blob: 9b6e56879cbf497d86b5bcd14373c39a2fff493e [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
/**
* Specialized integers and floating point numbers,
* with SIMD support and efficient lists.
*/
library dart.typed_data.implementation;
import 'dart:collection';
import 'dart:_internal';
import 'dart:_interceptors' show JSIndexable, JSUInt32, JSUInt31;
import 'dart:_js_helper'
show Creates, JavaScriptIndexingBehavior, JSName, Null, Returns;
import 'dart:_foreign_helper' show JS;
import 'dart:math' as Math;
import 'dart:typed_data';
class NativeByteBuffer implements ByteBuffer native "ArrayBuffer" {
@JSName('byteLength')
final int lengthInBytes;
Type get runtimeType => ByteBuffer;
Uint8List asUint8List([int offsetInBytes = 0, int length]) {
return new NativeUint8List.view(this, offsetInBytes, length);
}
Int8List asInt8List([int offsetInBytes = 0, int length]) {
return new NativeInt8List.view(this, offsetInBytes, length);
}
Uint8ClampedList asUint8ClampedList([int offsetInBytes = 0, int length]) {
return new NativeUint8ClampedList.view(this, offsetInBytes, length);
}
Uint16List asUint16List([int offsetInBytes = 0, int length]) {
return new NativeUint16List.view(this, offsetInBytes, length);
}
Int16List asInt16List([int offsetInBytes = 0, int length]) {
return new NativeInt16List.view(this, offsetInBytes, length);
}
Uint32List asUint32List([int offsetInBytes = 0, int length]) {
return new NativeUint32List.view(this, offsetInBytes, length);
}
Int32List asInt32List([int offsetInBytes = 0, int length]) {
return new NativeInt32List.view(this, offsetInBytes, length);
}
Uint64List asUint64List([int offsetInBytes = 0, int length]) {
throw new UnsupportedError("Uint64List not supported by dart2js.");
}
Int64List asInt64List([int offsetInBytes = 0, int length]) {
throw new UnsupportedError("Int64List not supported by dart2js.");
}
Int32x4List asInt32x4List([int offsetInBytes = 0, int length]) {
NativeUint32List storage =
this.asUint32List(offsetInBytes, length != null ? length * 4 : null);
return new NativeInt32x4List._externalStorage(storage);
}
Float32List asFloat32List([int offsetInBytes = 0, int length]) {
return new NativeFloat32List.view(this, offsetInBytes, length);
}
Float64List asFloat64List([int offsetInBytes = 0, int length]) {
return new NativeFloat64List.view(this, offsetInBytes, length);
}
Float32x4List asFloat32x4List([int offsetInBytes = 0, int length]) {
NativeFloat32List storage =
this.asFloat32List(offsetInBytes, length != null ? length * 4 : null);
return new NativeFloat32x4List._externalStorage(storage);
}
Float64x2List asFloat64x2List([int offsetInBytes = 0, int length]) {
NativeFloat64List storage =
this.asFloat64List(offsetInBytes, length != null ? length * 2 : null);
return new NativeFloat64x2List._externalStorage(storage);
}
ByteData asByteData([int offsetInBytes = 0, int length]) {
return new NativeByteData.view(this, offsetInBytes, length);
}
}
/**
* A fixed-length list of Float32x4 numbers that is viewable as a
* [TypedData]. For long lists, this implementation will be considerably more
* space- and time-efficient than the default [List] implementation.
*/
class NativeFloat32x4List
extends Object with ListMixin<Float32x4>, FixedLengthListMixin<Float32x4>
implements Float32x4List {
final NativeFloat32List _storage;
/**
* Creates a [Float32x4List] of the specified length (in elements),
* all of whose elements are initially zero.
*/
NativeFloat32x4List(int length)
: _storage = new NativeFloat32List(length * 4);
NativeFloat32x4List._externalStorage(this._storage);
NativeFloat32x4List._slowFromList(List<Float32x4> list)
: _storage = new NativeFloat32List(list.length * 4) {
for (int i = 0; i < list.length; i++) {
var e = list[i];
_storage[(i * 4) + 0] = e.x;
_storage[(i * 4) + 1] = e.y;
_storage[(i * 4) + 2] = e.z;
_storage[(i * 4) + 3] = e.w;
}
}
Type get runtimeType => Float32x4List;
/**
* Creates a [Float32x4List] with the same size as the [elements] list
* and copies over the elements.
*/
factory NativeFloat32x4List.fromList(List<Float32x4> list) {
if (list is NativeFloat32x4List) {
return new NativeFloat32x4List._externalStorage(
new NativeFloat32List.fromList(list._storage));
} else {
return new NativeFloat32x4List._slowFromList(list);
}
}
ByteBuffer get buffer => _storage.buffer;
int get lengthInBytes => _storage.lengthInBytes;
int get offsetInBytes => _storage.offsetInBytes;
int get elementSizeInBytes => Float32x4List.BYTES_PER_ELEMENT;
void _invalidIndex(int index, int length) {
if (index < 0 || index >= length) {
throw new RangeError.range(index, 0, length);
} else {
throw new ArgumentError('Invalid list index $index');
}
}
void _checkIndex(int index, int length) {
if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) {
_invalidIndex(index, length);
}
}
int _checkSublistArguments(int start, int end, int length) {
// For `sublist` the [start] and [end] indices are allowed to be equal to
// [length]. However, [_checkIndex] only allows indices in the range
// 0 .. length - 1. We therefore increment the [length] argument by one
// for the [_checkIndex] checks.
_checkIndex(start, length + 1);
if (end == null) return length;
_checkIndex(end, length + 1);
if (start > end) throw new RangeError.range(start, 0, end);
return end;
}
int get length => _storage.length ~/ 4;
Float32x4 operator[](int index) {
_checkIndex(index, length);
double _x = _storage[(index * 4) + 0];
double _y = _storage[(index * 4) + 1];
double _z = _storage[(index * 4) + 2];
double _w = _storage[(index * 4) + 3];
return new Float32x4(_x, _y, _z, _w);
}
void operator[]=(int index, NativeFloat32x4 value) {
_checkIndex(index, length);
_storage[(index * 4) + 0] = value._storage[0];
_storage[(index * 4) + 1] = value._storage[1];
_storage[(index * 4) + 2] = value._storage[2];
_storage[(index * 4) + 3] = value._storage[3];
}
List<Float32x4> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
return new NativeFloat32x4List._externalStorage(
_storage.sublist(start * 4, end * 4));
}
}
/**
* A fixed-length list of Int32x4 numbers that is viewable as a
* [TypedData]. For long lists, this implementation will be considerably more
* space- and time-efficient than the default [List] implementation.
*/
class NativeInt32x4List
extends Object with ListMixin<Int32x4>, FixedLengthListMixin<Int32x4>
implements Int32x4List {
final Uint32List _storage;
/**
* Creates a [Int32x4List] of the specified length (in elements),
* all of whose elements are initially zero.
