blob: f96bf11e786cad256e730dae6ca0b7deb1a6d68f [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of resolution;
abstract class TreeElements {
Element operator[](Node node);
Selector getSelector(Send send);
DartType getType(Node node);
bool isParameterChecked(Element element);
}
class TreeElementMapping implements TreeElements {
final Element currentElement;
final Map<Node, Selector> selectors;
final Map<Node, DartType> types;
final Set<Element> checkedParameters;
TreeElementMapping(this.currentElement)
: selectors = new LinkedHashMap<Node, Selector>(),
types = new LinkedHashMap<Node, DartType>(),
checkedParameters = new Set<Element>();
operator []=(Node node, Element element) {
assert(invariant(node, () {
if (node is FunctionExpression) {
return !node.modifiers.isExternal();
}
return true;
}));
// TODO(johnniwinther): Simplify this invariant to use only declarations in
// [TreeElements].
assert(invariant(node, () {
if (!element.isErroneous() && currentElement != null && element.isPatch) {
return currentElement.getImplementationLibrary().isPatch;
}
return true;
}));
// TODO(ahe): Investigate why the invariant below doesn't hold.
// assert(invariant(node,
// getTreeElement(node) == element ||
// getTreeElement(node) == null,
// message: '${getTreeElement(node)}; $element'));
setTreeElement(node, element);
}
operator [](Node node) => getTreeElement(node);
void remove(Node node) {
setTreeElement(node, null);
}
void setType(Node node, DartType type) {
types[node] = type;
}
DartType getType(Node node) => types[node];
void setSelector(Node node, Selector selector) {
selectors[node] = selector;
}
Selector getSelector(Node node) => selectors[node];
bool isParameterChecked(Element element) {
return checkedParameters.contains(element);
}
}
class ResolverTask extends CompilerTask {
ResolverTask(Compiler compiler) : super(compiler);
String get name => 'Resolver';
TreeElements resolve(Element element) {
return measure(() {
ElementKind kind = element.kind;
if (identical(kind, ElementKind.GENERATIVE_CONSTRUCTOR) ||
identical(kind, ElementKind.FUNCTION) ||
identical(kind, ElementKind.GETTER) ||
identical(kind, ElementKind.SETTER)) {
return resolveMethodElement(element);
}
if (identical(kind, ElementKind.FIELD)) return resolveField(element);
if (identical(kind, ElementKind.PARAMETER) ||
identical(kind, ElementKind.FIELD_PARAMETER)) {
return resolveParameter(element);
}
compiler.unimplemented("resolve($element)",
node: element.parseNode(compiler));
});
}
String constructorNameForDiagnostics(SourceString className,
SourceString constructorName) {
String classNameString = className.slowToString();
String constructorNameString = constructorName.slowToString();
return (constructorName == const SourceString(''))
? classNameString
: "$classNameString.$constructorNameString";
}
void resolveRedirectingConstructor(InitializerResolver resolver,
Node node,
FunctionElement constructor,
FunctionElement redirection) {
Set<FunctionElement> seen = new Set<FunctionElement>();
seen.add(constructor);
while (redirection != null) {
if (seen.contains(redirection)) {
resolver.visitor.error(node, MessageKind.REDIRECTING_CONSTRUCTOR_CYCLE);
return;
}
seen.add(redirection);
if (redirection.isPatched) {
checkMatchingPatchSignatures(constructor, redirection.patch);
redirection = redirection.patch;
}
redirection = resolver.visitor.resolveConstructorRedirection(redirection);
}
}
void checkMatchingPatchParameters(FunctionElement origin,
Link<Element> originParameters,
Link<Element> patchParameters) {
while (!originParameters.isEmpty) {
Element originParameter = originParameters.head;
Element patchParameter = patchParameters.head;
// Hack: Use unparser to test parameter equality. This only works because
// we are restricting patch uses and the approach cannot be used
// elsewhere.
String originParameterText =
originParameter.parseNode(compiler).toString();
String patchParameterText =
patchParameter.parseNode(compiler).toString();
if (originParameterText != patchParameterText) {
error(originParameter.parseNode(compiler),
MessageKind.PATCH_PARAMETER_MISMATCH,
[origin.name, originParameterText, patchParameterText]);
}
originParameters = originParameters.tail;
patchParameters = patchParameters.tail;
}
}
void checkMatchingPatchSignatures(FunctionElement origin,
FunctionElement patch) {
// TODO(johnniwinther): Show both origin and patch locations on errors.
FunctionExpression originTree = compiler.withCurrentElement(origin, () {
return origin.parseNode(compiler);
});
FunctionSignature originSignature = compiler.withCurrentElement(origin, () {
return origin.computeSignature(compiler);
});
FunctionExpression patchTree = compiler.withCurrentElement(patch, () {
return patch.parseNode(compiler);
});
FunctionSignature patchSignature = compiler.withCurrentElement(patch, () {
return patch.computeSignature(compiler);
});
if (originSignature.returnType != patchSignature.returnType) {
compiler.withCurrentElement(patch, () {
Node errorNode =
patchTree.returnType != null ? patchTree.returnType : patchTree;
error(errorNode, MessageKind.PATCH_RETURN_TYPE_MISMATCH, [origin.name,
originSignature.returnType, patchSignature.returnType]);
});
}
if (originSignature.requiredParameterCount !=
patchSignature.requiredParameterCount) {
compiler.withCurrentElement(patch, () {
error(patchTree,
MessageKind.PATCH_REQUIRED_PARAMETER_COUNT_MISMATCH,
[origin.name, originSignature.requiredParameterCount,
patchSignature.requiredParameterCount]);
});
} else {
checkMatchingPatchParameters(origin,
originSignature.requiredParameters,
patchSignature.requiredParameters);
}
if (originSignature.optionalParameterCount != 0 &&
patchSignature.optionalParameterCount != 0) {
if (originSignature.optionalParametersAreNamed !=
patchSignature.optionalParametersAreNamed) {
compiler.withCurrentElement(patch, () {
error(patchTree,
MessageKind.PATCH_OPTIONAL_PARAMETER_NAMED_MISMATCH,
[origin.name]);
});
}
}
if (originSignature.optionalParameterCount !=
patchSignature.optionalParameterCount) {
compiler.withCurrentElement(patch, () {
error(patchTree,
MessageKind.PATCH_OPTIONAL_PARAMETER_COUNT_MISMATCH,
[origin.name, originSignature.optionalParameterCount,
patchSignature.optionalParameterCount]);
});
} else {
checkMatchingPatchParameters(origin,
originSignature.optionalParameters,
patchSignature.optionalParameters);
}
}
TreeElements resolveMethodElement(FunctionElement element) {
assert(invariant(element, element.isDeclaration));
return compiler.withCurrentElement(element, () {
bool isConstructor =
identical(element.kind, ElementKind.GENERATIVE_CONSTRUCTOR);
TreeElements elements =
compiler.enqueuer.resolution.getCachedElements(element);
if (elements != null) {
assert(isConstructor);
return elements;
}
if (element.isPatched) {
checkMatchingPatchSignatures(element, element.patch);
element = element.patch;
}
return compiler.withCurrentElement(element, () {
FunctionExpression tree = element.parseNode(compiler);
if (isConstructor) {
if (tree.returnType != null) {
error(tree, MessageKind.CONSTRUCTOR_WITH_RETURN_TYPE);
}
resolveConstructorImplementation(element, tree);
}
ResolverVisitor visitor = visitorFor(element);
visitor.useElement(tree, element);
visitor.setupFunction(tree, element);
if (isConstructor) {
// Even if there is no initializer list we still have to do the
// resolution in case there is an implicit super constructor call.
InitializerResolver resolver = new InitializerResolver(visitor);
FunctionElement redirection =
resolver.resolveInitializers(element, tree);
if (redirection != null) {
resolveRedirectingConstructor(resolver, tree, element, redirection);
}
} else if (tree.initializers != null) {
error(tree, MessageKind.FUNCTION_WITH_INITIALIZER);
}
visitBody(visitor, tree.body);
return visitor.mapping;
});
});
}
/// This method should only be used by this library (or tests of
/// this library).
ResolverVisitor visitorFor(Element element) {
var mapping = new TreeElementMapping(element);
return new ResolverVisitor(compiler, element, mapping);
}
void visitBody(ResolverVisitor visitor, Statement body) {
visitor.visit(body);
}
void resolveConstructorImplementation(FunctionElement constructor,
FunctionExpression node) {
if (!identical(constructor.defaultImplementation, constructor)) return;
ClassElement intrface = constructor.getEnclosingClass();
if (!intrface.isInterface()) return;
DartType defaultType = intrface.defaultClass;
if (defaultType == null) {
error(node, MessageKind.NO_DEFAULT_CLASS, [intrface.name]);
}
ClassElement defaultClass = defaultType.element;
defaultClass.ensureResolved(compiler);
assert(defaultClass.resolutionState == STATE_DONE);
assert(defaultClass.supertypeLoadState == STATE_DONE);
if (defaultClass.isInterface()) {
error(node, MessageKind.CANNOT_INSTANTIATE_INTERFACE,
[defaultClass.name]);
}
// We have now established the following:
// [intrface] is an interface, let's say "MyInterface".
// [defaultClass] is a class, let's say "MyClass".
Selector selector;
// If the default class implements the interface then we must use the
// default class' name. Otherwise we look for a factory with the name
// of the interface.
if (defaultClass.implementsInterface(intrface)) {
var constructorNameString = constructor.name.slowToString();
// Create selector based on constructor.name but where interface
// is replaced with default class name.
// TODO(ahe): Don't use string manipulations here.
int classNameSeparatorIndex = constructorNameString.indexOf('\$');
if (classNameSeparatorIndex < 0) {
selector = new Selector.callDefaultConstructor(
defaultClass.getLibrary());
} else {
selector = new Selector.callConstructor(
new SourceString(
constructorNameString.substring(classNameSeparatorIndex + 1)),
defaultClass.getLibrary());
}
constructor.defaultImplementation =
defaultClass.lookupConstructor(selector);
} else {
selector =
new Selector.callConstructor(constructor.name,
defaultClass.getLibrary());
constructor.defaultImplementation =
defaultClass.lookupFactoryConstructor(selector);
}
if (constructor.defaultImplementation == null) {
// We failed to find a constructor named either
// "MyInterface.name" or "MyClass.name".
// TODO(aprelev@gmail.com): Use constructorNameForDiagnostics in
// the error message below.
error(node,
MessageKind.CANNOT_FIND_CONSTRUCTOR2,
[selector.name, defaultClass.name]);
}
}
TreeElements resolveField(VariableElement element) {
Node tree = element.parseNode(compiler);
if(element.modifiers.isStatic() && element.variables.isTopLevel()) {
error(element.modifiers.getStatic(),
MessageKind.TOP_LEVEL_VARIABLE_DECLARED_STATIC);
}
ResolverVisitor visitor = visitorFor(element);
initializerDo(tree, visitor.visit);
return visitor.mapping;
}
TreeElements resolveParameter(Element element) {
Node tree = element.parseNode(compiler);
ResolverVisitor visitor = visitorFor(element.enclosingElement);
initializerDo(tree, visitor.visit);
return visitor.mapping;
}
DartType resolveTypeAnnotation(Element element, TypeAnnotation annotation) {
DartType type = resolveReturnType(element, annotation);
if (type == compiler.types.voidType) {
error(annotation, MessageKind.VOID_NOT_ALLOWED);
}
return type;
}
DartType resolveReturnType(Element element, TypeAnnotation annotation) {
if (annotation == null) return compiler.types.dynamicType;
DartType result = visitorFor(element).resolveTypeAnnotation(annotation);
if (result == null) {
// TODO(karklose): warning.
return compiler.types.dynamicType;
}
return result;
}
/**
* Load and resolve the supertypes of [cls].
*
* Warning: do not call this method directly. It should only be
* called by [resolveClass] and [ClassSupertypeResolver].
