl(value, object);
// Mask out higher, uninteresting bits which were polluted by dest.
andl(value, Immediate(kObjectAlignment - 1));
// Compare with the expected bit pattern.
cmpl(value, Immediate(
(kNewObjectAlignmentOffset >> 1) + kHeapObjectTag +
kOldObjectAlignmentOffset + kHeapObjectTag));
j(NOT_ZERO, no_update, Assembler::kNearJump);
}
void Assembler::StoreIntoObject(Register object,
const Address& dest,
Register value,
bool can_value_be_smi) {
ASSERT(object != value);
movq(dest, value);
Label done;
if (can_value_be_smi) {
StoreIntoObjectFilter(object, value, &done);
} else {
StoreIntoObjectFilterNoSmi(object, value, &done);
}
// A store buffer update is required.
if (value != RAX) pushq(RAX);
if (object != RAX) {
movq(RAX, object);
}
call(&StubCode::UpdateStoreBufferLabel());
if (value != RAX) popq(RAX);
Bind(&done);
}
void Assembler::StoreIntoObjectNoBarrier(Register object,
const Address& dest,
Register value) {
movq(dest, value);
#if defined(DEBUG)
Label done;
pushq(value);
StoreIntoObjectFilter(object, value, &done);
Stop("Store buffer update is required");
Bind(&done);
popq(value);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::DoubleNegate(XmmRegister d) {
static const struct ALIGN16 {
uint64_t a;
uint64_t b;
} double_negate_constant =
{0x8000000000000000LL, 0x8000000000000000LL};
movq(TMP, Immediate(reinterpret_cast<intptr_t>(&double_negate_constant)));
xorpd(d, Address(TMP, 0));
}
void Assembler::DoubleAbs(XmmRegister reg) {
static const struct ALIGN16 {
uint64_t a;
uint64_t b;
} double_abs_constant =
{0x7FFFFFFFFFFFFFFFLL, 0x7FFFFFFFFFFFFFFFLL};
movq(TMP, Immediate(reinterpret_cast<intptr_t>(&double_abs_constant)));
andpd(reg, Address(TMP, 0));
}
void Assembler::Stop(const char* message) {
int64_t message_address = reinterpret_cast<int64_t>(message);
if (FLAG_print_stop_message) {
pushq(TMP); // Preserve TMP register.
pushq(RDI); // Preserve RDI register.
movq(RDI, Immediate(message_address));
call(&StubCode::PrintStopMessageLabel());
popq(RDI); // Restore RDI register.
popq(TMP); // Restore TMP register.
} else {
// Emit the lower half and the higher half of the message address as
// immediate operands in the test rax instructions.
testl(RAX, Immediate(Utils::Low32Bits(message_address)));
testl(RAX, Immediate(Utils::High32Bits(message_address)));
}
// Emit the int3 instruction.
int3(); // Execution can be resumed with the 'cont' command in gdb.
}
void Assembler::Bind(Label* label) {
int bound = buffer_.Size();
ASSERT(!label->IsBound()); // Labels can only be bound once.
while (label->IsLinked()) {
int position = label->LinkPosition();
int next = buffer_.Load<int32_t>(position);
buffer_.Store<int32_t>(position, bound - (position + 4));
label->position_ = next;
}
while (label->HasNear()) {
int position = label->NearPosition();
int offset = bound - (position + 1);
ASSERT(Utils::IsInt(8, offset));
buffer_.Store<int8_t>(position, offset);
}
label->BindTo(bound);
}
void Assembler::EnterFrame(intptr_t frame_size) {
if (prologue_offset_ == -1) {
prologue_offset_ = CodeSize();
}
pushq(RBP);
movq(RBP, RSP);
if (frame_size != 0) {
Immediate frame_space(frame_size);
subq(RSP, frame_space);
}
}
void Assembler::LeaveFrame() {
movq(RSP, RBP);
popq(RBP);
}
void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) {
// Reserve space for arguments and align frame before entering
// the C++ world.
AddImmediate(RSP, Immediate(-frame_space));
if (OS::ActivationFrameAlignment() > 0) {
andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
}
// TODO(srdjan): Add XMM registers once they are used by the compiler.
