blob: ff95ed041e7a6e1450e5ba271ab8c931bd06d577 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/flow_graph_range_analysis.h"
#include "vm/bit_vector.h"
#include "vm/il_printer.h"
namespace dart {
DEFINE_FLAG(bool, array_bounds_check_elimination, true,
"Eliminate redundant bounds checks.");
DEFINE_FLAG(bool, trace_range_analysis, false, "Trace range analysis progress");
DEFINE_FLAG(bool, trace_integer_ir_selection, false,
"Print integer IR selection optimization pass.");
DECLARE_FLAG(bool, trace_constant_propagation);
// Quick access to the locally defined isolate() method.
#define I (isolate())
void RangeAnalysis::Analyze() {
CollectValues();
InsertConstraints();
InferRanges();
IntegerInstructionSelector iis(flow_graph_);
iis.Select();
RemoveConstraints();
}
void RangeAnalysis::CollectValues() {
const GrowableArray<Definition*>& initial =
*flow_graph_->graph_entry()->initial_definitions();
for (intptr_t i = 0; i < initial.length(); ++i) {
Definition* current = initial[i];
if (current->Type()->ToCid() == kSmiCid) {
values_.Add(current);
} else if (current->IsMintDefinition()) {
values_.Add(current);
}
}
for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator();
!block_it.Done();
block_it.Advance()) {
BlockEntryInstr* block = block_it.Current();
if (block->IsGraphEntry() || block->IsCatchBlockEntry()) {
const GrowableArray<Definition*>& initial = block->IsGraphEntry()
? *block->AsGraphEntry()->initial_definitions()
: *block->AsCatchBlockEntry()->initial_definitions();
for (intptr_t i = 0; i < initial.length(); ++i) {
Definition* current = initial[i];
if (current->Type()->ToCid() == kSmiCid) {
values_.Add(current);
} else if (current->IsMintDefinition()) {
values_.Add(current);
}
}
}
JoinEntryInstr* join = block->AsJoinEntry();
if (join != NULL) {
for (PhiIterator phi_it(join); !phi_it.Done(); phi_it.Advance()) {
PhiInstr* current = phi_it.Current();
if (current->Type()->ToCid() == kSmiCid) {
values_.Add(current);
}
}
}
for (ForwardInstructionIterator instr_it(block);
!instr_it.Done();
instr_it.Advance()) {
Instruction* current = instr_it.Current();
Definition* defn = current->AsDefinition();
if (defn != NULL) {
if ((defn->Type()->ToCid() == kSmiCid) &&
(defn->ssa_temp_index() != -1)) {
values_.Add(defn);
} else if ((defn->IsMintDefinition()) &&
(defn->ssa_temp_index() != -1)) {
values_.Add(defn);
}
} else if (current->IsCheckSmi()) {
smi_checks_.Add(current->AsCheckSmi());
}
}
}
}
// Returns true if use is dominated by the given instruction.
// Note: uses that occur at instruction itself are not dominated by it.
static bool IsDominatedUse(Instruction* dom, Value* use) {
BlockEntryInstr* dom_block = dom->GetBlock();
Instruction* instr = use->instruction();
PhiInstr* phi = instr->AsPhi();
if (phi != NULL) {
return dom_block->Dominates(phi->block()->PredecessorAt(use->use_index()));
}
BlockEntryInstr* use_block = instr->GetBlock();
if (use_block == dom_block) {
// Fast path for the case of block entry.
if (dom_block == dom) return true;
for (Instruction* curr = dom->next(); curr != NULL; curr = curr->next()) {
if (curr == instr) return true;
}
return false;
}
return dom_block->Dominates(use_block);
}
void RangeAnalysis::RenameDominatedUses(Definition* def,
Instruction* dom,
Definition* other) {
for (Value::Iterator it(def->input_use_list());
!it.Done();
it.Advance()) {
Value* use = it.Current();
// Skip dead phis.
PhiInstr* phi = use->instruction()->AsPhi();
ASSERT((phi == NULL) || phi->is_alive());
if (IsDominatedUse(dom, use)) {
use->BindTo(other);
}
}
}
// For a comparison operation return an operation for the equivalent flipped
// comparison: a (op) b === b (op') a.
static Token::Kind FlipComparison(Token::Kind op) {
switch (op) {
case Token::kEQ: return Token::kEQ;
case Token::kNE: return Token::kNE;
case Token::kLT: return Token::kGT;
case Token::kGT: return Token::kLT;
case Token::kLTE: return Token::kGTE;
case Token::kGTE: return Token::kLTE;
default:
UNREACHABLE();
return Token::kILLEGAL;
}
}
// Given a boundary (right operand) and a comparison operation return
// a symbolic range constraint for the left operand of the comparison assuming
// that it evaluated to true.
// For example for the comparison a < b symbol a is constrained with range
// [Smi::kMinValue, b - 1].