*/
void loadSupertypes(ClassElement cls, Node from) {
compiler.withCurrentElement(cls, () => measure(() {
if (cls.supertypeLoadState == STATE_DONE) return;
if (cls.supertypeLoadState == STATE_STARTED) {
compiler.reportMessage(
compiler.spanFromNode(from),
MessageKind.CYCLIC_CLASS_HIERARCHY.error([cls.name]),
Diagnostic.ERROR);
cls.supertypeLoadState = STATE_DONE;
cls.allSupertypes = const Link<DartType>().prepend(
compiler.objectClass.computeType(compiler));
// TODO(ahe): We should also set cls.supertype here to avoid
// creating a malformed class hierarchy.
return;
}
cls.supertypeLoadState = STATE_STARTED;
compiler.withCurrentElement(cls, () {
// TODO(ahe): Cache the node in cls.
cls.parseNode(compiler).accept(new ClassSupertypeResolver(compiler,
cls));
if (cls.supertypeLoadState != STATE_DONE) {
cls.supertypeLoadState = STATE_DONE;
}
});
}));
}
/**
* Resolve the class [element].
*
* Before calling this method, [element] was constructed by the
* scanner and most fields are null or empty. This method fills in
* these fields and also ensure that the supertypes of [element] are
* resolved.
*
* Warning: Do not call this method directly. Instead use
* [:element.ensureResolved(compiler):].
*/
void resolveClass(ClassElement element) {
if (!element.isPatch) {
compiler.withCurrentElement(element, () => measure(() {
assert(element.resolutionState == STATE_NOT_STARTED);
element.resolutionState = STATE_STARTED;
ClassNode tree = element.parseNode(compiler);
loadSupertypes(element, tree);
ClassResolverVisitor visitor =
new ClassResolverVisitor(compiler, element);
visitor.visit(tree);
element.resolutionState = STATE_DONE;
}));
if (element.isPatched) {
// Ensure handling patch after origin.
element.patch.ensureResolved(compiler);
}
} else { // Handle patch classes:
element.resolutionState = STATE_STARTED;
// Ensure handling origin before patch.
element.origin.ensureResolved(compiler);
// Ensure that the type is computed.
element.computeType(compiler);
// Copy class hiearchy from origin.
element.supertype = element.origin.supertype;
element.defaultClass = element.origin.defaultClass;
element.interfaces = element.origin.interfaces;
element.allSupertypes = element.origin.allSupertypes;
// Stepwise assignment to ensure invariant.
element.supertypeLoadState = STATE_STARTED;
element.supertypeLoadState = STATE_DONE;
element.resolutionState = STATE_DONE;
// TODO(johnniwinther): Check matching type variables and
// empty extends/implements clauses.
}
}
void checkMembers(ClassElement cls) {
assert(invariant(cls, cls.isDeclaration));
if (cls.isObject(compiler)) return;
// TODO(johnniwinther): Should this be done on the implementation element as
// well?
cls.forEachMember((holder, member) {
// Perform various checks as side effect of "computing" the type.
member.computeType(compiler);
// Check modifiers.
if (member.isFunction() && member.modifiers.isFinal()) {
compiler.reportMessage(
compiler.spanFromElement(member),
MessageKind.ILLEGAL_FINAL_METHOD_MODIFIER.error(),
Diagnostic.ERROR);
}
if (member.isConstructor()) {
final mismatchedFlagsBits =
member.modifiers.flags &
(Modifiers.FLAG_STATIC | Modifiers.FLAG_ABSTRACT);
if (mismatchedFlagsBits != 0) {
final mismatchedFlags =
new Modifiers.withFlags(null, mismatchedFlagsBits);
compiler.reportMessage(
compiler.spanFromElement(member),
MessageKind.ILLEGAL_CONSTRUCTOR_MODIFIERS.error([mismatchedFlags]),
Diagnostic.ERROR);
}
}
checkAbstractField(member);
checkValidOverride(member, cls.lookupSuperMember(member.name));
});
}
void checkAbstractField(Element member) {
// Only check for getters. The test can only fail if there is both a setter
// and a getter with the same name, and we only need to check each abstract
// field once, so we just ignore setters.
if (!member.isGetter()) return;
// Find the associated abstract field.
ClassElement classElement = member.getEnclosingClass();
Element lookupElement = classElement.lookupLocalMember(member.name);
if (lookupElement == null) {
compiler.internalErrorOnElement(member,
"No abstract field for accessor");
} else if (!identical(lookupElement.kind, ElementKind.ABSTRACT_FIELD)) {
compiler.internalErrorOnElement(
member, "Inaccessible abstract field for accessor");
}
AbstractFieldElement field = lookupElement;
if (field.getter == null) return;
if (field.setter == null) return;
int getterFlags = field.getter.modifiers.flags | Modifiers.FLAG_ABSTRACT;
int setterFlags = field.setter.modifiers.flags | Modifiers.FLAG_ABSTRACT;
if (!identical(getterFlags, setterFlags)) {
final mismatchedFlags =
new Modifiers.withFlags(null, getterFlags ^ setterFlags);
compiler.reportMessage(
compiler.spanFromElement(field.getter),
MessageKind.GETTER_MISMATCH.error([mismatchedFlags]),
Diagnostic.ERROR);
compiler.reportMessage(
compiler.spanFromElement(field.setter),
MessageKind.SETTER_MISMATCH.error([mismatchedFlags]),
Diagnostic.ERROR);
}
}
reportErrorWithContext(Element errorneousElement,
MessageKind errorMessage,
Element contextElement,
MessageKind contextMessage) {
compiler.reportMessage(
compiler.spanFromElement(errorneousElement),
errorMessage.error([contextElement.name,
contextElement.getEnclosingClass().name]),
Diagnostic.ERROR);
compiler.reportMessage(
compiler.spanFromElement(contextElement),
contextMessage.error(),
Diagnostic.INFO);
}
void checkValidOverride(Element member, Element superMember) {
if (superMember == null) return;
if (member.modifiers.isStatic()) {
reportErrorWithContext(
member, MessageKind.NO_STATIC_OVERRIDE,
superMember, MessageKind.NO_STATIC_OVERRIDE_CONT);
} else {
FunctionElement superFunction = superMember.asFunctionElement();
FunctionElement function = member.asFunctionElement();
if (superFunction == null || superFunction.isAccessor()) {
// Field or accessor in super.
if (function != null && !function.isAccessor()) {
// But a plain method in this class.
reportErrorWithContext(
member, MessageKind.CANNOT_OVERRIDE_FIELD_WITH_METHOD,
superMember, MessageKind.CANNOT_OVERRIDE_FIELD_WITH_METHOD_CONT);
}
} else {
// Instance method in super.
if (function == null || function.isAccessor()) {
// But a field (or accessor) in this class.
reportErrorWithContext(
member, MessageKind.CANNOT_OVERRIDE_METHOD_WITH_FIELD,
superMember, MessageKind.CANNOT_OVERRIDE_METHOD_WITH_FIELD_CONT);
} else {
// Both are plain instance methods.
if (superFunction.requiredParameterCount(compiler) !=
function.requiredParameterCount(compiler)) {
reportErrorWithContext(
member,
MessageKind.BAD_ARITY_OVERRIDE,
superMember,
MessageKind.BAD_ARITY_OVERRIDE_CONT);
}
// TODO(ahe): Check optional parameters.
}
}
}
}
FunctionSignature resolveSignature(FunctionElement element) {
return compiler.withCurrentElement(element, () {
FunctionExpression node =
compiler.parser.measure(() => element.parseNode(compiler));
return measure(() => SignatureResolver.analyze(
compiler, node.parameters, node.returnType, element));
});
}
FunctionSignature resolveFunctionExpression(Element element,
FunctionExpression node) {
return measure(() => SignatureResolver.analyze(
compiler, node.parameters, node.returnType, element));
}
void resolveTypedef(TypedefElement element) {
if (element.isResolved || element.isBeingResolved) return;
element.isBeingResolved = true;
return compiler.withCurrentElement(element, () {
measure(() {
Typedef node =
compiler.parser.measure(() => element.parseNode(compiler));
TypedefResolverVisitor visitor =
new TypedefResolverVisitor(compiler, element);
visitor.visit(node);
element.isBeingResolved = false;
element.isResolved = true;
});
});
}
FunctionType computeFunctionType(Element element,
FunctionSignature signature) {
LinkBuilder<DartType> parameterTypes = new LinkBuilder<DartType>();
for (Link<Element> link = signature.requiredParameters;
!link.isEmpty;
link = link.tail) {
parameterTypes.addLast(link.head.computeType(compiler));
// TODO(karlklose): optional parameters.
}
return new FunctionType(signature.returnType,
parameterTypes.toLink(),
element);
}
void resolveMetadataAnnotation(PartialMetadataAnnotation annotation) {
compiler.withCurrentElement(annotation.annotatedElement, () => measure(() {
assert(annotation.resolutionState == STATE_NOT_STARTED);
annotation.resolutionState = STATE_STARTED;
Node node = annotation.parseNode(compiler);
ResolverVisitor visitor =
visitorFor(annotation.annotatedElement.enclosingElement);
node.accept(visitor);
annotation.value = compiler.constantHandler.compileNodeWithDefinitions(
node, visitor.mapping);
annotation.resolutionState = STATE_DONE;
}));
}
error(Node node, MessageKind kind, [arguments = const []]) {
ResolutionError message = new ResolutionError(kind, arguments);
compiler.reportError(node, message);
}
}
class InitializerResolver {
final ResolverVisitor visitor;
final Map<SourceString, Node> initialized;
Link<Node> initializers;
bool hasSuper;
InitializerResolver(this.visitor)
: initialized = new Map<SourceString, Node>(), hasSuper = false;
error(Node node, MessageKind kind, [arguments = const []]) {
visitor.error(node, kind, arguments);
}
warning(Node node, MessageKind kind, [arguments = const []]) {
visitor.warning(node, kind, arguments);
}
bool isFieldInitializer(SendSet node) {
if (node.selector.asIdentifier() == null) return false;
if (node.receiver == null) return true;
if (node.receiver.asIdentifier() == null) return false;
return node.receiver.asIdentifier().isThis();
}
void checkForDuplicateInitializers(SourceString name, Node init) {
if (initialized.containsKey(name)) {
error(init, MessageKind.DUPLICATE_INITIALIZER, [name]);
warning(initialized[name], MessageKind.ALREADY_INITIALIZED, [name]);
}
initialized[name] = init;
}
void resolveFieldInitializer(FunctionElement constructor, SendSet init) {
// init is of the form [this.]field = value.
final Node selector = init.selector;
final SourceString name = selector.asIdentifier().source;
// Lookup target field.
Element target;
if (isFieldInitializer(init)) {
target = constructor.getEnclosingClass().lookupLocalMember(name);
if (target == null) {
error(selector, MessageKind.CANNOT_RESOLVE, [name]);
} else if (target.kind != ElementKind.FIELD) {
error(selector, MessageKind.NOT_A_FIELD, [name]);
} else if (!target.isInstanceMember()) {
error(selector, MessageKind.INIT_STATIC_FIELD, [name]);
}
} else {
error(init, MessageKind.INVALID_RECEIVER_IN_INITIALIZER);
}
visitor.useElement(init, target);
visitor.world.registerStaticUse(target);
checkForDuplicateInitializers(name, init);
// Resolve initializing value.
visitor.visitInStaticContext(init.arguments.head);
}
ClassElement getSuperOrThisLookupTarget(FunctionElement constructor,
bool isSuperCall,
Node diagnosticNode) {
ClassElement lookupTarget = constructor.getEnclosingClass();
if (isSuperCall) {
// Calculate correct lookup target and constructor name.
if (identical(lookupTarget, visitor.compiler.objectClass)) {
error(diagnosticNode, MessageKind.SUPER_INITIALIZER_IN_OBJECT);
} else {
return lookupTarget.supertype.element;
}
}
return lookupTarget;
}
Element resolveSuperOrThisForSend(FunctionElement constructor,
FunctionExpression functionNode,
Send call) {
// Resolve the selector and the arguments.