*/
NativeInt32x4List(int length) : _storage = new NativeUint32List(length * 4);
NativeInt32x4List._externalStorage(Uint32List storage) : _storage = storage;
NativeInt32x4List._slowFromList(List<Int32x4> list)
: _storage = new NativeUint32List(list.length * 4) {
for (int i = 0; i < list.length; i++) {
var e = list[i];
_storage[(i * 4) + 0] = e.x;
_storage[(i * 4) + 1] = e.y;
_storage[(i * 4) + 2] = e.z;
_storage[(i * 4) + 3] = e.w;
}
}
Type get runtimeType => Int32x4List;
/**
* Creates a [Int32x4List] with the same size as the [elements] list
* and copies over the elements.
*/
factory NativeInt32x4List.fromList(List<Int32x4> list) {
if (list is NativeInt32x4List) {
return new NativeInt32x4List._externalStorage(
new NativeUint32List.fromList(list._storage));
} else {
return new NativeInt32x4List._slowFromList(list);
}
}
ByteBuffer get buffer => _storage.buffer;
int get lengthInBytes => _storage.lengthInBytes;
int get offsetInBytes => _storage.offsetInBytes;
int get elementSizeInBytes => Int32x4List.BYTES_PER_ELEMENT;
void _invalidIndex(int index, int length) {
if (index < 0 || index >= length) {
throw new RangeError.range(index, 0, length);
} else {
throw new ArgumentError('Invalid list index $index');
}
}
void _checkIndex(int index, int length) {
if (JS('bool', '(# >>> 0 != #)', index, index)
|| JS('bool', '# >= #', index, length)) {
_invalidIndex(index, length);
}
}
int _checkSublistArguments(int start, int end, int length) {
// For `sublist` the [start] and [end] indices are allowed to be equal to
// [length]. However, [_checkIndex] only allows indices in the range
// 0 .. length - 1. We therefore increment the [length] argument by one
// for the [_checkIndex] checks.
_checkIndex(start, length + 1);
if (end == null) return length;
_checkIndex(end, length + 1);
if (start > end) throw new RangeError.range(start, 0, end);
return end;
}
int get length => _storage.length ~/ 4;
Int32x4 operator[](int index) {
_checkIndex(index, length);
int _x = _storage[(index * 4) + 0];
int _y = _storage[(index * 4) + 1];
int _z = _storage[(index * 4) + 2];
int _w = _storage[(index * 4) + 3];
return new NativeInt32x4(_x, _y, _z, _w);
}
void operator[]=(int index, NativeInt32x4 value) {
_checkIndex(index, length);
_storage[(index * 4) + 0] = value._storage[0];
_storage[(index * 4) + 1] = value._storage[1];
_storage[(index * 4) + 2] = value._storage[2];
_storage[(index * 4) + 3] = value._storage[3];
}
List<Int32x4> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
return new NativeInt32x4List._externalStorage(
_storage.sublist(start * 4, end * 4));
}
}
/**
* A fixed-length list of Float64x2 numbers that is viewable as a
* [TypedData]. For long lists, this implementation will be considerably more
* space- and time-efficient than the default [List] implementation.
*/
class NativeFloat64x2List
extends Object with ListMixin<Float64x2>, FixedLengthListMixin<Float64x2>
implements Float64x2List {
final NativeFloat64List _storage;
/**
* Creates a [Float64x2List] of the specified length (in elements),
* all of whose elements are initially zero.
*/
NativeFloat64x2List(int length)
: _storage = new NativeFloat64List(length * 2);
NativeFloat64x2List._externalStorage(this._storage);
NativeFloat64x2List._slowFromList(List<Float64x2> list)
: _storage = new NativeFloat64List(list.length * 2) {
for (int i = 0; i < list.length; i++) {
var e = list[i];
_storage[(i * 2) + 0] = e.x;
_storage[(i * 2) + 1] = e.y;
}
}
/**
* Creates a [Float64x2List] with the same size as the [elements] list
* and copies over the elements.
*/
factory NativeFloat64x2List.fromList(List<Float64x2> list) {
if (list is NativeFloat64x2List) {
return new NativeFloat64x2List._externalStorage(
new NativeFloat64List.fromList(list._storage));
} else {
return new NativeFloat64x2List._slowFromList(list);
}
}
Type get runtimeType => Float64x2List;
ByteBuffer get buffer => _storage.buffer;
int get lengthInBytes => _storage.lengthInBytes;
int get offsetInBytes => _storage.offsetInBytes;
int get elementSizeInBytes => Float64x2List.BYTES_PER_ELEMENT;
void _invalidIndex(int index, int length) {
if (index < 0 || index >= length) {
throw new RangeError.range(index, 0, length);
} else {
throw new ArgumentError('Invalid list index $index');
}
}
void _checkIndex(int index, int length) {
if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) {
_invalidIndex(index, length);
}
}
int _checkSublistArguments(int start, int end, int length) {
// For `sublist` the [start] and [end] indices are allowed to be equal to
// [length]. However, [_checkIndex] only allows indices in the range
// 0 .. length - 1. We therefore increment the [length] argument by one
// for the [_checkIndex] checks.
_checkIndex(start, length + 1);
if (end == null) return length;
_checkIndex(end, length + 1);
if (start > end) throw new RangeError.range(start, 0, end);
return end;
}
int get length => _storage.length ~/ 2;
Float64x2 operator[](int index) {
_checkIndex(index, length);
double _x = _storage[(index * 2) + 0];
double _y = _storage[(index * 2) + 1];
return new Float64x2(_x, _y);
}
void operator[]=(int index, NativeFloat64x2 value) {
_checkIndex(index, length);
_storage[(index * 2) + 0] = value._storage[0];
_storage[(index * 2) + 1] = value._storage[1];
}
List<Float64x2> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
return new NativeFloat64x2List._externalStorage(
_storage.sublist(start * 2, end * 2));
}
}
class NativeTypedData implements TypedData native "ArrayBufferView" {
/**
* Returns the byte buffer associated with this object.
*/
@Creates('NativeByteBuffer')
// May be Null for IE's CanvasPixelArray.
@Returns('NativeByteBuffer|Null')
final ByteBuffer buffer;
/**
* Returns the length of this view, in bytes.
*/
@JSName('byteLength')
final int lengthInBytes;
/**
* Returns the offset in bytes into the underlying byte buffer of this view.
*/
@JSName('byteOffset')
final int offsetInBytes;
/**
* Returns the number of bytes in the representation of each element in this
* list.
*/
@JSName('BYTES_PER_ELEMENT')
final int elementSizeInBytes;
void _invalidIndex(int index, int length) {
if (index < 0 || index >= length) {
throw new RangeError.range(index, 0, length);
} else {
throw new ArgumentError('Invalid list index $index');
}
}
void _checkIndex(int index, int length) {
if (JS('bool', '(# >>> 0) !== #', index, index) ||
JS('int', '#', index) >= length) { // 'int' guaranteed by above test.
_invalidIndex(index, length);
}
}
int _checkSublistArguments(int start, int end, int length) {
// For `sublist` the [start] and [end] indices are allowed to be equal to
// [length]. However, [_checkIndex] only allows indices in the range
// 0 .. length - 1. We therefore increment the [length] argument by one
// for the [_checkIndex] checks.