// Based on http://x86-64.org/documentation/abi.pdf Fig. 3.4
static const intptr_t kNumberOfVolatileCpuRegisters = 9;
static const Register volatile_cpu_registers[kNumberOfVolatileCpuRegisters] = {
RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11
};
// XMM0 is used only as a scratch register in the optimized code. No need to
// save it.
static const intptr_t kNumberOfVolatileXmmRegisters =
kNumberOfXmmRegisters - 1;
void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) {
EnterFrame(0);
// Preserve volatile CPU registers.
for (intptr_t i = 0; i < kNumberOfVolatileCpuRegisters; i++) {
pushq(volatile_cpu_registers[i]);
}
// Preserve all XMM registers except XMM0
subq(RSP, Immediate((kNumberOfXmmRegisters - 1) * kFpuRegisterSize));
// Store XMM registers with the lowest register number at the lowest
// address.
intptr_t offset = 0;
for (intptr_t reg_idx = 1; reg_idx < kNumberOfXmmRegisters; ++reg_idx) {
XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx);
movups(Address(RSP, offset), xmm_reg);
offset += kFpuRegisterSize;
}
ReserveAlignedFrameSpace(frame_space);
}
void Assembler::LeaveCallRuntimeFrame() {
// RSP might have been modified to reserve space for arguments
// and ensure proper alignment of the stack frame.
// We need to restore it before restoring registers.
const intptr_t kPushedRegistersSize =
kNumberOfVolatileCpuRegisters * kWordSize +
kNumberOfVolatileXmmRegisters * kFpuRegisterSize;
leaq(RSP, Address(RBP, -kPushedRegistersSize));
// Restore all XMM registers except XMM0
// XMM registers have the lowest register number at the lowest address.
intptr_t offset = 0;
for (intptr_t reg_idx = 1; reg_idx < kNumberOfXmmRegisters; ++reg_idx) {
XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx);
movups(xmm_reg, Address(RSP, offset));
offset += kFpuRegisterSize;
}
addq(RSP, Immediate(offset));
// Restore volatile CPU registers.
for (intptr_t i = kNumberOfVolatileCpuRegisters - 1; i >= 0; i--) {
popq(volatile_cpu_registers[i]);
}
leave();
}
void Assembler::CallRuntime(const RuntimeEntry& entry) {
entry.Call(this);
}
void Assembler::EnterDartFrame(intptr_t frame_size) {
const intptr_t offset = CodeSize();
EnterFrame(0);
Label dart_entry;
call(&dart_entry);
Bind(&dart_entry);
// Adjust saved PC for any intrinsic code that could have been generated
// before a frame is created.
if (offset != 0) {
addq(Address(RSP, 0), Immediate(-offset));
}
if (frame_size != 0) {
subq(RSP, Immediate(frame_size));
}
}
void Assembler::EnterStubFrame() {
EnterFrame(0);
pushq(Immediate(0)); // Push 0 in the saved PC area for stub frames.
}
void Assembler::TryAllocate(const Class& cls,
Label* failure,
bool near_jump,
Register instance_reg) {
ASSERT(failure != NULL);
if (FLAG_inline_alloc) {
Heap* heap = Isolate::Current()->heap();
const intptr_t instance_size = cls.instance_size();
movq(TMP, Immediate(heap->TopAddress()));
movq(instance_reg, Address(TMP, 0));
addq(instance_reg, Immediate(instance_size));
// instance_reg: potential next object start.
movq(TMP, Immediate(heap->EndAddress()));
cmpq(instance_reg, Address(TMP, 0));
j(ABOVE_EQUAL, failure, near_jump);
// Successfully allocated the object, now update top to point to
// next object start and store the class in the class field of object.
movq(TMP, Immediate(heap->TopAddress()));
movq(Address(TMP, 0), instance_reg);
ASSERT(instance_size >= kHeapObjectTag);
subq(instance_reg, Immediate(instance_size - kHeapObjectTag));
uword tags = 0;
tags = RawObject::SizeTag::update(instance_size, tags);
ASSERT(cls.id() != kIllegalCid);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
movq(FieldAddress(instance_reg, Object::tags_offset()), Immediate(tags));
} else {
jmp(failure);
}
}
void Assembler::Align(int alignment, int offset) {
ASSERT(Utils::IsPowerOfTwo(alignment));
int pos = offset + buffer_.GetPosition();
int mod = pos & (alignment - 1);
if (mod == 0) {
return;
}
int bytes_needed = alignment - mod;
while (bytes_needed > MAX_NOP_SIZE) {
nop(MAX_NOP_SIZE);
bytes_needed -= MAX_NOP_SIZE;
}
if (bytes_needed) {
nop(bytes_needed);
}
ASSERT(((offset + buffer_.GetPosition()) & (alignment-1)) == 0);
}
void Assembler::EmitOperand(int rm, const Operand& operand) {
ASSERT(rm >= 0 && rm < 8);
const int length = operand.length_;
ASSERT(length > 0);
// Emit the ModRM byte updated with the given RM value.