ResolverTask resolver = visitor.compiler.resolver;
visitor.inStaticContext(() {
visitor.resolveSelector(call);
visitor.resolveArguments(call.argumentsNode);
});
Selector selector = visitor.mapping.getSelector(call);
bool isSuperCall = Initializers.isSuperConstructorCall(call);
ClassElement lookupTarget = getSuperOrThisLookupTarget(constructor,
isSuperCall,
call);
Selector constructorSelector =
visitor.getRedirectingThisOrSuperConstructorSelector(call);
FunctionElement calledConstructor =
lookupTarget.lookupConstructor(constructorSelector);
final bool isImplicitSuperCall = false;
final SourceString className = lookupTarget.name;
verifyThatConstructorMatchesCall(calledConstructor,
selector,
isImplicitSuperCall,
call,
className,
constructorSelector);
visitor.useElement(call, calledConstructor);
visitor.world.registerStaticUse(calledConstructor);
return calledConstructor;
}
void resolveImplicitSuperConstructorSend(FunctionElement constructor,
FunctionExpression functionNode) {
// If the class has a super resolve the implicit super call.
ClassElement classElement = constructor.getEnclosingClass();
ClassElement superClass = classElement.superclass;
if (classElement != visitor.compiler.objectClass) {
assert(superClass != null);
assert(superClass.resolutionState == STATE_DONE);
SourceString constructorName = const SourceString('');
Selector callToMatch = new Selector.call(
constructorName,
classElement.getLibrary(),
0);
final bool isSuperCall = true;
ClassElement lookupTarget = getSuperOrThisLookupTarget(constructor,
isSuperCall,
functionNode);
Selector constructorSelector = new Selector.callDefaultConstructor(
visitor.enclosingElement.getLibrary());
Element calledConstructor = lookupTarget.lookupConstructor(
constructorSelector);
final SourceString className = lookupTarget.name;
final bool isImplicitSuperCall = true;
verifyThatConstructorMatchesCall(calledConstructor,
callToMatch,
isImplicitSuperCall,
functionNode,
className,
constructorSelector);
visitor.world.registerStaticUse(calledConstructor);
}
}
void verifyThatConstructorMatchesCall(
FunctionElement lookedupConstructor,
Selector call,
bool isImplicitSuperCall,
Node diagnosticNode,
SourceString className,
Selector constructorSelector) {
if (lookedupConstructor == null
|| !lookedupConstructor.isGenerativeConstructor()) {
var fullConstructorName =
visitor.compiler.resolver.constructorNameForDiagnostics(
className,
constructorSelector.name);
MessageKind kind = isImplicitSuperCall
? MessageKind.CANNOT_RESOLVE_CONSTRUCTOR_FOR_IMPLICIT
: MessageKind.CANNOT_RESOLVE_CONSTRUCTOR;
error(diagnosticNode, kind, [fullConstructorName]);
} else {
if (!call.applies(lookedupConstructor, visitor.compiler)) {
MessageKind kind = isImplicitSuperCall
? MessageKind.NO_MATCHING_CONSTRUCTOR_FOR_IMPLICIT
: MessageKind.NO_MATCHING_CONSTRUCTOR;
error(diagnosticNode, kind);
}
}
}
FunctionElement resolveRedirection(FunctionElement constructor,
FunctionExpression functionNode) {
if (functionNode.initializers == null) return null;
Link<Node> link = functionNode.initializers.nodes;
if (!link.isEmpty && Initializers.isConstructorRedirect(link.head)) {
return resolveSuperOrThisForSend(constructor, functionNode, link.head);
}
return null;
}
/**
* Resolve all initializers of this constructor. In the case of a redirecting
* constructor, the resolved constructor's function element is returned.
*/
FunctionElement resolveInitializers(FunctionElement constructor,
FunctionExpression functionNode) {
// Keep track of all "this.param" parameters specified for constructor so
// that we can ensure that fields are initialized only once.
FunctionSignature functionParameters =
constructor.computeSignature(visitor.compiler);
functionParameters.forEachParameter((Element element) {
if (identical(element.kind, ElementKind.FIELD_PARAMETER)) {
checkForDuplicateInitializers(element.name,
element.parseNode(visitor.compiler));
}
});
if (functionNode.initializers == null) {
initializers = const Link<Node>();
} else {
initializers = functionNode.initializers.nodes;
}
FunctionElement result;
bool resolvedSuper = false;
for (Link<Node> link = initializers;
!link.isEmpty;
link = link.tail) {
if (link.head.asSendSet() != null) {
final SendSet init = link.head.asSendSet();
resolveFieldInitializer(constructor, init);
} else if (link.head.asSend() != null) {
final Send call = link.head.asSend();
if (Initializers.isSuperConstructorCall(call)) {
if (resolvedSuper) {
error(call, MessageKind.DUPLICATE_SUPER_INITIALIZER);
}
resolveSuperOrThisForSend(constructor, functionNode, call);
resolvedSuper = true;
} else if (Initializers.isConstructorRedirect(call)) {
// Check that there is no body (Language specification 7.5.1).
if (functionNode.hasBody()) {
error(functionNode, MessageKind.REDIRECTING_CONSTRUCTOR_HAS_BODY);
}
// Check that there are no other initializers.
if (!initializers.tail.isEmpty) {
error(call, MessageKind.REDIRECTING_CONSTRUCTOR_HAS_INITIALIZER);
}
return resolveSuperOrThisForSend(constructor, functionNode, call);
} else {
visitor.error(call, MessageKind.CONSTRUCTOR_CALL_EXPECTED);
return null;
}
} else {
error(link.head, MessageKind.INVALID_INITIALIZER);
}
}
if (!resolvedSuper) {
resolveImplicitSuperConstructorSend(constructor, functionNode);
}
return null; // If there was no redirection always return null.
}
}
class CommonResolverVisitor<R> extends Visitor<R> {
final Compiler compiler;
CommonResolverVisitor(Compiler this.compiler);
R visitNode(Node node) {
cancel(node,
'internal error: Unhandled node: ${node.getObjectDescription()}');
}
R visitEmptyStatement(Node node) => null;
/** Convenience method for visiting nodes that may be null. */
R visit(Node node) => (node == null) ? null : node.accept(this);
void error(Node node, MessageKind kind, [arguments = const []]) {
ResolutionError message = new ResolutionError(kind, arguments);
compiler.reportError(node, message);
}
void warning(Node node, MessageKind kind, [arguments = const []]) {
ResolutionWarning message = new ResolutionWarning(kind, arguments);
compiler.reportWarning(node, message);
}
void cancel(Node node, String message) {
compiler.cancel(message, node: node);
}
void internalError(Node node, String message) {
compiler.internalError(message, node: node);
}
void unimplemented(Node node, String message) {
compiler.unimplemented(message, node: node);
}
}
abstract class LabelScope {
LabelScope get outer;
LabelElement lookup(String label);
}
class LabeledStatementLabelScope implements LabelScope {
final LabelScope outer;
final Map<String, LabelElement> labels;
LabeledStatementLabelScope(this.outer, this.labels);
LabelElement lookup(String labelName) {
LabelElement label = labels[labelName];
if (label != null) return label;
return outer.lookup(labelName);
}
}
class SwitchLabelScope implements LabelScope {
final LabelScope outer;
final Map<String, LabelElement> caseLabels;
SwitchLabelScope(this.outer, this.caseLabels);
LabelElement lookup(String labelName) {
LabelElement result = caseLabels[labelName];
if (result != null) return result;
return outer.lookup(labelName);
}
}
class EmptyLabelScope implements LabelScope {
const EmptyLabelScope();
LabelElement lookup(String label) => null;
LabelScope get outer {
throw 'internal error: empty label scope has no outer';
}
}
class StatementScope {
LabelScope labels;
Link<TargetElement> breakTargetStack;
Link<TargetElement> continueTargetStack;
// Used to provide different numbers to statements if one is inside the other.
// Can be used to make otherwise duplicate labels unique.
int nestingLevel = 0;
StatementScope()
: labels = const EmptyLabelScope(),
breakTargetStack = const Link<TargetElement>(),
continueTargetStack = const Link<TargetElement>();
LabelElement lookupLabel(String label) {
return labels.lookup(label);
}
TargetElement currentBreakTarget() =>
breakTargetStack.isEmpty ? null : breakTargetStack.head;
TargetElement currentContinueTarget() =>
continueTargetStack.isEmpty ? null : continueTargetStack.head;
void enterLabelScope(Map<String, LabelElement> elements) {
labels = new LabeledStatementLabelScope(labels, elements);
nestingLevel++;
}
void exitLabelScope() {
nestingLevel--;
labels = labels.outer;
}
void enterLoop(TargetElement element) {
breakTargetStack = breakTargetStack.prepend(element);
continueTargetStack = continueTargetStack.prepend(element);
nestingLevel++;
}
void exitLoop() {
nestingLevel--;
breakTargetStack = breakTargetStack.tail;
continueTargetStack = continueTargetStack.tail;
}
void enterSwitch(TargetElement breakElement,
Map<String, LabelElement> continueElements) {
breakTargetStack = breakTargetStack.prepend(breakElement);
labels = new SwitchLabelScope(labels, continueElements);
nestingLevel++;
}
void exitSwitch() {
nestingLevel--;
breakTargetStack = breakTargetStack.tail;
labels = labels.outer;
}
}
class TypeResolver {
final Compiler compiler;
TypeResolver(this.compiler);
Element resolveTypeName(Scope scope, TypeAnnotation node) {
Identifier typeName = node.typeName.asIdentifier();
Send send = node.typeName.asSend();
return resolveTypeNameInternal(scope, typeName, send);
}
Element resolveTypeNameInternal(Scope scope, Identifier typeName, Send send) {
if (send != null) {
typeName = send.selector;
}
if (identical(typeName.source.stringValue, 'void')) {
return compiler.types.voidType.element;
} else if (
// TODO(aprelev@gmail.com): Remove deprecated Dynamic keyword support.
identical(typeName.source.stringValue, 'Dynamic')
|| identical(typeName.source.stringValue, 'dynamic')) {
return compiler.dynamicClass;
} else if (send != null) {
Element e = scope.lookup(send.receiver.asIdentifier().source);
if (e != null && identical(e.kind, ElementKind.PREFIX)) {
// The receiver is a prefix. Lookup in the imported members.
PrefixElement prefix = e;
return prefix.lookupLocalMember(typeName.source);
} else if (e != null && identical(e.kind, ElementKind.CLASS)) {
// The receiver is the class part of a named constructor.
return e;
} else {
return null;
}
} else {
return scope.lookup(typeName.source);
}
}
// TODO(johnniwinther): Change [onFailure] and [whenResolved] to use boolean
// flags instead of closures.
// TODO(johnniwinther): Should never return [null] but instead an erroneous
// type.