_checkIndex(start, length + 1);
if (end == null) return length;
_checkIndex(end, length + 1);
if (start > end) throw new RangeError.range(start, 0, end);
return end;
}
}
// Validates the unnamed constructor length argument. Checking is necessary
// because passing unvalidated values to the native constructors can cause
// conversions or create views.
int _checkLength(length) {
if (length is! int) throw new ArgumentError('Invalid length $length');
return length;
}
// Validates `.view` constructor arguments. Checking is necessary because
// passing unvalidated values to the native constructors can cause conversions
// (e.g. String arguments) or create typed data objects that are not actually
// views of the input.
void _checkViewArguments(buffer, offsetInBytes, length) {
if (buffer is! NativeByteBuffer) {
throw new ArgumentError('Invalid view buffer');
}
if (offsetInBytes is! int) {
throw new ArgumentError('Invalid view offsetInBytes $offsetInBytes');
}
if (length != null && length is! int) {
throw new ArgumentError('Invalid view length $length');
}
}
// Ensures that [list] is a JavaScript Array or a typed array. If necessary,
// returns a copy of the list.
List _ensureNativeList(List list) {
if (list is JSIndexable) return list;
List result = new List(list.length);
for (int i = 0; i < list.length; i++) {
result[i] = list[i];
}
return result;
}
class NativeByteData extends NativeTypedData implements ByteData
native "DataView" {
/**
* Creates a [ByteData] of the specified length (in elements), all of
* whose elements are initially zero.
*/
factory NativeByteData(int length) => _create1(_checkLength(length));
/**
* Creates an [ByteData] _view_ of the specified region in the specified
* byte buffer. Changes in the [ByteData] will be visible in the byte
* buffer and vice versa. If the [offsetInBytes] index of the region is not
* specified, it defaults to zero (the first byte in the byte buffer).
* If the length is not specified, it defaults to null, which indicates
* that the view extends to the end of the byte buffer.
*
* Throws [RangeError] if [offsetInBytes] or [length] are negative, or
* if [offsetInBytes] + ([length] * elementSizeInBytes) is greater than
* the length of [buffer].
*/
factory NativeByteData.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => ByteData;
int get elementSizeInBytes => 1;
/**
* Returns the floating point number represented by the four bytes at
* the specified [byteOffset] in this object, in IEEE 754
* single-precision binary floating-point format (binary32).
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 4` is greater than the length of this object.
*/
num getFloat32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getFloat32(byteOffset, Endianness.LITTLE_ENDIAN == endian);
@JSName('getFloat32')
@Returns('num')
num _getFloat32(int byteOffset, [bool littleEndian]) native;
/**
* Returns the floating point number represented by the eight bytes at
* the specified [byteOffset] in this object, in IEEE 754
* double-precision binary floating-point format (binary64).
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 8` is greater than the length of this object.
*/
num getFloat64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getFloat64(byteOffset, Endianness.LITTLE_ENDIAN == endian);
@JSName('getFloat64')
@Returns('num')
num _getFloat64(int byteOffset, [bool littleEndian]) native;
/**
* Returns the (possibly negative) integer represented by the two bytes at
* the specified [byteOffset] in this object, in two's complement binary
* form.
* The return value will be between 2<sup>15</sup> and 2<sup>15</sup> - 1,
* inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 2` is greater than the length of this object.
*/
int getInt16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getInt16(byteOffset, Endianness.LITTLE_ENDIAN == endian);
@JSName('getInt16')
@Returns('int')
int _getInt16(int byteOffset, [bool littleEndian]) native;
/**
* Returns the (possibly negative) integer represented by the four bytes at
* the specified [byteOffset] in this object, in two's complement binary
* form.
* The return value will be between 2<sup>31</sup> and 2<sup>31</sup> - 1,
* inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 4` is greater than the length of this object.
*/
int getInt32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getInt32(byteOffset, Endianness.LITTLE_ENDIAN == endian);
@JSName('getInt32')
@Returns('int')
int _getInt32(int byteOffset, [bool littleEndian]) native;
/**
* Returns the (possibly negative) integer represented by the eight bytes at
* the specified [byteOffset] in this object, in two's complement binary
* form.
* The return value will be between 2<sup>63</sup> and 2<sup>63</sup> - 1,
* inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 8` is greater than the length of this object.
*/
int getInt64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) {
throw new UnsupportedError('Int64 accessor not supported by dart2js.');
}
/**
* Returns the (possibly negative) integer represented by the byte at the
* specified [byteOffset] in this object, in two's complement binary
* representation. The return value will be between -128 and 127, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* greater than or equal to the length of this object.
*/
int getInt8(int byteOffset) native;
/**
* Returns the positive integer represented by the two bytes starting
* at the specified [byteOffset] in this object, in unsigned binary
* form.
* The return value will be between 0 and 2<sup>16</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 2` is greater than the length of this object.
*/
int getUint16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getUint16(byteOffset, Endianness.LITTLE_ENDIAN == endian);
@JSName('getUint16')
@Returns('JSUInt31')
int _getUint16(int byteOffset, [bool littleEndian]) native;
/**
* Returns the positive integer represented by the four bytes starting
* at the specified [byteOffset] in this object, in unsigned binary
* form.
* The return value will be between 0 and 2<sup>32</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 4` is greater than the length of this object.
*/
int getUint32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getUint32(byteOffset, Endianness.LITTLE_ENDIAN == endian);
@JSName('getUint32')
@Returns('JSUInt32')
int _getUint32(int byteOffset, [bool littleEndian]) native;
/**
* Returns the positive integer represented by the eight bytes starting
* at the specified [byteOffset] in this object, in unsigned binary
* form.
* The return value will be between 0 and 2<sup>64</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 8` is greater than the length of this object.
*/
int getUint64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) {
throw new UnsupportedError('Uint64 accessor not supported by dart2js.');
}
/**
* Returns the positive integer represented by the byte at the specified
* [byteOffset] in this object, in unsigned binary form. The
* return value will be between 0 and 255, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* greater than or equal to the length of this object.
*/
int getUint8(int byteOffset) native;
/**
* Sets the four bytes starting at the specified [byteOffset] in this
* object to the IEEE 754 single-precision binary floating-point
* (binary32) representation of the specified [value].
*
* **Note that this method can lose precision.** The input [value] is
* a 64-bit floating point value, which will be converted to 32-bit
* floating point value by IEEE 754 rounding rules before it is stored.
* If [value] cannot be represented exactly as a binary32, it will be
* converted to the nearest binary32 value. If two binary32 values are
* equally close, the one whose least significant bit is zero will be used.
* Note that finite (but large) values can be converted to infinity, and
* small non-zero values can be converted to zero.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 4` is greater than the length of this object.
*/
void setFloat32(int byteOffset, num value,
[Endianness endian=Endianness.BIG_ENDIAN]) =>
_setFloat32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
@JSName('setFloat32')
void _setFloat32(int byteOffset, num value, [bool littleEndian]) native;
/**
* Sets the eight bytes starting at the specified [byteOffset] in this
* object to the IEEE 754 double-precision binary floating-point
* (binary64) representation of the specified [value].
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 8` is greater than the length of this object.
*/
void setFloat64(int byteOffset, num value,
[Endianness endian=Endianness.BIG_ENDIAN]) =>
_setFloat64(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
@JSName('setFloat64')
void _setFloat64(int byteOffset, num value, [bool littleEndian]) native;
/**
* Sets the two bytes starting at the specified [byteOffset] in this
* object to the two's complement binary representation of the specified
* [value], which must fit in two bytes. In other words, [value] must lie
* between 2<sup>15</sup> and 2<sup>15</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 2` is greater than the length of this object.