ASSERT((operand.encoding_[0] & 0x38) == 0);
EmitUint8(operand.encoding_[0] + (rm << 3));
// Emit the rest of the encoded operand.
for (int i = 1; i < length; i++) {
EmitUint8(operand.encoding_[i]);
}
}
void Assembler::EmitXmmRegisterOperand(int rm, XmmRegister xmm_reg) {
Operand operand;
operand.SetModRM(3, static_cast<Register>(xmm_reg));
EmitOperand(rm, operand);
}
void Assembler::EmitImmediate(const Immediate& imm) {
if (imm.is_int32()) {
EmitInt32(static_cast<int32_t>(imm.value()));
} else {
EmitInt64(imm.value());
}
}
void Assembler::EmitComplex(int rm,
const Operand& operand,
const Immediate& immediate) {
ASSERT(rm >= 0 && rm < 8);
ASSERT(immediate.is_int32());
if (immediate.is_int8()) {
// Use sign-extended 8-bit immediate.
EmitUint8(0x83);
EmitOperand(rm, operand);
EmitUint8(immediate.value() & 0xFF);
} else if (operand.IsRegister(RAX)) {
// Use short form if the destination is rax.
EmitUint8(0x05 + (rm << 3));
EmitImmediate(immediate);
} else {
EmitUint8(0x81);
EmitOperand(rm, operand);
EmitImmediate(immediate);
}
}
void Assembler::EmitLabel(Label* label, int instruction_size) {
if (label->IsBound()) {
int offset = label->Position() - buffer_.Size();
ASSERT(offset <= 0);
EmitInt32(offset - instruction_size);
} else {
EmitLabelLink(label);
}
}
void Assembler::EmitLabelLink(Label* label) {
ASSERT(!label->IsBound());
int position = buffer_.Size();
EmitInt32(label->position_);
label->LinkTo(position);
}
void Assembler::EmitNearLabelLink(Label* label) {
ASSERT(!label->IsBound());
int position = buffer_.Size();
EmitUint8(0);
label->NearLinkTo(position);
}
void Assembler::EmitGenericShift(bool wide,
int rm,
Register reg,
const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
ASSERT(imm.is_int8());
if (wide) {
EmitRegisterREX(reg, REX_W);
} else {
EmitRegisterREX(reg, REX_NONE);
}
if (imm.value() == 1) {
EmitUint8(0xD1);
EmitOperand(rm, Operand(reg));
} else {
EmitUint8(0xC1);
EmitOperand(rm, Operand(reg));
EmitUint8(imm.value() & 0xFF);
}
}
void Assembler::EmitGenericShift(bool wide,
int rm,
Register operand,
Register shifter) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
ASSERT(shifter == RCX);
if (wide) {
EmitRegisterREX(operand, REX_W);
} else {
EmitRegisterREX(operand, REX_NONE);
}
EmitUint8(0xD3);
EmitOperand(rm, Operand(operand));
}
void Assembler::LoadClassId(Register result, Register object) {
ASSERT(RawObject::kClassIdTagBit == 16);
ASSERT(RawObject::kClassIdTagSize == 16);
const intptr_t class_id_offset = Object::tags_offset() +
RawObject::kClassIdTagBit / kBitsPerByte;
movzxw(result, FieldAddress(object, class_id_offset));
}
void Assembler::LoadClassById(Register result, Register class_id) {
ASSERT(result != class_id);
movq(result, FieldAddress(CTX, Context::isolate_offset()));
const intptr_t table_offset_in_isolate =
Isolate::class_table_offset() + ClassTable::table_offset();
movq(result, Address(result, table_offset_in_isolate));
movq(result, Address(result, class_id, TIMES_8, 0));
}
void Assembler::LoadClass(Register result, Register object) {
LoadClassId(TMP, object);
LoadClassById(result, TMP);
}
void Assembler::CompareClassId(Register object, intptr_t class_id) {
LoadClassId(TMP, object);
cmpl(TMP, Immediate(class_id));
}
static const char* cpu_reg_names[kNumberOfCpuRegisters] = {
"rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};
const char* Assembler::RegisterName(Register reg) {
ASSERT((0 <= reg) && (reg < kNumberOfCpuRegisters));
return cpu_reg_names[reg];
}
static const char* xmm_reg_names[kNumberOfXmmRegisters] = {
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"
};
const char* Assembler::FpuRegisterName(FpuRegister reg) {
ASSERT((0 <= reg) && (reg < kNumberOfXmmRegisters));
return xmm_reg_names[reg];
}
} // namespace dart
#endif // defined TARGET_ARCH_X64