DartType resolveTypeAnnotation(
TypeAnnotation node,
Scope scope,
{onFailure(Node node, MessageKind kind, [List arguments]),
whenResolved(Node node, DartType type)}) {
if (onFailure == null) {
onFailure = (n, k, [arguments]) {};
}
if (whenResolved == null) {
whenResolved = (n, t) {};
}
if (scope == null) {
compiler.internalError('resolveTypeAnnotation: no scope specified');
}
return resolveTypeAnnotationInContext(scope, node, onFailure,
whenResolved);
}
DartType resolveTypeAnnotationInContext(Scope scope, TypeAnnotation node,
onFailure, whenResolved) {
Element element = resolveTypeName(scope, node);
DartType type;
if (element == null) {
onFailure(node, MessageKind.CANNOT_RESOLVE_TYPE, [node.typeName]);
} else if (element.isErroneous()) {
ErroneousElement error = element;
onFailure(node, error.messageKind, error.messageArguments);
} else if (!element.impliesType()) {
onFailure(node, MessageKind.NOT_A_TYPE, [node.typeName]);
} else {
if (identical(element, compiler.types.voidType.element) ||
identical(element, compiler.types.dynamicType.element)) {
type = element.computeType(compiler);
} else if (element.isClass()) {
ClassElement cls = element;
cls.ensureResolved(compiler);
Link<DartType> arguments =
resolveTypeArguments(node, cls.typeVariables, scope,
onFailure, whenResolved);
if (cls.typeVariables.isEmpty && arguments.isEmpty) {
// Use the canonical type if it has no type parameters.
type = cls.computeType(compiler);
} else {
type = new InterfaceType(cls, arguments);
}
} else if (element.isTypedef()) {
TypedefElement typdef = element;
// TODO(ahe): Should be [ensureResolved].
compiler.resolveTypedef(typdef);
typdef.computeType(compiler);
Link<DartType> arguments = resolveTypeArguments(
node, typdef.typeVariables,
scope, onFailure, whenResolved);
if (typdef.typeVariables.isEmpty && arguments.isEmpty) {
// Return the canonical type if it has no type parameters.
type = typdef.computeType(compiler);
} else {
type = new TypedefType(typdef, arguments);
}
} else if (element.isTypeVariable()) {
type = element.computeType(compiler);
} else {
compiler.cancel("unexpected element kind ${element.kind}",
node: node);
}
}
whenResolved(node, type);
return type;
}
Link<DartType> resolveTypeArguments(TypeAnnotation node,
Link<DartType> typeVariables,
Scope scope, onFailure, whenResolved) {
if (node.typeArguments == null) {
return const Link<DartType>();
}
var arguments = new LinkBuilder<DartType>();
for (Link<Node> typeArguments = node.typeArguments.nodes;
!typeArguments.isEmpty;
typeArguments = typeArguments.tail) {
if (typeVariables.isEmpty) {
onFailure(typeArguments.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT);
}
DartType argType = resolveTypeAnnotationInContext(scope,
typeArguments.head,
onFailure,
whenResolved);
arguments.addLast(argType);
if (!typeVariables.isEmpty) {
typeVariables = typeVariables.tail;
}
}
if (!typeVariables.isEmpty) {
onFailure(node.typeArguments, MessageKind.MISSING_TYPE_ARGUMENT);
}
return arguments.toLink();
}
}
/**
* Core implementation of resolution.
*
* Do not subclass or instantiate this class outside this library
* except for testing.
*/
class ResolverVisitor extends CommonResolverVisitor<Element> {
final TreeElementMapping mapping;
Element enclosingElement;
final TypeResolver typeResolver;
bool inInstanceContext;
bool inCheckContext;
bool inCatchBlock;
Scope scope;
ClassElement currentClass;
ExpressionStatement currentExpressionStatement;
bool typeRequired = false;
StatementScope statementScope;
int allowedCategory = ElementCategory.VARIABLE | ElementCategory.FUNCTION;
ResolverVisitor(Compiler compiler, Element element, this.mapping)
: this.enclosingElement = element,
// When the element is a field, we are actually resolving its
// initial value, which should not have access to instance
// fields.
inInstanceContext = (element.isInstanceMember() && !element.isField())
|| element.isGenerativeConstructor(),
this.currentClass = element.isMember() ? element.getEnclosingClass()
: null,
this.statementScope = new StatementScope(),
typeResolver = new TypeResolver(compiler),
scope = element.buildScope(),
inCheckContext = compiler.enableTypeAssertions,
inCatchBlock = false,
super(compiler);
Enqueuer get world => compiler.enqueuer.resolution;
Element lookup(Node node, SourceString name) {
Element result = scope.lookup(name);
if (!inInstanceContext && result != null && result.isInstanceMember()) {
error(node, MessageKind.NO_INSTANCE_AVAILABLE, [node]);
}
return result;
}
// Create, or reuse an already created, statement element for a statement.
TargetElement getOrCreateTargetElement(Node statement) {
TargetElement element = mapping[statement];
if (element == null) {
element = new TargetElement(statement,
statementScope.nestingLevel,
enclosingElement);
mapping[statement] = element;
}
return element;
}
doInCheckContext(action()) {
bool wasInCheckContext = inCheckContext;
inCheckContext = true;
var result = action();
inCheckContext = wasInCheckContext;
return result;
}
inStaticContext(action()) {
bool wasInstanceContext = inInstanceContext;
inInstanceContext = false;
var result = action();
inInstanceContext = wasInstanceContext;
return result;
}
visitInStaticContext(Node node) {
inStaticContext(() => visit(node));
}
ErroneousElement warnAndCreateErroneousElement(Node node,
SourceString name,
MessageKind kind,
List<Node> arguments) {
return warnOnErroneousElement(node,
new ErroneousElement(kind, arguments, name, enclosingElement));
}
ErroneousElement warnOnErroneousElement(Node node,
ErroneousElement erroneousElement) {
ResolutionWarning warning =
new ResolutionWarning(erroneousElement.messageKind,
erroneousElement.messageArguments);
compiler.reportWarning(node, warning);
return erroneousElement;
}
Element visitIdentifier(Identifier node) {
if (node.isThis()) {
if (!inInstanceContext) {
error(node, MessageKind.NO_INSTANCE_AVAILABLE, [node]);
}
return null;
} else if (node.isSuper()) {
if (!inInstanceContext) error(node, MessageKind.NO_SUPER_IN_STATIC);
if ((ElementCategory.SUPER & allowedCategory) == 0) {
error(node, MessageKind.INVALID_USE_OF_SUPER);
}
return null;
} else {
Element element = lookup(node, node.source);
if (element == null) {
if (!inInstanceContext) {
element = warnAndCreateErroneousElement(node, node.source,
MessageKind.CANNOT_RESOLVE,
[node]);
}
} else if (element.isErroneous()) {
element = warnOnErroneousElement(node, element);
} else {
if ((element.kind.category & allowedCategory) == 0) {
// TODO(ahe): Improve error message. Need UX input.
error(node, MessageKind.GENERIC, ["is not an expression $element"]);
}
}
return useElement(node, element);
}
}
Element visitTypeAnnotation(TypeAnnotation node) {
DartType type = resolveTypeAnnotation(node);
if (type != null) {
if (inCheckContext) {
compiler.enqueuer.resolution.registerIsCheck(type);
}
return type.element;
}
return null;
}
Element defineElement(Node node, Element element,
{bool doAddToScope: true}) {
compiler.ensure(element != null);
mapping[node] = element;
if (doAddToScope) {
Element existing = scope.add(element);
if (existing != element) {
error(node, MessageKind.DUPLICATE_DEFINITION, [node]);
}
}
return element;
}
Element useElement(Node node, Element element) {
if (element == null) return null;
return mapping[node] = element;
}
DartType useType(TypeAnnotation annotation, DartType type) {
if (type != null) {
mapping.setType(annotation, type);
useElement(annotation, type.element);
}
return type;
}
bool isNamedConstructor(Send node) => node.receiver != null;
Selector getRedirectingThisOrSuperConstructorSelector(Send node) {
if (isNamedConstructor(node)) {
SourceString constructorName = node.selector.asIdentifier().source;
return new Selector.callConstructor(
constructorName,
enclosingElement.getLibrary());
} else {
return new Selector.callDefaultConstructor(
enclosingElement.getLibrary());
}
}
FunctionElement resolveConstructorRedirection(FunctionElement constructor) {
FunctionExpression node = constructor.parseNode(compiler);
// A synthetic constructor does not have a node.
if (node == null) return null;
if (node.initializers == null) return null;
Link<Node> initializers = node.initializers.nodes;
if (!initializers.isEmpty &&
Initializers.isConstructorRedirect(initializers.head)) {
Selector selector =
getRedirectingThisOrSuperConstructorSelector(initializers.head);
final ClassElement classElement = constructor.getEnclosingClass();
return classElement.lookupConstructor(selector);
}
return null;
}
void setupFunction(FunctionExpression node, FunctionElement function) {
scope = new MethodScope(scope, function);
// Put the parameters in scope.
FunctionSignature functionParameters =
function.computeSignature(compiler);
Link<Node> parameterNodes = (node.parameters == null)
? const Link<Node>() : node.parameters.nodes;
functionParameters.forEachParameter((Element element) {
if (element == functionParameters.optionalParameters.head) {
NodeList nodes = parameterNodes.head;
parameterNodes = nodes.nodes;
}
VariableDefinitions variableDefinitions = parameterNodes.head;
Node parameterNode = variableDefinitions.definitions.nodes.head;
initializerDo(parameterNode, (n) => n.accept(this));
// Field parameters (this.x) are not visible inside the constructor. The
// fields they reference are visible, but must be resolved independently.
if (element.kind == ElementKind.FIELD_PARAMETER) {
useElement(parameterNode, element);
} else {
defineElement(variableDefinitions.definitions.nodes.head, element);
}
parameterNodes = parameterNodes.tail;
});
}
visitCascade(Cascade node) {
visit(node.expression);
}
visitCascadeReceiver(CascadeReceiver node) {
visit(node.expression);
}
Element visitClassNode(ClassNode node) {
cancel(node, "shouldn't be called");
}
visitIn(Node node, Scope nestedScope) {
Scope oldScope = scope;
scope = nestedScope;
Element element = visit(node);
scope = oldScope;
return element;
}
/**
* Introduces new default targets for break and continue
* before visiting the body of the loop
*/
visitLoopBodyIn(Node loop, Node body, Scope bodyScope) {
TargetElement element = getOrCreateTargetElement(loop);
statementScope.enterLoop(element);
visitIn(body, bodyScope);
statementScope.exitLoop();
if (!element.isTarget) {
mapping.remove(loop);
}
}
visitBlock(Block node) {
visitIn(node.statements, new BlockScope(scope));
}
visitDoWhile(DoWhile node) {
visitLoopBodyIn(node, node.body, new BlockScope(scope));
visit(node.condition);
}
visitEmptyStatement(EmptyStatement node) { }
visitExpressionStatement(ExpressionStatement node) {
ExpressionStatement oldExpressionStatement = currentExpressionStatement;
currentExpressionStatement = node;
visit(node.expression);
currentExpressionStatement = oldExpressionStatement;
}
visitFor(For node) {
Scope blockScope = new BlockScope(scope);
visitIn(node.initializer, blockScope);
visitIn(node.condition, blockScope);
visitIn(node.update, blockScope);
visitLoopBodyIn(node, node.body, blockScope);
}
visitFunctionDeclaration(FunctionDeclaration node) {
assert(node.function.name != null);
visit(node.function);
FunctionElement functionElement = mapping[node.function];
// TODO(floitsch): this might lead to two errors complaining about
// shadowing.
defineElement(node, functionElement);
}
visitFunctionExpression(FunctionExpression node) {
visit(node.returnType);
SourceString name;
if (node.name == null) {
name = const SourceString("");
} else {
name = node.name.asIdentifier().source;
}
FunctionElement function = new FunctionElement.node(
name, node, ElementKind.FUNCTION, Modifiers.EMPTY,
enclosingElement);
Scope oldScope = scope; // The scope is modified by [setupFunction].
setupFunction(node, function);
defineElement(node, function, doAddToScope: node.name !== null);
Element previousEnclosingElement = enclosingElement;
enclosingElement = function;
// Run the body in a fresh statement scope.