*/
void setInt16(int byteOffset, int value,
[Endianness endian=Endianness.BIG_ENDIAN]) =>
_setInt16(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
@JSName('setInt16')
void _setInt16(int byteOffset, int value, [bool littleEndian]) native;
/**
* Sets the four bytes starting at the specified [byteOffset] in this
* object to the two's complement binary representation of the specified
* [value], which must fit in four bytes. In other words, [value] must lie
* between 2<sup>31</sup> and 2<sup>31</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 4` is greater than the length of this object.
*/
void setInt32(int byteOffset, int value,
[Endianness endian=Endianness.BIG_ENDIAN]) =>
_setInt32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
@JSName('setInt32')
void _setInt32(int byteOffset, int value, [bool littleEndian]) native;
/**
* Sets the eight bytes starting at the specified [byteOffset] in this
* object to the two's complement binary representation of the specified
* [value], which must fit in eight bytes. In other words, [value] must lie
* between 2<sup>63</sup> and 2<sup>63</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 8` is greater than the length of this object.
*/
void setInt64(int byteOffset, int value,
[Endianness endian=Endianness.BIG_ENDIAN]) {
throw new UnsupportedError('Int64 accessor not supported by dart2js.');
}
/**
* Sets the byte at the specified [byteOffset] in this object to the
* two's complement binary representation of the specified [value], which
* must fit in a single byte. In other words, [value] must be between
* -128 and 127, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* greater than or equal to the length of this object.
*/
void setInt8(int byteOffset, int value) native;
/**
* Sets the two bytes starting at the specified [byteOffset] in this object
* to the unsigned binary representation of the specified [value],
* which must fit in two bytes. in other words, [value] must be between
* 0 and 2<sup>16</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 2` is greater than the length of this object.
*/
void setUint16(int byteOffset, int value,
[Endianness endian=Endianness.BIG_ENDIAN]) =>
_setUint16(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
@JSName('setUint16')
void _setUint16(int byteOffset, int value, [bool littleEndian]) native;
/**
* Sets the four bytes starting at the specified [byteOffset] in this object
* to the unsigned binary representation of the specified [value],
* which must fit in four bytes. in other words, [value] must be between
* 0 and 2<sup>32</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 4` is greater than the length of this object.
*/
void setUint32(int byteOffset, int value,
[Endianness endian=Endianness.BIG_ENDIAN]) =>
_setUint32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
@JSName('setUint32')
void _setUint32(int byteOffset, int value, [bool littleEndian]) native;
/**
* Sets the eight bytes starting at the specified [byteOffset] in this object
* to the unsigned binary representation of the specified [value],
* which must fit in eight bytes. in other words, [value] must be between
* 0 and 2<sup>64</sup> - 1, inclusive.
*
* Throws [RangeError] if [byteOffset] is negative, or
* `byteOffset + 8` is greater than the length of this object.
*/
void setUint64(int byteOffset, int value,
[Endianness endian=Endianness.BIG_ENDIAN]) {
throw new UnsupportedError('Uint64 accessor not supported by dart2js.');
}
/**
* Sets the byte at the specified [byteOffset] in this object to the
* unsigned binary representation of the specified [value], which must fit
* in a single byte. in other words, [value] must be between 0 and 255,
* inclusive.
*
* Throws [RangeError] if [byteOffset] is negative,
* or greater than or equal to the length of this object.
*/
void setUint8(int byteOffset, int value) native;
static NativeByteData _create1(arg) =>
JS('NativeByteData', 'new DataView(new ArrayBuffer(#))', arg);
static NativeByteData _create2(arg1, arg2) =>
JS('NativeByteData', 'new DataView(#, #)', arg1, arg2);
static NativeByteData _create3(arg1, arg2, arg3) =>
JS('NativeByteData', 'new DataView(#, #, #)', arg1, arg2, arg3);
}
abstract class NativeTypedArray extends NativeTypedData
implements JavaScriptIndexingBehavior {
int get length => JS('JSUInt32', '#.length', this);
bool _setRangeFast(int start, int end,
NativeTypedArray source, int skipCount) {
int targetLength = this.length;
_checkIndex(start, targetLength + 1);
_checkIndex(end, targetLength + 1);
if (start > end) throw new RangeError.range(start, 0, end);
int count = end - start;
if (skipCount < 0) throw new ArgumentError(skipCount);
int sourceLength = source.length;
if (sourceLength - skipCount < count) {
throw new StateError('Not enough elements');
}
if (skipCount != 0 || sourceLength != count) {
// Create a view of the exact subrange that is copied from the source.
source = JS('', '#.subarray(#, #)',
source, skipCount, skipCount + count);
}
JS('void', '#.set(#, #)', this, source, start);
}
}
abstract class NativeTypedArrayOfDouble
extends NativeTypedArray
with ListMixin<double>, FixedLengthListMixin<double> {
num operator[](int index) {
_checkIndex(index, length);
return JS('num', '#[#]', this, index);
}
void operator[]=(int index, num value) {
_checkIndex(index, length);
JS('void', '#[#] = #', this, index, value);
}
void setRange(int start, int end, Iterable<double> iterable,
[int skipCount = 0]) {
if (iterable is NativeTypedArrayOfDouble) {
_setRangeFast(start, end, iterable, skipCount);
return;
}
super.setRange(start, end, iterable, skipCount);
}
}
abstract class NativeTypedArrayOfInt
extends NativeTypedArray
with ListMixin<int>, FixedLengthListMixin<int>
implements List<int> {
// operator[]() is not here since different versions have different return
// types
void operator[]=(int index, int value) {
_checkIndex(index, length);
JS('void', '#[#] = #', this, index, value);
}
void setRange(int start, int end, Iterable<int> iterable,
[int skipCount = 0]) {
if (iterable is NativeTypedArrayOfInt) {
_setRangeFast(start, end, iterable, skipCount);
return;
}
super.setRange(start, end, iterable, skipCount);
}
}
class NativeFloat32List
extends NativeTypedArrayOfDouble
implements Float32List
native "Float32Array" {
factory NativeFloat32List(int length) => _create1(_checkLength(length));
factory NativeFloat32List.fromList(List<double> elements) =>
_create1(_ensureNativeList(elements));
factory NativeFloat32List.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Float32List;
List<double> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeFloat32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeFloat32List _create1(arg) =>
JS('NativeFloat32List', 'new Float32Array(#)', arg);
static NativeFloat32List _create2(arg1, arg2) =>
JS('NativeFloat32List', 'new Float32Array(#, #)', arg1, arg2);
static NativeFloat32List _create3(arg1, arg2, arg3) =>
JS('NativeFloat32List', 'new Float32Array(#, #, #)', arg1, arg2, arg3);
}
class NativeFloat64List
extends NativeTypedArrayOfDouble
implements Float64List
native "Float64Array" {
factory NativeFloat64List(int length) => _create1(_checkLength(length));
factory NativeFloat64List.fromList(List<double> elements) =>
_create1(_ensureNativeList(elements));
factory NativeFloat64List.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Float64List;