StatementScope oldStatementScope = statementScope;
statementScope = new StatementScope();
visit(node.body);
statementScope = oldStatementScope;
scope = oldScope;
enclosingElement = previousEnclosingElement;
}
visitIf(If node) {
visit(node.condition);
visit(node.thenPart);
visit(node.elsePart);
}
static bool isLogicalOperator(Identifier op) {
String str = op.source.stringValue;
return (identical(str, '&&') || str == '||' || str == '!');
}
Element resolveSend(Send node) {
Selector selector = resolveSelector(node);
if (node.receiver == null) {
// If this send is of the form "assert(expr);", then
// this is an assertion.
if (selector.isAssert()) {
if (selector.argumentCount != 1) {
error(node.selector,
MessageKind.WRONG_NUMBER_OF_ARGUMENTS_FOR_ASSERT,
[selector.argumentCount]);
} else if (selector.namedArgumentCount != 0) {
error(node.selector,
MessageKind.ASSERT_IS_GIVEN_NAMED_ARGUMENTS,
[selector.namedArgumentCount]);
}
return compiler.assertMethod;
}
return node.selector.accept(this);
}
var oldCategory = allowedCategory;
allowedCategory |=
ElementCategory.CLASS | ElementCategory.PREFIX | ElementCategory.SUPER;
Element resolvedReceiver = visit(node.receiver);
allowedCategory = oldCategory;
Element target;
SourceString name = node.selector.asIdentifier().source;
if (identical(name.stringValue, 'this')) {
error(node.selector, MessageKind.GENERIC, ["expected an identifier"]);
} else if (node.isSuperCall) {
if (node.isOperator) {
if (isUserDefinableOperator(name.stringValue)) {
name = selector.name;
} else {
error(node.selector, MessageKind.ILLEGAL_SUPER_SEND, [name]);
}
}
if (!inInstanceContext) {
error(node.receiver, MessageKind.NO_INSTANCE_AVAILABLE, [name]);
return null;
}
if (currentClass.supertype == null) {
// This is just to guard against internal errors, so no need
// for a real error message.
error(node.receiver, MessageKind.GENERIC, ["Object has no superclass"]);
}
// TODO(johnniwinther): Ensure correct behavior if currentClass is a
// patch.
target = currentClass.lookupSuperMember(name);
// [target] may be null which means invoking noSuchMethod on
// super.
} else if (Elements.isUnresolved(resolvedReceiver)) {
return null;
} else if (identical(resolvedReceiver.kind, ElementKind.CLASS)) {
ClassElement receiverClass = resolvedReceiver;
receiverClass.ensureResolved(compiler);
target = receiverClass.lookupLocalMember(name);
if (target == null) {
// TODO(johnniwinther): With the simplified [TreeElements] invariant,
// try to resolve injected elements if [currentClass] is in the patch
// library of [receiverClass].
// TODO(karlklose): this should be reported by the caller of
// [resolveSend] to select better warning messages for getters and
// setters.
return warnAndCreateErroneousElement(node, name,
MessageKind.METHOD_NOT_FOUND,
[receiverClass.name, name]);
} else if (target.isInstanceMember()) {
error(node, MessageKind.MEMBER_NOT_STATIC, [receiverClass.name, name]);
}
} else if (identical(resolvedReceiver.kind, ElementKind.PREFIX)) {
PrefixElement prefix = resolvedReceiver;
target = prefix.lookupLocalMember(name);
if (target == null) {
return warnAndCreateErroneousElement(
node, name, MessageKind.NO_SUCH_LIBRARY_MEMBER,
[prefix.name, name]);
}
}
return target;
}
DartType resolveTypeTest(Node argument) {
TypeAnnotation node = argument.asTypeAnnotation();
if (node == null) {
// node is of the form !Type.
node = argument.asSend().receiver.asTypeAnnotation();
if (node == null) compiler.cancel("malformed send");
}
return resolveTypeRequired(node);
}
static Selector computeSendSelector(Send node, LibraryElement library) {
// First determine if this is part of an assignment.
bool isSet = node.asSendSet() != null;
if (node.isIndex) {
return isSet ? new Selector.indexSet() : new Selector.index();
}
if (node.isOperator) {
SourceString source = node.selector.asOperator().source;
String string = source.stringValue;
if (identical(string, '!') || identical(string, '&&') || string == '||' ||
identical(string, 'is') || identical(string, 'as') ||
identical(string, '===') || identical(string, '!==') ||
identical(string, '>>>')) {
return null;
}
return node.arguments.isEmpty
? new Selector.unaryOperator(source)
: new Selector.binaryOperator(source);
}
Identifier identifier = node.selector.asIdentifier();
if (node.isPropertyAccess) {
assert(!isSet);
return new Selector.getter(identifier.source, library);
} else if (isSet) {
return new Selector.setter(identifier.source, library);
}
// Compute the arity and the list of named arguments.
int arity = 0;
List<SourceString> named = <SourceString>[];
for (Link<Node> link = node.argumentsNode.nodes;
!link.isEmpty;
link = link.tail) {
Expression argument = link.head;
NamedArgument namedArgument = argument.asNamedArgument();
if (namedArgument != null) {
named.add(namedArgument.name.source);
}
arity++;
}
// If we're invoking a closure, we do not have an identifier.
return (identifier == null)
? new Selector.callClosure(arity, named)
: new Selector.call(identifier.source, library, arity, named);
}
Selector resolveSelector(Send node) {
LibraryElement library = enclosingElement.getLibrary();
Selector selector = computeSendSelector(node, library);
if (selector != null) mapping.setSelector(node, selector);
return selector;
}
void resolveArguments(NodeList list) {
if (list == null) return;
bool seenNamedArgument = false;
for (Link<Node> link = list.nodes; !link.isEmpty; link = link.tail) {
Expression argument = link.head;
visit(argument);
if (argument.asNamedArgument() != null) {
seenNamedArgument = true;
} else if (seenNamedArgument) {
error(argument, MessageKind.INVALID_ARGUMENT_AFTER_NAMED);
}
}
}
visitSend(Send node) {
Element target = resolveSend(node);
if (!Elements.isUnresolved(target)
&& target.kind == ElementKind.ABSTRACT_FIELD) {
AbstractFieldElement field = target;
target = field.getter;
if (target == null && !inInstanceContext) {
target =
warnAndCreateErroneousElement(node.selector, field.name,
MessageKind.CANNOT_RESOLVE_GETTER,
[node.selector]);
}
}
bool resolvedArguments = false;
if (node.isOperator) {
String operatorString = node.selector.asOperator().source.stringValue;
if (identical(operatorString, 'is') || identical(operatorString, 'as')) {
assert(node.arguments.tail.isEmpty);
DartType type = resolveTypeTest(node.arguments.head);
if (type != null) {
compiler.enqueuer.resolution.registerIsCheck(type);
}
resolvedArguments = true;
} else if (identical(operatorString, '?')) {
Element parameter = mapping[node.receiver];
if (parameter == null
|| !identical(parameter.kind, ElementKind.PARAMETER)) {
error(node.receiver, MessageKind.PARAMETER_NAME_EXPECTED);
} else {
mapping.checkedParameters.add(parameter);
}
}
}
if (!resolvedArguments) {
resolveArguments(node.argumentsNode);
}
// If the selector is null, it means that we will not be generating
// code for this as a send.
Selector selector = mapping.getSelector(node);
if (selector == null) return;
if (node.isCall) {
if (Elements.isUnresolved(target) ||
target.isGetter() ||
Elements.isClosureSend(node, target)) {
// If we don't know what we're calling or if we are calling a getter,
// we need to register that fact that we may be calling a closure
// with the same arguments.
Selector call = new Selector.callClosureFrom(selector);
world.registerDynamicInvocation(call.name, call);
} else if (!selector.applies(target, compiler)) {
warnArgumentMismatch(node, target);
}
}
// TODO(ngeoffray): Warn if target is null and the send is
// unqualified.
useElement(node, target);
registerSend(selector, target);
return node.isPropertyAccess ? target : null;
}
void warnArgumentMismatch(Send node, Element target) {
// TODO(karlklose): we can be more precise about the reason of the
// mismatch.
warning(node.argumentsNode, MessageKind.INVALID_ARGUMENTS,
[target.name]);
}
visitSendSet(SendSet node) {
Element target = resolveSend(node);
Element setter = target;
Element getter = target;
SourceString operatorName = node.assignmentOperator.source;
String source = operatorName.stringValue;
bool isComplex = !identical(source, '=');
if (!Elements.isUnresolved(target)
&& target.kind == ElementKind.ABSTRACT_FIELD) {
AbstractFieldElement field = target;
setter = field.setter;
getter = field.getter;
if (setter == null && !inInstanceContext) {
setter =
warnAndCreateErroneousElement(node.selector, field.name,
MessageKind.CANNOT_RESOLVE_SETTER,
[node.selector]);
}
if (isComplex && getter == null && !inInstanceContext) {
getter =
warnAndCreateErroneousElement(node.selector, field.name,
MessageKind.CANNOT_RESOLVE_GETTER,
[node.selector]);
}
}
visit(node.argumentsNode);
// TODO(ngeoffray): Check if the target can be assigned.
// TODO(ngeoffray): Warn if target is null and the send is
// unqualified.
Selector selector = mapping.getSelector(node);
if (isComplex) {
if (selector.isSetter()) {
// TODO(kasperl): We're registering the getter selector for
// compound assignments on the AST selector node. In the code
// generator, we then fetch it from there when generating the
// getter for a SendSet node.
Selector getterSelector = new Selector.getterFrom(selector);
registerSend(getterSelector, getter);
mapping.setSelector(node.selector, getterSelector);
useElement(node.selector, getter);
} else {
// TODO(kasperl): If [getter] is resolved, it will actually
// refer to the []= operator which isn't the one we want to
// register here. We should consider using some notion of
// abstract indexable element that we can resolve to so we can
// distinguish the two.
assert(selector.isIndexSet());
registerSend(new Selector.index(), null);
}
// Make sure we include the + and - operators if we are using
// the ++ and -- ones. Also, if op= form is used, include op itself.
void registerBinaryOperator(SourceString name) {
Selector binop = new Selector.binaryOperator(name);
world.registerDynamicInvocation(binop.name, binop);
}
if (identical(source, '++')) registerBinaryOperator(const SourceString('+'));
if (identical(source, '--')) registerBinaryOperator(const SourceString('-'));
if (source.endsWith('=')) {
registerBinaryOperator(Elements.mapToUserOperator(operatorName));
}
}
registerSend(selector, setter);
return useElement(node, setter);
}
void registerSend(Selector selector, Element target) {
if (target == null || target.isInstanceMember()) {
if (selector.isGetter()) {
world.registerDynamicGetter(selector.name, selector);
} else if (selector.isSetter()) {
world.registerDynamicSetter(selector.name, selector);
} else {
world.registerDynamicInvocation(selector.name, selector);
}
} else if (Elements.isStaticOrTopLevel(target)) {
// TODO(kasperl): It seems like we're not supposed to register
// the use of classes. Wouldn't it be simpler if we just did?
if (!target.isClass()) {
// [target] might be the implementation element and only declaration
// elements may be registered.
world.registerStaticUse(target.declaration);
}
}
if (target == null) {
// If we haven't found an element for this send, it might be a
// dynamic send on a primitive value. Register the selector with
// the world to add an interceptor, if necessary.
world.registerUsedSelector(selector);
}
}
visitLiteralInt(LiteralInt node) {
}
visitLiteralDouble(LiteralDouble node) {
}
visitLiteralBool(LiteralBool node) {
}
visitLiteralString(LiteralString node) {
}
visitLiteralNull(LiteralNull node) {
}
visitStringJuxtaposition(StringJuxtaposition node) {
node.visitChildren(this);
}
visitNodeList(NodeList node) {
for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) {
visit(link.head);
}
}
visitOperator(Operator node) {
unimplemented(node, 'operator');
}
visitReturn(Return node) {
if (node.isRedirectingFactoryBody) {
unimplemented(node, 'redirecting constructors');
}
visit(node.expression);
}
visitThrow(Throw node) {
if (!inCatchBlock && node.expression == null) {
error(node, MessageKind.THROW_WITHOUT_EXPRESSION);
}
visit(node.expression);
}
visitVariableDefinitions(VariableDefinitions node) {
visit(node.type);
VariableDefinitionsVisitor visitor =
new VariableDefinitionsVisitor(compiler, node, this,
ElementKind.VARIABLE);
visitor.visit(node.definitions);
}
visitWhile(While node) {
visit(node.condition);
visitLoopBodyIn(node, node.body, new BlockScope(scope));
}
visitParenthesizedExpression(ParenthesizedExpression node) {
visit(node.expression);
}
visitNewExpression(NewExpression node) {
Node selector = node.send.selector;
FunctionElement constructor = resolveConstructor(node);
resolveSelector(node.send);
resolveArguments(node.send.argumentsNode);
useElement(node.send, constructor);
if (Elements.isUnresolved(constructor)) return constructor;
// TODO(karlklose): handle optional arguments.
if (node.send.argumentCount() != constructor.parameterCount(compiler)) {
// TODO(ngeoffray): resolution error with wrong number of
// parameters. We cannot do this rigth now because of the
// List constructor.