List<double> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeFloat64List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeFloat64List _create1(arg) =>
JS('NativeFloat64List', 'new Float64Array(#)', arg);
static NativeFloat64List _create2(arg1, arg2) =>
JS('NativeFloat64List', 'new Float64Array(#, #)', arg1, arg2);
static NativeFloat64List _create3(arg1, arg2, arg3) =>
JS('NativeFloat64List', 'new Float64Array(#, #, #)', arg1, arg2, arg3);
}
class NativeInt16List
extends NativeTypedArrayOfInt
implements Int16List
native "Int16Array" {
factory NativeInt16List(int length) => _create1(_checkLength(length));
factory NativeInt16List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeInt16List.view(NativeByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Int16List;
int operator[](int index) {
_checkIndex(index, length);
return JS('int', '#[#]', this, index);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeInt16List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeInt16List _create1(arg) =>
JS('NativeInt16List', 'new Int16Array(#)', arg);
static NativeInt16List _create2(arg1, arg2) =>
JS('NativeInt16List', 'new Int16Array(#, #)', arg1, arg2);
static NativeInt16List _create3(arg1, arg2, arg3) =>
JS('NativeInt16List', 'new Int16Array(#, #, #)', arg1, arg2, arg3);
}
class NativeInt32List
extends NativeTypedArrayOfInt
implements Int32List
native "Int32Array" {
factory NativeInt32List(int length) => _create1(_checkLength(length));
factory NativeInt32List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeInt32List.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Int32List;
int operator[](int index) {
_checkIndex(index, length);
return JS('int', '#[#]', this, index);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeInt32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeInt32List _create1(arg) =>
JS('NativeInt32List', 'new Int32Array(#)', arg);
static NativeInt32List _create2(arg1, arg2) =>
JS('NativeInt32List', 'new Int32Array(#, #)', arg1, arg2);
static NativeInt32List _create3(arg1, arg2, arg3) =>
JS('NativeInt32List', 'new Int32Array(#, #, #)', arg1, arg2, arg3);
}
class NativeInt8List
extends NativeTypedArrayOfInt
implements Int8List
native "Int8Array" {
factory NativeInt8List(int length) => _create1(_checkLength(length));
factory NativeInt8List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeInt8List.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Int8List;
int operator[](int index) {
_checkIndex(index, length);
return JS('int', '#[#]', this, index);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeInt8List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeInt8List _create1(arg) =>
JS('NativeInt8List', 'new Int8Array(#)', arg);
static NativeInt8List _create2(arg1, arg2) =>
JS('NativeInt8List', 'new Int8Array(#, #)', arg1, arg2);
static Int8List _create3(arg1, arg2, arg3) =>
JS('NativeInt8List', 'new Int8Array(#, #, #)', arg1, arg2, arg3);
}
class NativeUint16List
extends NativeTypedArrayOfInt
implements Uint16List
native "Uint16Array" {
factory NativeUint16List(int length) => _create1(_checkLength(length));
factory NativeUint16List.fromList(List<int> list) =>
_create1(_ensureNativeList(list));
factory NativeUint16List.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Uint16List;
int operator[](int index) {
_checkIndex(index, length);
return JS('JSUInt31', '#[#]', this, index);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeUint16List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeUint16List _create1(arg) =>
JS('NativeUint16List', 'new Uint16Array(#)', arg);
static NativeUint16List _create2(arg1, arg2) =>
JS('NativeUint16List', 'new Uint16Array(#, #)', arg1, arg2);
static NativeUint16List _create3(arg1, arg2, arg3) =>
JS('NativeUint16List', 'new Uint16Array(#, #, #)', arg1, arg2, arg3);
}
class NativeUint32List
extends NativeTypedArrayOfInt
implements Uint32List
native "Uint32Array" {
factory NativeUint32List(int length) => _create1(_checkLength(length));
factory NativeUint32List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeUint32List.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Uint32List;
int operator[](int index) {
_checkIndex(index, length);
return JS('JSUInt32', '#[#]', this, index);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeUint32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeUint32List _create1(arg) =>
JS('NativeUint32List', 'new Uint32Array(#)', arg);
static NativeUint32List _create2(arg1, arg2) =>
JS('NativeUint32List', 'new Uint32Array(#, #)', arg1, arg2);
static NativeUint32List _create3(arg1, arg2, arg3) =>
JS('NativeUint32List', 'new Uint32Array(#, #, #)', arg1, arg2, arg3);
}
class NativeUint8ClampedList
extends NativeTypedArrayOfInt
implements Uint8ClampedList
native "Uint8ClampedArray,CanvasPixelArray" {
factory NativeUint8ClampedList(int length) => _create1(_checkLength(length));
factory NativeUint8ClampedList.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeUint8ClampedList.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Uint8ClampedList;
int get length => JS('JSUInt32', '#.length', this);
int operator[](int index) {
_checkIndex(index, length);
return JS('JSUInt31', '#[#]', this, index);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeUint8ClampedList', '#.subarray(#, #)',
this, start, end);
return _create1(source);
}
static NativeUint8ClampedList _create1(arg) =>
JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#)', arg);
static NativeUint8ClampedList _create2(arg1, arg2) =>
JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #)', arg1, arg2);
static NativeUint8ClampedList _create3(arg1, arg2, arg3) =>
JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #, #)',
arg1, arg2, arg3);
}
class NativeUint8List
extends NativeTypedArrayOfInt
implements Uint8List
// On some browsers Uint8ClampedArray is a subtype of Uint8Array. Marking
// Uint8List as !nonleaf ensures that the native dispatch correctly handles
// the potential for Uint8ClampedArray to 'accidentally' pick up the
// dispatch record for Uint8List.
native "Uint8Array,!nonleaf" {
factory NativeUint8List(int length) => _create1(_checkLength(length));
factory NativeUint8List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeUint8List.view(ByteBuffer buffer,
int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Uint8List;
int get length => JS('JSUInt32', '#.length', this);
int operator[](int index) {
_checkIndex(index, length);
return JS('JSUInt31', '#[#]', this, index);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('NativeUint8List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeUint8List _create1(arg) =>
JS('NativeUint8List', 'new Uint8Array(#)', arg);
static NativeUint8List _create2(arg1, arg2) =>
JS('NativeUint8List', 'new Uint8Array(#, #)', arg1, arg2);
static NativeUint8List _create3(arg1, arg2, arg3) =>
JS('NativeUint8List', 'new Uint8Array(#, #, #)', arg1, arg2, arg3);
}
/**
* Implementation of Dart Float32x4 immutable value type and operations.
* Float32x4 stores 4 32-bit floating point values in "lanes".
* The lanes are "x", "y", "z", and "w" respectively.
*/
class NativeFloat32x4 implements Float32x4 {
final _storage = new Float32List(4);
NativeFloat32x4(double x, double y, double z, double w) {
_storage[0] = x;
_storage[1] = y;
_storage[2] = z;
_storage[3] = w;
}
NativeFloat32x4.splat(double v) {
_storage[0] = v;
_storage[1] = v;
_storage[2] = v;
_storage[3] = v;
}
NativeFloat32x4.zero();
/// Returns a bit-wise copy of [x] as a Float32x4.