}
// [constructor] might be the implementation element and only declaration
// elements may be registered.
world.registerStaticUse(constructor.declaration);
compiler.withCurrentElement(constructor, () {
FunctionExpression tree = constructor.parseNode(compiler);
compiler.resolver.resolveConstructorImplementation(constructor, tree);
});
// [constructor.defaultImplementation] might be the implementation element
// and only declaration elements may be registered.
world.registerStaticUse(constructor.defaultImplementation.declaration);
ClassElement cls = constructor.defaultImplementation.getEnclosingClass();
// [cls] might be the implementation element and only declaration elements
// may be registered.
world.registerInstantiatedClass(cls.declaration);
// [cls] might be the declaration element and we want to include injected
// members.
cls.implementation.forEachInstanceField(
(ClassElement enclosingClass, Element member) {
world.addToWorkList(member);
},
includeBackendMembers: false,
includeSuperMembers: true);
return null;
}
/**
* Try to resolve the constructor that is referred to by [node].
* Note: this function may return an ErroneousFunctionElement instead of
* [null], if there is no corresponding constructor, class or library.
*/
FunctionElement resolveConstructor(NewExpression node) {
return node.accept(new ConstructorResolver(compiler, this));
}
DartType resolveTypeRequired(TypeAnnotation node) {
bool old = typeRequired;
typeRequired = true;
DartType result = resolveTypeAnnotation(node);
typeRequired = old;
return result;
}
void analyzeTypeArgument(DartType annotation, DartType argument) {
if (argument == null) return;
if (argument.element.isTypeVariable()) {
// Register a dependency between the class where the type
// variable is, and the annotation. If the annotation requires
// runtime type information, then the class of the type variable
// does too.
compiler.world.registerRtiDependency(
annotation.element,
argument.element.enclosingElement);
} else if (argument is InterfaceType) {
InterfaceType type = argument;
type.arguments.forEach((DartType argument) {
analyzeTypeArgument(type, argument);
});
}
}
DartType resolveTypeAnnotation(TypeAnnotation node) {
// TODO(johnniwinther): Remove this together with the named arguments
// on [TypeResolver.resolveTypeAnnotation].
void checkAndUseType(TypeAnnotation annotation, DartType type) {
useType(annotation, type);
if (type != null &&
identical(type.kind, TypeKind.TYPE_VARIABLE) &&
enclosingElement.isInStaticMember()) {
warning(annotation, MessageKind.TYPE_VARIABLE_WITHIN_STATIC_MEMBER,
[type]);
}
}
Function report = typeRequired ? error : warning;
DartType type = typeResolver.resolveTypeAnnotation(
node, scope, onFailure: report, whenResolved: checkAndUseType);
if (type == null) return null;
if (inCheckContext) {
compiler.enqueuer.resolution.registerIsCheck(type);
}
if (typeRequired || inCheckContext) {
if (type is InterfaceType) {
InterfaceType itf = type;
itf.arguments.forEach((DartType argument) {
analyzeTypeArgument(type, argument);
});
}
// TODO(ngeoffray): Also handle cases like:
// 1) a is T
// 2) T a (in checked mode).
}
return type;
}
visitModifiers(Modifiers node) {
// TODO(ngeoffray): Implement this.
unimplemented(node, 'modifiers');
}
visitLiteralList(LiteralList node) {
NodeList arguments = node.typeArguments;
if (arguments != null) {
Link<Node> nodes = arguments.nodes;
if (nodes.isEmpty) {
error(arguments, MessageKind.MISSING_TYPE_ARGUMENT, []);
} else {
resolveTypeRequired(nodes.head);
for (nodes = nodes.tail; !nodes.isEmpty; nodes = nodes.tail) {
error(nodes.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT, []);
resolveTypeRequired(nodes.head);
}
}
}
visit(node.elements);
}
visitConditional(Conditional node) {
node.visitChildren(this);
}
visitStringInterpolation(StringInterpolation node) {
node.visitChildren(this);
}
visitStringInterpolationPart(StringInterpolationPart node) {
registerImplicitInvocation(const SourceString('toString'), 0);
node.visitChildren(this);
}
visitBreakStatement(BreakStatement node) {
TargetElement target;
if (node.target == null) {
target = statementScope.currentBreakTarget();
if (target == null) {
error(node, MessageKind.NO_BREAK_TARGET);
return;
}
target.isBreakTarget = true;
} else {
String labelName = node.target.source.slowToString();
LabelElement label = statementScope.lookupLabel(labelName);
if (label == null) {
error(node.target, MessageKind.UNBOUND_LABEL, [labelName]);
return;
}
target = label.target;
if (!target.statement.isValidBreakTarget()) {
error(node.target, MessageKind.INVALID_BREAK, [labelName]);
return;
}
label.setBreakTarget();
mapping[node.target] = label;
}
if (mapping[node] != null) {
// TODO(ahe): I'm not sure why this node already has an element
// that is different from target. I will talk to Lasse and
// figure out what is going on.
mapping.remove(node);
}
mapping[node] = target;
}
visitContinueStatement(ContinueStatement node) {
TargetElement target;
if (node.target == null) {
target = statementScope.currentContinueTarget();
if (target == null) {
error(node, MessageKind.NO_CONTINUE_TARGET);
return;
}
target.isContinueTarget = true;
} else {
String labelName = node.target.source.slowToString();
LabelElement label = statementScope.lookupLabel(labelName);
if (label == null) {
error(node.target, MessageKind.UNBOUND_LABEL, [labelName]);
return;
}
target = label.target;
if (!target.statement.isValidContinueTarget()) {
error(node.target, MessageKind.INVALID_CONTINUE, [labelName]);
}
// TODO(lrn): Handle continues to switch cases.
if (target.statement is SwitchCase) {
unimplemented(node, "continue to switch case");
}
label.setContinueTarget();
mapping[node.target] = label;
}
mapping[node] = target;
}
registerImplicitInvocation(SourceString name, int arity) {
Selector selector = new Selector.call(name, null, arity);
world.registerDynamicInvocation(name, selector);
}
registerImplicitFieldGet(SourceString name) {
Selector selector = new Selector.getter(name, null);
world.registerDynamicGetter(name, selector);
}
visitForIn(ForIn node) {
for (final name in const [
const SourceString('iterator'),
const SourceString('next')]) {
registerImplicitInvocation(name, 0);
}
registerImplicitFieldGet(const SourceString('hasNext'));
visit(node.expression);
Scope blockScope = new BlockScope(scope);
Node declaration = node.declaredIdentifier;
visitIn(declaration, blockScope);
visitLoopBodyIn(node, node.body, blockScope);
// TODO(lrn): Also allow a single identifier.
if ((declaration is !Send || declaration.asSend().selector is !Identifier
|| declaration.asSend().receiver != null)
&& (declaration is !VariableDefinitions ||
!declaration.asVariableDefinitions().definitions.nodes.tail.isEmpty))
{
// The variable declaration is either not an identifier, not a
// declaration, or it's declaring more than one variable.
error(node.declaredIdentifier, MessageKind.INVALID_FOR_IN, []);
}
}
visitLabel(Label node) {
// Labels are handled by their containing statements/cases.
}
visitLabeledStatement(LabeledStatement node) {
Statement body = node.statement;
TargetElement targetElement = getOrCreateTargetElement(body);
Map<String, LabelElement> labelElements = <String, LabelElement>{};
for (Label label in node.labels) {
String labelName = label.slowToString();
if (labelElements.containsKey(labelName)) continue;
LabelElement element = targetElement.addLabel(label, labelName);
labelElements[labelName] = element;
}
statementScope.enterLabelScope(labelElements);
visit(node.statement);
statementScope.exitLabelScope();
labelElements.forEach((String labelName, LabelElement element) {
if (element.isTarget) {
mapping[element.label] = element;
} else {
warning(element.label, MessageKind.UNUSED_LABEL, [labelName]);
}
});
if (!targetElement.isTarget && identical(mapping[body], targetElement)) {
// If the body is itself a break or continue for another target, it
// might have updated its mapping to the target it actually does target.
mapping.remove(body);
}
}
visitLiteralMap(LiteralMap node) {
node.visitChildren(this);
}
visitLiteralMapEntry(LiteralMapEntry node) {
node.visitChildren(this);
}
visitNamedArgument(NamedArgument node) {
visit(node.expression);
}
visitSwitchStatement(SwitchStatement node) {
node.expression.accept(this);
TargetElement breakElement = getOrCreateTargetElement(node);
Map<String, LabelElement> continueLabels = <String, LabelElement>{};
Link<Node> cases = node.cases.nodes;
while (!cases.isEmpty) {
SwitchCase switchCase = cases.head;
for (Node labelOrCase in switchCase.labelsAndCases) {
if (labelOrCase is! Label) continue;
Label label = labelOrCase;
String labelName = label.slowToString();
LabelElement existingElement = continueLabels[labelName];
if (existingElement != null) {
// It's an error if the same label occurs twice in the same switch.
warning(label, MessageKind.DUPLICATE_LABEL, [labelName]);
error(existingElement.label, MessageKind.EXISTING_LABEL, [labelName]);
} else {
// It's only a warning if it shadows another label.
existingElement = statementScope.lookupLabel(labelName);
if (existingElement != null) {
warning(label, MessageKind.DUPLICATE_LABEL, [labelName]);
warning(existingElement.label,
MessageKind.EXISTING_LABEL, [labelName]);
}
}
TargetElement targetElement =
new TargetElement(switchCase,
statementScope.nestingLevel,
enclosingElement);
if (mapping[switchCase] != null) {
// TODO(ahe): Talk to Lasse about this.
mapping.remove(switchCase);
}
mapping[switchCase] = targetElement;
LabelElement labelElement =
new LabelElement(label, labelName,
targetElement, enclosingElement);
mapping[label] = labelElement;
continueLabels[labelName] = labelElement;
}
cases = cases.tail;
// Test that only the last case, if any, is a default case.
if (switchCase.defaultKeyword != null && !cases.isEmpty) {
error(switchCase, MessageKind.INVALID_CASE_DEFAULT);
}
}
statementScope.enterSwitch(breakElement, continueLabels);
node.cases.accept(this);
statementScope.exitSwitch();
// Clean-up unused labels.
continueLabels.forEach((String key, LabelElement label) {
if (!label.isContinueTarget) {
TargetElement targetElement = label.target;
SwitchCase switchCase = targetElement.statement;
mapping.remove(switchCase);
mapping.remove(label.label);
}
});
}
visitSwitchCase(SwitchCase node) {
node.labelsAndCases.accept(this);
visitIn(node.statements, new BlockScope(scope));
}
visitCaseMatch(CaseMatch node) {
visit(node.expression);
}
visitTryStatement(TryStatement node) {
visit(node.tryBlock);
if (node.catchBlocks.isEmpty && node.finallyBlock == null) {
// TODO(ngeoffray): The precise location is
// node.getEndtoken.next. Adjust when issue #1581 is fixed.
error(node, MessageKind.NO_CATCH_NOR_FINALLY);
}
visit(node.catchBlocks);
visit(node.finallyBlock);
}
visitCatchBlock(CatchBlock node) {
// Check that if catch part is present, then
// it has one or two formal parameters.
if (node.formals != null) {
if (node.formals.isEmpty) {
error(node, MessageKind.EMPTY_CATCH_DECLARATION);
}
if (!node.formals.nodes.tail.isEmpty &&
!node.formals.nodes.tail.tail.isEmpty) {
for (Node extra in node.formals.nodes.tail.tail) {
error(extra, MessageKind.EXTRA_CATCH_DECLARATION);
}
}
// Check that the formals aren't optional and that they have no
// modifiers or type.
for (Link<Node> link = node.formals.nodes;
!link.isEmpty;
link = link.tail) {
// If the formal parameter is a node list, it means that it is a
// sequence of optional parameters.
NodeList nodeList = link.head.asNodeList();
if (nodeList != null) {
error(nodeList, MessageKind.OPTIONAL_PARAMETER_IN_CATCH);
} else {
VariableDefinitions declaration = link.head;
for (Node modifier in declaration.modifiers.nodes) {
error(modifier, MessageKind.PARAMETER_WITH_MODIFIER_IN_CATCH);
}
TypeAnnotation type = declaration.type;
if (type != null) {
error(type, MessageKind.PARAMETER_WITH_TYPE_IN_CATCH);
}
}
}
}
Scope blockScope = new BlockScope(scope);
var wasTypeRequired = typeRequired;
typeRequired = true;
doInCheckContext(() => visitIn(node.type, blockScope));
typeRequired = wasTypeRequired;
visitIn(node.formals, blockScope);
var oldInCatchBlock = inCatchBlock;
inCatchBlock = true;
visitIn(node.block, blockScope);
inCatchBlock = oldInCatchBlock;
}
visitTypedef(Typedef node) {
unimplemented(node, 'typedef');
}
}
class TypeDefinitionVisitor extends CommonResolverVisitor<DartType> {
Scope scope;
TypeDeclarationElement element;
TypeResolver typeResolver;
TypeDefinitionVisitor(Compiler compiler, TypeDeclarationElement element)
: this.element = element,
scope = Scope.buildEnclosingScope(element),
typeResolver = new TypeResolver(compiler),
super(compiler);
void resolveTypeVariableBounds(NodeList node) {
if (node == null) return;
var nameSet = new Set<SourceString>();
// Resolve the bounds of type variables.
Link<DartType> typeLink = element.typeVariables;
Link<Node> nodeLink = node.nodes;
while (!nodeLink.isEmpty) {
TypeVariableType typeVariable = typeLink.head;
SourceString typeName = typeVariable.name;
TypeVariable typeNode = nodeLink.head;
if (nameSet.contains(typeName)) {
error(typeNode, MessageKind.DUPLICATE_TYPE_VARIABLE_NAME, [typeName]);
}
nameSet.add(typeName);
TypeVariableElement variableElement = typeVariable.element;
if (typeNode.bound != null) {
DartType boundType = typeResolver.resolveTypeAnnotation(
typeNode.bound, scope, onFailure: warning);
if (boundType != null && boundType.element == variableElement) {
// TODO(johnniwinther): Check for more general cycles, like
// [: <A extends B, B extends C, C extends B> :].
warning(node, MessageKind.CYCLIC_TYPE_VARIABLE,
[variableElement.name]);
} else if (boundType != null) {
variableElement.bound = boundType;
} else {
// TODO(johnniwinther): Should be an erroneous type.
variableElement.bound = compiler.objectClass.computeType(compiler);
}
} else {
variableElement.bound = compiler.objectClass.computeType(compiler);
}
nodeLink = nodeLink.tail;
typeLink = typeLink.tail;
}
assert(typeLink.isEmpty);
}
}
class TypedefResolverVisitor extends TypeDefinitionVisitor {
TypedefElement get element => super.element;
TypedefResolverVisitor(Compiler compiler, TypedefElement typedefElement)
: super(compiler, typedefElement);
visitTypedef(Typedef node) {
TypedefType type = element.computeType(compiler);
scope = new TypeDeclarationScope(scope, element);
resolveTypeVariableBounds(node.typeParameters);
element.functionSignature = SignatureResolver.analyze(
compiler, node.formals, node.returnType, element);
element.alias = compiler.computeFunctionType(
element, element.functionSignature);
// TODO(johnniwinther): Check for cyclic references in the typedef alias.
}
}
/**
* The implementation of [ResolverTask.resolveClass].
*
* This visitor has to be extra careful as it is building the basic
* element information, and cannot safely look at other elements as
* this may lead to cycles.
*
* This visitor can assume that the supertypes have already been
* resolved, but it cannot call [ResolverTask.resolveClass] directly
* or indirectly (through [ClassElement.ensureResolved]) for any other
* types.
*/
class ClassResolverVisitor extends TypeDefinitionVisitor {
ClassElement get element => super.element;
ClassResolverVisitor(Compiler compiler, ClassElement classElement)
: super(compiler, classElement);
DartType visitClassNode(ClassNode node) {
compiler.ensure(element != null);
compiler.ensure(element.resolutionState == STATE_STARTED);
InterfaceType type = element.computeType(compiler);
scope = new TypeDeclarationScope(scope, element);
// TODO(ahe): It is not safe to call resolveTypeVariableBounds yet.
// As a side-effect, this may get us back here trying to
// resolve this class again.
resolveTypeVariableBounds(node.typeParameters);
// Find super type.
DartType supertype = visit(node.superclass);
if (supertype != null && supertype.element.isExtendable()) {
element.supertype = supertype;
if (isBlackListed(supertype)) {
error(node.superclass, MessageKind.CANNOT_EXTEND, [supertype]);
}
} else if (supertype != null) {
error(node.superclass, MessageKind.TYPE_NAME_EXPECTED);
}
final objectElement = compiler.objectClass;
if (!identical(element, objectElement) && element.supertype == null) {
if (objectElement == null) {
compiler.internalError("Internal error: cannot resolve Object",
node: node);
} else {
objectElement.ensureResolved(compiler);
}
// TODO(ahe): This should be objectElement.computeType(...).
element.supertype = new InterfaceType(objectElement);
}
assert(element.interfaces == null);
Link<DartType> interfaces = const Link<DartType>();
for (Link<Node> link = node.interfaces.nodes;
!link.isEmpty;
link = link.tail) {
DartType interfaceType = visit(link.head);
if (interfaceType != null && interfaceType.element.isExtendable()) {
interfaces = interfaces.prepend(interfaceType);
if (isBlackListed(interfaceType)) {
error(link.head, MessageKind.CANNOT_IMPLEMENT, [interfaceType]);
}
} else {
error(link.head, MessageKind.TYPE_NAME_EXPECTED);
}
}
element.interfaces = interfaces;
calculateAllSupertypes(element);
if (node.defaultClause != null) {
element.defaultClass = visit(node.defaultClause);
}
addDefaultConstructorIfNeeded(element);
return element.computeType(compiler);
}
DartType visitTypeAnnotation(TypeAnnotation node) {
return visit(node.typeName);
}
DartType visitIdentifier(Identifier node) {
Element element = scope.lookup(node.source);
if (element == null) {
error(node, MessageKind.CANNOT_RESOLVE_TYPE, [node]);
return null;
} else if (!element.impliesType() && !element.isTypeVariable()) {
error(node, MessageKind.NOT_A_TYPE, [node]);
return null;
} else {
if (element.isTypeVariable()) {
TypeVariableElement variableElement = element;
return variableElement.type;
} else if (element.isTypedef()) {
compiler.unimplemented('visitIdentifier for typedefs', node: node);
} else {
// TODO(ngeoffray): Use type variables.
return element.computeType(compiler);
}
}
return null;
}
DartType visitSend(Send node) {
Identifier prefix = node.receiver.asIdentifier();
if (prefix == null) {
error(node.receiver, MessageKind.NOT_A_PREFIX, [node.receiver]);
return null;
}
Element element = scope.lookup(prefix.source);
if (element == null || !identical(element.kind, ElementKind.PREFIX)) {
error(node.receiver, MessageKind.NOT_A_PREFIX, [node.receiver]);
return null;
}
PrefixElement prefixElement = element;
Identifier selector = node.selector.asIdentifier();
var e = prefixElement.lookupLocalMember(selector.source);
if (e == null || !e.impliesType()) {
error(node.selector, MessageKind.CANNOT_RESOLVE_TYPE, [node.selector]);
return null;
}
return e.computeType(compiler);
}
void calculateAllSupertypes(ClassElement cls) {
// TODO(karlklose): substitute type variables.
// TODO(karlklose): check if type arguments match, if a classelement occurs
// more than once in the supertypes.
if (cls.allSupertypes != null) return;
final DartType supertype = cls.supertype;
if (supertype != null) {
ClassElement superElement = supertype.element;
Link<DartType> superSupertypes = superElement.allSupertypes;
assert(superSupertypes != null);
Link<DartType> supertypes = superSupertypes.prepend(supertype);
for (Link<DartType> interfaces = cls.interfaces;
!interfaces.isEmpty;
interfaces = interfaces.tail) {
ClassElement element = interfaces.head.element;
Link<DartType> interfaceSupertypes = element.allSupertypes;
assert(interfaceSupertypes != null);
supertypes = supertypes.reversePrependAll(interfaceSupertypes);
supertypes = supertypes.prepend(interfaces.head);
}
cls.allSupertypes = supertypes;
} else {
assert(identical(cls, compiler.objectClass));
cls.allSupertypes = const Link<DartType>();
}
}
/**
* Add a synthetic nullary constructor if there are no other
* constructors.
*/
void addDefaultConstructorIfNeeded(ClassElement element) {
if (element.hasConstructor) return;
SynthesizedConstructorElement constructor =
new SynthesizedConstructorElement(element);
element.addToScope(constructor, compiler);
DartType returnType = compiler.types.voidType;
constructor.type = new FunctionType(returnType, const Link<DartType>(),
constructor);
constructor.cachedNode =
new FunctionExpression(new Identifier(element.position()),
new NodeList.empty(),
new Block(new NodeList.empty()),
null, Modifiers.EMPTY, null, null);
}
isBlackListed(DartType type) {
LibraryElement lib = element.getLibrary();
return
!identical(lib, compiler.coreLibrary) &&
!identical(lib, compiler.coreImplLibrary) &&
!identical(lib, compiler.jsHelperLibrary) &&
(identical(type.element, compiler.dynamicClass) ||
identical(type.element, compiler.boolClass) ||
identical(type.element, compiler.numClass) ||
identical(type.element, compiler.intClass) ||
identical(type.element, compiler.doubleClass) ||
identical(type.element, compiler.stringClass) ||
identical(type.element, compiler.nullClass) ||
identical(type.element, compiler.functionClass));
}
}
class ClassSupertypeResolver extends CommonResolverVisitor {
Scope context;
ClassElement classElement;
ClassSupertypeResolver(Compiler compiler, ClassElement cls)
: context = Scope.buildEnclosingScope(cls),
this.classElement = cls,
super(compiler);
void loadSupertype(ClassElement element, Node from) {
compiler.resolver.loadSupertypes(element, from);
element.ensureResolved(compiler);
}
void visitClassNode(ClassNode node) {
if (node.superclass == null) {
if (!identical(classElement, compiler.objectClass)) {
loadSupertype(compiler.objectClass, node);
}
} else {
node.superclass.accept(this);
}
for (Link<Node> link = node.interfaces.nodes;
!link.isEmpty;
link = link.tail) {
link.head.accept(this);
}
}
void visitTypeAnnotation(TypeAnnotation node) {
node.typeName.accept(this);
}
void visitIdentifier(Identifier node) {
Element element = context.lookup(node.source);
if (element == null) {
error(node, MessageKind.CANNOT_RESOLVE_TYPE, [node]);
} else if (!element.impliesType()) {
error(node, MessageKind.NOT_A_TYPE, [node]);
} else {
if (element.isClass()) {
loadSupertype(element, node);
} else {
compiler.reportMessage(
compiler.spanFromNode(node),
MessageKind.TYPE_NAME_EXPECTED.error([]),
Diagnostic.ERROR);
}
}
}
void visitSend(Send node) {
Identifier prefix = node.receiver.asIdentifier();
if (prefix == null) {
error(node.receiver, MessageKind.NOT_A_PREFIX, [node.receiver]);
return;
}
Element element = context.lookup(prefix.source);
if (element == null || !identical(element.kind, ElementKind.PREFIX)) {
error(node.receiver, MessageKind.NOT_A_PREFIX, [node.receiver]);
return;
}
PrefixElement prefixElement = element;
Identifier selector = node.selector.asIdentifier();
var e = prefixElement.lookupLocalMember(selector.source);
if (e == null || !e.impliesType()) {
error(node.selector, MessageKind.CANNOT_RESOLVE_TYPE, [node.selector]);
return;
}
loadSupertype(e, node);
}
}
class VariableDefinitionsVisitor extends CommonResolverVisitor<SourceString> {
VariableDefinitions definitions;
ResolverVisitor resolver;
ElementKind kind;
VariableListElement variables;
VariableDefinitionsVisitor(Compiler compiler,
this.definitions, this.resolver, this.kind)
: super(compiler) {
variables = new VariableListElement.node(
definitions, ElementKind.VARIABLE_LIST, resolver.enclosingElement);
}
SourceString visitSendSet(SendSet node) {
assert(node.arguments.tail.isEmpty); // Sanity check
resolver.visit(node.arguments.head);
return visit(node.selector);
}
SourceString visitIdentifier(Identifier node) => node.source;
visitNodeList(NodeList node) {
for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) {
SourceString name = visit(link.head);
VariableElement element =
new VariableElement(name, variables, kind, link.head);
resolver.defineElement(link.head, element);
}
}
}
/**
* [SignatureResolver] resolves function signatures.