NativeFloat32x4.fromInt32x4Bits(NativeInt32x4 x) {
var view = x._storage.buffer.asFloat32List();
_storage[0] = view[0];
_storage[1] = view[1];
_storage[2] = view[2];
_storage[3] = view[3];
}
NativeFloat32x4.fromFloat64x2(NativeFloat64x2 v) {
_storage[0] = v._storage[0];
_storage[1] = v._storage[1];
}
String toString() {
return '[${_storage[0]}, ${_storage[1]}, ${_storage[2]}, ${_storage[3]}]';
}
/// Addition operator.
Float32x4 operator+(NativeFloat32x4 other) {
double _x = _storage[0] + other._storage[0];
double _y = _storage[1] + other._storage[1];
double _z = _storage[2] + other._storage[2];
double _w = _storage[3] + other._storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Negate operator.
Float32x4 operator-() {
double _x = -_storage[0];
double _y = -_storage[1];
double _z = -_storage[2];
double _w = -_storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Subtraction operator.
Float32x4 operator-(NativeFloat32x4 other) {
double _x = _storage[0] - other._storage[0];
double _y = _storage[1] - other._storage[1];
double _z = _storage[2] - other._storage[2];
double _w = _storage[3] - other._storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Multiplication operator.
Float32x4 operator*(NativeFloat32x4 other) {
double _x = _storage[0] * other._storage[0];
double _y = _storage[1] * other._storage[1];
double _z = _storage[2] * other._storage[2];
double _w = _storage[3] * other._storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Division operator.
Float32x4 operator/(NativeFloat32x4 other) {
double _x = _storage[0] / other._storage[0];
double _y = _storage[1] / other._storage[1];
double _z = _storage[2] / other._storage[2];
double _w = _storage[3] / other._storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Relational less than.
Int32x4 lessThan(NativeFloat32x4 other) {
bool _cx = _storage[0] < other._storage[0];
bool _cy = _storage[1] < other._storage[1];
bool _cz = _storage[2] < other._storage[2];
bool _cw = _storage[3] < other._storage[3];
return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational less than or equal.
Int32x4 lessThanOrEqual(NativeFloat32x4 other) {
bool _cx = _storage[0] <= other._storage[0];
bool _cy = _storage[1] <= other._storage[1];
bool _cz = _storage[2] <= other._storage[2];
bool _cw = _storage[3] <= other._storage[3];
return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational greater than.
Int32x4 greaterThan(NativeFloat32x4 other) {
bool _cx = _storage[0] > other._storage[0];
bool _cy = _storage[1] > other._storage[1];
bool _cz = _storage[2] > other._storage[2];
bool _cw = _storage[3] > other._storage[3];
return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational greater than or equal.
Int32x4 greaterThanOrEqual(NativeFloat32x4 other) {
bool _cx = _storage[0] >= other._storage[0];
bool _cy = _storage[1] >= other._storage[1];
bool _cz = _storage[2] >= other._storage[2];
bool _cw = _storage[3] >= other._storage[3];
return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational equal.
Int32x4 equal(NativeFloat32x4 other) {
bool _cx = _storage[0] == other._storage[0];
bool _cy = _storage[1] == other._storage[1];
bool _cz = _storage[2] == other._storage[2];
bool _cw = _storage[3] == other._storage[3];
return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational not-equal.
Int32x4 notEqual(NativeFloat32x4 other) {
bool _cx = _storage[0] != other._storage[0];
bool _cy = _storage[1] != other._storage[1];
bool _cz = _storage[2] != other._storage[2];
bool _cw = _storage[3] != other._storage[3];
return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Returns a copy of [this] each lane being scaled by [s].
Float32x4 scale(double s) {
double _x = s * _storage[0];
double _y = s * _storage[1];
double _z = s * _storage[2];
double _w = s * _storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Returns the absolute value of this [Float32x4].
Float32x4 abs() {
double _x = _storage[0].abs();
double _y = _storage[1].abs();
double _z = _storage[2].abs();
double _w = _storage[3].abs();
return new Float32x4(_x, _y, _z, _w);
}
/// Clamps [this] to be in the range [lowerLimit]-[upperLimit].
NativeFloat32x4 clamp(NativeFloat32x4 lowerLimit,
NativeFloat32x4 upperLimit) {
double _lx = lowerLimit._storage[0];
double _ly = lowerLimit._storage[1];
double _lz = lowerLimit._storage[2];
double _lw = lowerLimit._storage[3];
double _ux = upperLimit._storage[0];
double _uy = upperLimit._storage[1];
double _uz = upperLimit._storage[2];
double _uw = upperLimit._storage[3];
double _x = _storage[0];
double _y = _storage[1];
double _z = _storage[2];
double _w = _storage[3];
// MAX(MIN(self, upper), lower).
_x = _x > _ux ? _ux : _x;
_y = _y > _uy ? _uy : _y;
_z = _z > _uz ? _uz : _z;
_w = _w > _uw ? _uw : _w;
_x = _x < _lx ? _lx : _x;
_y = _y < _ly ? _ly : _y;
_z = _z < _lz ? _lz : _z;
_w = _w < _lw ? _lw : _w;
return new Float32x4(_x, _y, _z, _w);
}
/// Extracted x value.
double get x => _storage[0];
/// Extracted y value.
double get y => _storage[1];
/// Extracted z value.
double get z => _storage[2];
/// Extracted w value.
double get w => _storage[3];
/// Extract the sign bit from each lane return them in the first 4 bits.
int get signMask {
var view = new NativeUint32List.view(_storage.buffer, 0, null);
var mx = (view[0] & 0x80000000) >> 31;
var my = (view[1] & 0x80000000) >> 31;
var mz = (view[2] & 0x80000000) >> 31;
var mw = (view[3] & 0x80000000) >> 31;
return mx | my << 1 | mz << 2 | mw << 3;
}
/// Shuffle the lane values. [mask] must be one of the 256 shuffle constants.
Float32x4 shuffle(int m) {
if ((m < 0) || (m > 255)) {
throw new RangeError('mask $m must be in the range [0..256)');
}
double _x = _storage[m & 0x3];
double _y = _storage[(m >> 2) & 0x3];
double _z = _storage[(m >> 4) & 0x3];
double _w = _storage[(m >> 6) & 0x3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Shuffle the lane values in [this] and [other]. The returned
/// Float32x4 will have XY lanes from [this] and ZW lanes from [other].
/// Uses the same [mask] as [shuffle].
Float32x4 shuffleMix(NativeFloat32x4 other, int m) {
if ((m < 0) || (m > 255)) {
throw new RangeError('mask $m must be in the range [0..256)');
}
double _x = _storage[m & 0x3];
double _y = _storage[(m >> 2) & 0x3];
double _z = other._storage[(m >> 4) & 0x3];
double _w = other._storage[(m >> 6) & 0x3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Copy [this] and replace the [x] lane.
Float32x4 withX(double x) {
double _x = x;
double _y = _storage[1];
double _z = _storage[2];
double _w = _storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Copy [this] and replace the [y] lane.
Float32x4 withY(double y) {
double _x = _storage[0];
double _y = y;
double _z = _storage[2];
double _w = _storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Copy [this] and replace the [z] lane.