*/
class SignatureResolver extends CommonResolverVisitor<Element> {
final Element enclosingElement;
Link<Element> optionalParameters = const Link<Element>();
int optionalParameterCount = 0;
bool optionalParametersAreNamed = false;
VariableDefinitions currentDefinitions;
SignatureResolver(Compiler compiler, this.enclosingElement) : super(compiler);
Element visitNodeList(NodeList node) {
// This must be a list of optional arguments.
String value = node.beginToken.stringValue;
if ((!identical(value, '[')) && (!identical(value, '{'))) {
internalError(node, "expected optional parameters");
}
optionalParametersAreNamed = (identical(value, '{'));
LinkBuilder<Element> elements = analyzeNodes(node.nodes);
optionalParameterCount = elements.length;
optionalParameters = elements.toLink();
return null;
}
Element visitVariableDefinitions(VariableDefinitions node) {
Link<Node> definitions = node.definitions.nodes;
if (definitions.isEmpty) {
cancel(node, 'internal error: no parameter definition');
return null;
}
if (!definitions.tail.isEmpty) {
cancel(definitions.tail.head, 'internal error: extra definition');
return null;
}
Node definition = definitions.head;
if (definition is NodeList) {
cancel(node, 'optional parameters are not implemented');
}
if (currentDefinitions != null) {
cancel(node, 'function type parameters not supported');
}
currentDefinitions = node;
Element element = definition.accept(this);
currentDefinitions = null;
return element;
}
Element visitIdentifier(Identifier node) {
Element variables = new VariableListElement.node(currentDefinitions,
ElementKind.VARIABLE_LIST, enclosingElement);
// Ensure a parameter is not typed 'void'.
variables.computeType(compiler);
return new VariableElement(node.source, variables,
ElementKind.PARAMETER, node);
}
SourceString getParameterName(Send node) {
var identifier = node.selector.asIdentifier();
if (identifier != null) {
// Normal parameter: [:Type name:].
return identifier.source;
} else {
// Function type parameter: [:void name(DartType arg):].
var functionExpression = node.selector.asFunctionExpression();
if (functionExpression != null &&
functionExpression.name.asIdentifier() != null) {
return functionExpression.name.asIdentifier().source;
} else {
cancel(node,
'internal error: unimplemented receiver on parameter send');
}
}
}
// The only valid [Send] can be in constructors and must be of the form
// [:this.x:] (where [:x:] represents an instance field).
FieldParameterElement visitSend(Send node) {
FieldParameterElement element;
if (node.receiver.asIdentifier() == null ||
!node.receiver.asIdentifier().isThis()) {
error(node, MessageKind.INVALID_PARAMETER, []);
} else if (!identical(enclosingElement.kind, ElementKind.GENERATIVE_CONSTRUCTOR)) {
error(node, MessageKind.FIELD_PARAMETER_NOT_ALLOWED, []);
} else {
SourceString name = getParameterName(node);
Element fieldElement = currentClass.lookupLocalMember(name);
if (fieldElement == null || !identical(fieldElement.kind, ElementKind.FIELD)) {
error(node, MessageKind.NOT_A_FIELD, [name]);
} else if (!fieldElement.isInstanceMember()) {
error(node, MessageKind.NOT_INSTANCE_FIELD, [name]);
}
Element variables = new VariableListElement.node(currentDefinitions,
ElementKind.VARIABLE_LIST, enclosingElement);
element = new FieldParameterElement(name, fieldElement, variables, node);
}
return element;
}
Element visitSendSet(SendSet node) {
Element element;
if (node.receiver != null) {
element = visitSend(node);
} else if (node.selector.asIdentifier() != null) {
Element variables = new VariableListElement.node(currentDefinitions,
ElementKind.VARIABLE_LIST, enclosingElement);
element = new VariableElement(node.selector.asIdentifier().source,
variables, ElementKind.PARAMETER, node);
}
// Visit the value. The compile time constant handler will
// make sure it's a compile time constant.
resolveExpression(node.arguments.head);
return element;
}
Element visitFunctionExpression(FunctionExpression node) {
// This is a function typed parameter.
// TODO(ahe): Resolve the function type.
return visit(node.name);
}
LinkBuilder<Element> analyzeNodes(Link<Node> link) {
LinkBuilder<Element> elements = new LinkBuilder<Element>();
for (; !link.isEmpty; link = link.tail) {
Element element = link.head.accept(this);
if (element != null) {
elements.addLast(element);
} else {
// If parameter is null, the current node should be the last,
// and a list of optional named parameters.
if (!link.tail.isEmpty || (link.head is !NodeList)) {
internalError(link.head, "expected optional parameters");
}
}
}
return elements;
}
/**
* Resolves formal parameters and return type to a [FunctionSignature].
*/
static FunctionSignature analyze(Compiler compiler,
NodeList formalParameters,
Node returnNode,
Element element) {
SignatureResolver visitor = new SignatureResolver(compiler, element);
Link<Element> parameters = const Link<Element>();
int requiredParameterCount = 0;
if (formalParameters == null) {
if (!element.isGetter()) {
compiler.reportMessage(compiler.spanFromElement(element),
MessageKind.MISSING_FORMALS.error([]),
Diagnostic.ERROR);
}
} else {
if (element.isGetter()) {
if (!element.getLibrary().isPlatformLibrary) {
// TODO(ahe): Remove the isPlatformLibrary check.
if (!identical(formalParameters.getEndToken().next.stringValue, 'native')) {
// TODO(ahe): Remove the check for native keyword.
compiler.reportMessage(compiler.spanFromNode(formalParameters),
MessageKind.EXTRA_FORMALS.error([]),
Diagnostic.WARNING);
}
}
}
LinkBuilder<Element> parametersBuilder =
visitor.analyzeNodes(formalParameters.nodes);
requiredParameterCount = parametersBuilder.length;
parameters = parametersBuilder.toLink();
}
DartType returnType = compiler.resolveReturnType(element, returnNode);
return new FunctionSignature(parameters,
visitor.optionalParameters,
requiredParameterCount,
visitor.optionalParameterCount,
visitor.optionalParametersAreNamed,
returnType);
}
// TODO(ahe): This is temporary.
void resolveExpression(Node node) {
if (node == null) return;
node.accept(new ResolverVisitor(compiler, enclosingElement,
new TreeElementMapping(enclosingElement)));
}
// TODO(ahe): This is temporary.
ClassElement get currentClass {
return enclosingElement.isMember()
? enclosingElement.getEnclosingClass() : null;
}
}
class ConstructorResolver extends CommonResolverVisitor<Element> {
final ResolverVisitor resolver;
bool inConstContext = false;
DartType type;
ConstructorResolver(Compiler compiler, this.resolver) : super(compiler);
visitNode(Node node) {
throw 'not supported';
}
failOrReturnErroneousElement(Element enclosing, Node diagnosticNode,
SourceString targetName, MessageKind kind,
List arguments) {
if (inConstContext) {
error(diagnosticNode, kind, arguments);
} else {
ResolutionWarning warning = new ResolutionWarning(kind, arguments);
compiler.reportWarning(diagnosticNode, warning);
return new ErroneousFunctionElement(kind, arguments, targetName,
enclosing);
}
}
Selector createConstructorSelector(SourceString constructorName) {
return constructorName == const SourceString('')
? new Selector.callDefaultConstructor(
resolver.enclosingElement.getLibrary())
: new Selector.callConstructor(
constructorName,
resolver.enclosingElement.getLibrary());
}
// TODO(ngeoffray): method named lookup should not report errors.
FunctionElement lookupConstructor(ClassElement cls,
Node diagnosticNode,
SourceString constructorName) {
cls.ensureResolved(compiler);
Selector selector = createConstructorSelector(constructorName);
Element result = cls.lookupConstructor(selector);
if (result == null) {
String fullConstructorName =
resolver.compiler.resolver.constructorNameForDiagnostics(
cls.name,
constructorName);
return failOrReturnErroneousElement(
cls,
diagnosticNode,
new SourceString(fullConstructorName),
MessageKind.CANNOT_FIND_CONSTRUCTOR,
[fullConstructorName]);
} else if (inConstContext && !result.modifiers.isConst()) {
error(diagnosticNode, MessageKind.CONSTRUCTOR_IS_NOT_CONST);
}
return result;
}
visitNewExpression(NewExpression node) {
inConstContext = node.isConst();
Node selector = node.send.selector;
Element e = visit(selector);
if (!Elements.isUnresolved(e) && identical(e.kind, ElementKind.CLASS)) {
ClassElement cls = e;
cls.ensureResolved(compiler);
if (cls.isInterface() && (cls.defaultClass == null)) {
error(selector, MessageKind.CANNOT_INSTANTIATE_INTERFACE, [cls.name]);
}
e = lookupConstructor(cls, selector, const SourceString(''));
}
if (type == null) {
if (Elements.isUnresolved(e)) {
type = compiler.dynamicClass.computeType(compiler);
} else {
type = e.getEnclosingClass().computeType(compiler).asRaw();
}
}
resolver.mapping.setType(node, type);
return e;
}
visitTypeAnnotation(TypeAnnotation node) {
assert(invariant(node, type == null));
type = resolver.resolveTypeRequired(node);
return resolver.mapping[node];
}
visitSend(Send node) {
Element e = visit(node.receiver);
if (Elements.isUnresolved(e)) return e;
Identifier name = node.selector.asIdentifier();
if (name == null) internalError(node.selector, 'unexpected node');
if (identical(e.kind, ElementKind.CLASS)) {
ClassElement cls = e;
cls.ensureResolved(compiler);
if (cls.isInterface() && (cls.defaultClass == null)) {
error(node.receiver, MessageKind.CANNOT_INSTANTIATE_INTERFACE,
[cls.name]);
}
return lookupConstructor(cls, name, name.source);
} else if (identical(e.kind, ElementKind.PREFIX)) {
PrefixElement prefix = e;
e = prefix.lookupLocalMember(name.source);
if (e == null) {
return failOrReturnErroneousElement(resolver.enclosingElement, name,
name.source,
MessageKind.CANNOT_RESOLVE,
[name]);
} else if (!identical(e.kind, ElementKind.CLASS)) {
error(node, MessageKind.NOT_A_TYPE, [name]);
}
} else {
internalError(node.receiver, 'unexpected element $e');
}
return e;
}
Element visitIdentifier(Identifier node) {
SourceString name = node.source;
Element e = resolver.lookup(node, name);
// TODO(johnniwinther): Change errors to warnings, cf. 11.11.1.
if (e == null) {
return failOrReturnErroneousElement(resolver.enclosingElement, node, name,
MessageKind.CANNOT_RESOLVE, [name]);
} else if (identical(e.kind, ElementKind.TYPEDEF)) {
error(node, MessageKind.CANNOT_INSTANTIATE_TYPEDEF, [name]);
} else if (identical(e.kind, ElementKind.TYPE_VARIABLE)) {
error(node, MessageKind.CANNOT_INSTANTIATE_TYPE_VARIABLE, [name]);
} else if (!identical(e.kind, ElementKind.CLASS)
&& !identical(e.kind, ElementKind.PREFIX)) {
error(node, MessageKind.NOT_A_TYPE, [name]);
}
return e;
}
}