Float32x4 withZ(double z) {
double _x = _storage[0];
double _y = _storage[1];
double _z = z;
double _w = _storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Copy [this] and replace the [w] lane.
Float32x4 withW(double w) {
double _x = _storage[0];
double _y = _storage[1];
double _z = _storage[2];
double _w = w;
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Returns the lane-wise minimum value in [this] or [other].
Float32x4 min(NativeFloat32x4 other) {
double _x = _storage[0] < other._storage[0] ?
_storage[0] : other._storage[0];
double _y = _storage[1] < other._storage[1] ?
_storage[1] : other._storage[1];
double _z = _storage[2] < other._storage[2] ?
_storage[2] : other._storage[2];
double _w = _storage[3] < other._storage[3] ?
_storage[3] : other._storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Returns the lane-wise maximum value in [this] or [other].
Float32x4 max(NativeFloat32x4 other) {
double _x = _storage[0] > other._storage[0] ?
_storage[0] : other._storage[0];
double _y = _storage[1] > other._storage[1] ?
_storage[1] : other._storage[1];
double _z = _storage[2] > other._storage[2] ?
_storage[2] : other._storage[2];
double _w = _storage[3] > other._storage[3] ?
_storage[3] : other._storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Returns the square root of [this].
Float32x4 sqrt() {
double _x = Math.sqrt(_storage[0]);
double _y = Math.sqrt(_storage[1]);
double _z = Math.sqrt(_storage[2]);
double _w = Math.sqrt(_storage[3]);
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Returns the reciprocal of [this].
Float32x4 reciprocal() {
double _x = 1.0 / _storage[0];
double _y = 1.0 / _storage[1];
double _z = 1.0 / _storage[2];
double _w = 1.0 / _storage[3];
return new NativeFloat32x4(_x, _y, _z, _w);
}
/// Returns the square root of the reciprocal of [this].
Float32x4 reciprocalSqrt() {
double _x = Math.sqrt(1.0 / _storage[0]);
double _y = Math.sqrt(1.0 / _storage[1]);
double _z = Math.sqrt(1.0 / _storage[2]);
double _w = Math.sqrt(1.0 / _storage[3]);
return new NativeFloat32x4(_x, _y, _z, _w);
}
}
/**
* Interface of Dart Int32x4 and operations.
* Int32x4 stores 4 32-bit bit-masks in "lanes".
* The lanes are "x", "y", "z", and "w" respectively.
*/
class NativeInt32x4 implements Int32x4 {
final _storage = new NativeInt32List(4);
NativeInt32x4(int x, int y, int z, int w) {
_storage[0] = x;
_storage[1] = y;
_storage[2] = z;
_storage[3] = w;
}
NativeInt32x4.bool(bool x, bool y, bool z, bool w) {
_storage[0] = x == true ? 0xFFFFFFFF : 0x0;
_storage[1] = y == true ? 0xFFFFFFFF : 0x0;
_storage[2] = z == true ? 0xFFFFFFFF : 0x0;
_storage[3] = w == true ? 0xFFFFFFFF : 0x0;
}
/// Returns a bit-wise copy of [x] as a Int32x4.
NativeInt32x4.fromFloat32x4Bits(NativeFloat32x4 x) {
var view = new NativeUint32List.view(x._storage.buffer, 0, null);
_storage[0] = view[0];
_storage[1] = view[1];
_storage[2] = view[2];
_storage[3] = view[3];
}
String toString() {
return '[${_storage[0]}, ${_storage[1]}, ${_storage[2]}, ${_storage[3]}]';
}
/// The bit-wise or operator.
Int32x4 operator|(NativeInt32x4 other) {
int _x = _storage[0] | other._storage[0];
int _y = _storage[1] | other._storage[1];
int _z = _storage[2] | other._storage[2];
int _w = _storage[3] | other._storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// The bit-wise and operator.
Int32x4 operator&(NativeInt32x4 other) {
int _x = _storage[0] & other._storage[0];
int _y = _storage[1] & other._storage[1];
int _z = _storage[2] & other._storage[2];
int _w = _storage[3] & other._storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// The bit-wise xor operator.
Int32x4 operator^(NativeInt32x4 other) {
int _x = _storage[0] ^ other._storage[0];
int _y = _storage[1] ^ other._storage[1];
int _z = _storage[2] ^ other._storage[2];
int _w = _storage[3] ^ other._storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
Int32x4 operator+(NativeInt32x4 other) {
var r = new NativeInt32x4(0, 0, 0, 0);
r._storage[0] = (_storage[0] + other._storage[0]);
r._storage[1] = (_storage[1] + other._storage[1]);
r._storage[2] = (_storage[2] + other._storage[2]);
r._storage[3] = (_storage[3] + other._storage[3]);
return r;
}
Int32x4 operator-(NativeInt32x4 other) {
var r = new NativeInt32x4(0, 0, 0, 0);
r._storage[0] = (_storage[0] - other._storage[0]);
r._storage[1] = (_storage[1] - other._storage[1]);
r._storage[2] = (_storage[2] - other._storage[2]);
r._storage[3] = (_storage[3] - other._storage[3]);
return r;
}
/// Extract 32-bit mask from x lane.
int get x => _storage[0];
/// Extract 32-bit mask from y lane.
int get y => _storage[1];
/// Extract 32-bit mask from z lane.
int get z => _storage[2];
/// Extract 32-bit mask from w lane.
int get w => _storage[3];
/// Extract the top bit from each lane return them in the first 4 bits.
int get signMask {
int mx = (_storage[0] & 0x80000000) >> 31;
int my = (_storage[1] & 0x80000000) >> 31;
int mz = (_storage[2] & 0x80000000) >> 31;
int mw = (_storage[3] & 0x80000000) >> 31;
return mx | my << 1 | mz << 2 | mw << 3;
}
/// Shuffle the lane values. [mask] must be one of the 256 shuffle constants.
Int32x4 shuffle(int mask) {
if ((mask < 0) || (mask > 255)) {
throw new RangeError('mask $mask must be in the range [0..256)');
}
int _x = _storage[mask & 0x3];
int _y = _storage[(mask >> 2) & 0x3];
int _z = _storage[(mask >> 4) & 0x3];
int _w = _storage[(mask >> 6) & 0x3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Shuffle the lane values in [this] and [other]. The returned
/// Int32x4 will have XY lanes from [this] and ZW lanes from [other].
/// Uses the same [mask] as [shuffle].
Int32x4 shuffleMix(NativeInt32x4 other, int mask) {
if ((mask < 0) || (mask > 255)) {
throw new RangeError('mask $mask must be in the range [0..256)');
}
int _x = _storage[mask & 0x3];
int _y = _storage[(mask >> 2) & 0x3];
int _z = other._storage[(mask >> 4) & 0x3];
int _w = other._storage[(mask >> 6) & 0x3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Returns a new [Int32x4] copied from [this] with a new x value.
Int32x4 withX(int x) {
int _x = x;
int _y = _storage[1];
int _z = _storage[2];
int _w = _storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Returns a new [Int32x4] copied from [this] with a new y value.
Int32x4 withY(int y) {
int _x = _storage[0];
int _y = y;
int _z = _storage[2];
int _w = _storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Returns a new [Int32x4] copied from [this] with a new z value.
Int32x4 withZ(int z) {
int _x = _storage[0];
int _y = _storage[1];
int _z = z;
int _w = _storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Returns a new [Int32x4] copied from [this] with a new w value.
Int32x4 withW(int w) {
int _x = _storage[0];
int _y = _storage[1];
int _z = _storage[2];
int _w = w;
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Extracted x value. Returns false for 0, true for any other value.
bool get flagX => _storage[0] != 0x0;
/// Extracted y value. Returns false for 0, true for any other value.
bool get flagY => _storage[1] != 0x0;
/// Extracted z value. Returns false for 0, true for any other value.
bool get flagZ => _storage[2] != 0x0;
/// Extracted w value. Returns false for 0, true for any other value.
bool get flagW => _storage[3] != 0x0;
/// Returns a new [Int32x4] copied from [this] with a new x value.
Int32x4 withFlagX(bool x) {
int _x = x == true ? 0xFFFFFFFF : 0x0;
int _y = _storage[1];
int _z = _storage[2];
int _w = _storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Returns a new [Int32x4] copied from [this] with a new y value.
Int32x4 withFlagY(bool y) {
int _x = _storage[0];
int _y = y == true ? 0xFFFFFFFF : 0x0;
int _z = _storage[2];
int _w = _storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Returns a new [Int32x4] copied from [this] with a new z value.
Int32x4 withFlagZ(bool z) {
int _x = _storage[0];
int _y = _storage[1];
int _z = z == true ? 0xFFFFFFFF : 0x0;
int _w = _storage[3];
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Returns a new [Int32x4] copied from [this] with a new w value.
Int32x4 withFlagW(bool w) {
int _x = _storage[0];
int _y = _storage[1];
int _z = _storage[2];
int _w = w == true ? 0xFFFFFFFF : 0x0;
return new NativeInt32x4(_x, _y, _z, _w);
}
/// Merge [trueValue] and [falseValue] based on [this]' bit mask:
/// Select bit from [trueValue] when bit in [this] is on.
/// Select bit from [falseValue] when bit in [this] is off.
Float32x4 select(NativeFloat32x4 trueValue, NativeFloat32x4 falseValue) {
var trueView = trueValue._storage.buffer.asInt32List();
var falseView = falseValue._storage.buffer.asInt32List();
int cmx = _storage[0];
int cmy = _storage[1];
int cmz = _storage[2];
int cmw = _storage[3];
int stx = trueView[0];
int sty = trueView[1];
int stz = trueView[2];
int stw = trueView[3];
int sfx = falseView[0];
int sfy = falseView[1];
int sfz = falseView[2];
int sfw = falseView[3];
int _x = (cmx & stx) | (~cmx & sfx);
int _y = (cmy & sty) | (~cmy & sfy);
int _z = (cmz & stz) | (~cmz & sfz);
int _w = (cmw & stw) | (~cmw & sfw);
var r = new NativeFloat32x4(0.0, 0.0, 0.0, 0.0);
var rView = r._storage.buffer.asInt32List();
rView[0] = _x;
rView[1] = _y;
rView[2] = _z;
rView[3] = _w;
return r;
}
}
class NativeFloat64x2 implements Float64x2 {
final _storage = new Float64List(2);
NativeFloat64x2(double x, double y) {
_storage[0] = x;
_storage[1] = y;
}
NativeFloat64x2.splat(double v) {
_storage[0] = v;
_storage[1] = v;
}
NativeFloat64x2.zero();
NativeFloat64x2.fromFloat32x4(NativeFloat32x4 v) {
_storage[0] = v._storage[0];
_storage[1] = v._storage[1];
}
String toString() {
return '[${_storage[0]}, ${_storage[1]}]';
}
/// Addition operator.
Float64x2 operator+(NativeFloat64x2 other) {
return new NativeFloat64x2(_storage[0] + other._storage[0],
_storage[1] + other._storage[1]);
}
/// Negate operator.
Float64x2 operator-() {
return new NativeFloat64x2(-_storage[0], -_storage[1]);
}
/// Subtraction operator.
Float64x2 operator-(NativeFloat64x2 other) {
return new NativeFloat64x2(_storage[0] - other._storage[0],
_storage[1] - other._storage[1]);
}
/// Multiplication operator.
Float64x2 operator*(NativeFloat64x2 other) {
return new NativeFloat64x2(_storage[0] * other._storage[0],
_storage[1] * other._storage[1]);
}
/// Division operator.
Float64x2 operator/(NativeFloat64x2 other) {
return new NativeFloat64x2(_storage[0] / other._storage[0],
_storage[1] / other._storage[1]);
}
/// Returns a copy of [this] each lane being scaled by [s].
Float64x2 scale(double s) {
return new NativeFloat64x2(_storage[0] * s, _storage[1] * s);
}
/// Returns the absolute value of this [Float64x2].
Float64x2 abs() {
return new NativeFloat64x2(_storage[0].abs(), _storage[1].abs());
}
/// Clamps [this] to be in the range [lowerLimit]-[upperLimit].
Float64x2 clamp(NativeFloat64x2 lowerLimit,
NativeFloat64x2 upperLimit) {
double _lx = lowerLimit._storage[0];
double _ly = lowerLimit._storage[1];
double _ux = upperLimit._storage[0];
double _uy = upperLimit._storage[1];
double _x = _storage[0];
double _y = _storage[1];
// MAX(MIN(self, upper), lower).
_x = _x > _ux ? _ux : _x;
_y = _y > _uy ? _uy : _y;
_x = _x < _lx ? _lx : _x;
_y = _y < _ly ? _ly : _y;
return new NativeFloat64x2(_x, _y);
}
/// Extracted x value.
double get x => _storage[0];
/// Extracted y value.
double get y => _storage[1];
/// Extract the sign bits from each lane return them in the first 2 bits.
int get signMask {
var view = _storage.buffer.asUint32List();
var mx = (view[1] & 0x80000000) >> 31;
var my = (view[3] & 0x80000000) >> 31;
return mx | my << 1;
}
/// Returns a new [Float64x2] copied from [this] with a new x value.
Float64x2 withX(double x) {
return new NativeFloat64x2(x, _storage[1]);
}
/// Returns a new [Float64x2] copied from [this] with a new y value.
Float64x2 withY(double y) {
return new NativeFloat64x2(_storage[0], y);
}
/// Returns the lane-wise minimum value in [this] or [other].
Float64x2 min(NativeFloat64x2 other) {
return new NativeFloat64x2(
_storage[0] < other._storage[0] ? _storage[0] : other._storage[0],
_storage[1] < other._storage[1] ? _storage[1] : other._storage[1]);
}
/// Returns the lane-wise maximum value in [this] or [other].
Float64x2 max(NativeFloat64x2 other) {
return new NativeFloat64x2(
_storage[0] > other._storage[0] ? _storage[0] : other._storage[0],
_storage[1] > other._storage[1] ? _storage[1] : other._storage[1]);
}
/// Returns the lane-wise square root of [this].
Float64x2 sqrt() {
return new NativeFloat64x2(Math.sqrt(_storage[0]), Math.sqrt(_storage[1]));
}
}