Range* RangeAnalysis::ConstraintRange(Token::Kind op, Definition* boundary) {
switch (op) {
case Token::kEQ:
return new(I) Range(RangeBoundary::FromDefinition(boundary),
RangeBoundary::FromDefinition(boundary));
case Token::kNE:
return Range::Unknown();
case Token::kLT:
return new(I) Range(RangeBoundary::MinSmi(),
RangeBoundary::FromDefinition(boundary, -1));
case Token::kGT:
return new(I) Range(RangeBoundary::FromDefinition(boundary, 1),
RangeBoundary::MaxSmi());
case Token::kLTE:
return new(I) Range(RangeBoundary::MinSmi(),
RangeBoundary::FromDefinition(boundary));
case Token::kGTE:
return new(I) Range(RangeBoundary::FromDefinition(boundary),
RangeBoundary::MaxSmi());
default:
UNREACHABLE();
return Range::Unknown();
}
}
ConstraintInstr* RangeAnalysis::InsertConstraintFor(Definition* defn,
Range* constraint_range,
Instruction* after) {
// No need to constrain constants.
if (defn->IsConstant()) return NULL;
ConstraintInstr* constraint = new(I) ConstraintInstr(
new(I) Value(defn), constraint_range);
flow_graph_->InsertAfter(after, constraint, NULL, FlowGraph::kValue);
RenameDominatedUses(defn, constraint, constraint);
constraints_.Add(constraint);
return constraint;
}
void RangeAnalysis::ConstrainValueAfterBranch(Definition* defn, Value* use) {
BranchInstr* branch = use->instruction()->AsBranch();
RelationalOpInstr* rel_op = branch->comparison()->AsRelationalOp();
if ((rel_op != NULL) && (rel_op->operation_cid() == kSmiCid)) {
// Found comparison of two smis. Constrain defn at true and false
// successors using the other operand as a boundary.
Definition* boundary;
Token::Kind op_kind;
if (use->use_index() == 0) { // Left operand.
boundary = rel_op->InputAt(1)->definition();
op_kind = rel_op->kind();
} else {
ASSERT(use->use_index() == 1); // Right operand.
boundary = rel_op->InputAt(0)->definition();
// InsertConstraintFor assumes that defn is left operand of a
// comparison if it is right operand flip the comparison.
op_kind = FlipComparison(rel_op->kind());
}
// Constrain definition at the true successor.
ConstraintInstr* true_constraint =
InsertConstraintFor(defn,
ConstraintRange(op_kind, boundary),
branch->true_successor());
// Mark true_constraint an artificial use of boundary. This ensures
// that constraint's range is recalculated if boundary's range changes.
if (true_constraint != NULL) {
true_constraint->AddDependency(boundary);
true_constraint->set_target(branch->true_successor());
}
// Constrain definition with a negated condition at the false successor.
ConstraintInstr* false_constraint =
InsertConstraintFor(
defn,
ConstraintRange(Token::NegateComparison(op_kind), boundary),
branch->false_successor());
// Mark false_constraint an artificial use of boundary. This ensures
// that constraint's range is recalculated if boundary's range changes.
if (false_constraint != NULL) {
false_constraint->AddDependency(boundary);
false_constraint->set_target(branch->false_successor());
}
}
}
void RangeAnalysis::InsertConstraintsFor(Definition* defn) {
for (Value* use = defn->input_use_list();
use != NULL;
use = use->next_use()) {
if (use->instruction()->IsBranch()) {
ConstrainValueAfterBranch(defn, use);
} else if (use->instruction()->IsCheckArrayBound()) {
ConstrainValueAfterCheckArrayBound(
defn,
use->instruction()->AsCheckArrayBound(),
use->use_index());
}
}
}
void RangeAnalysis::ConstrainValueAfterCheckArrayBound(
Definition* defn, CheckArrayBoundInstr* check, intptr_t use_index) {
Range* constraint_range = NULL;
if (use_index == CheckArrayBoundInstr::kIndexPos) {
Definition* length = check->length()->definition();
constraint_range = new(I) Range(
RangeBoundary::FromConstant(0),
RangeBoundary::FromDefinition(length, -1));
} else {
ASSERT(use_index == CheckArrayBoundInstr::kLengthPos);
Definition* index = check->index()->definition();
constraint_range = new(I) Range(
RangeBoundary::FromDefinition(index, 1),
RangeBoundary::MaxSmi());
}
InsertConstraintFor(defn, constraint_range, check);
}
void RangeAnalysis::InsertConstraints() {
for (intptr_t i = 0; i < smi_checks_.length(); i++) {
CheckSmiInstr* check = smi_checks_[i];
ConstraintInstr* constraint =
InsertConstraintFor(check->value()->definition(),
Range::UnknownSmi(),
check);
if (constraint == NULL) {
// No constraint was needed.
continue;
}
// Mark the constraint's value's reaching type as smi.
CompileType* smi_compile_type =
ZoneCompileType::Wrap(CompileType::FromCid(kSmiCid));
constraint->value()->SetReachingType(smi_compile_type);
}
for (intptr_t i = 0; i < values_.length(); i++) {
InsertConstraintsFor(values_[i]);
}
for (intptr_t i = 0; i < constraints_.length(); i++) {
InsertConstraintsFor(constraints_[i]);
}
}
void RangeAnalysis::ResetWorklist() {
if (marked_defns_ == NULL) {
marked_defns_ = new(I) BitVector(flow_graph_->current_ssa_temp_index());
} else {
marked_defns_->Clear();
}
worklist_.Clear();
}
void RangeAnalysis::MarkDefinition(Definition* defn) {
// Unwrap constrained value.
while (defn->IsConstraint()) {
defn = defn->AsConstraint()->value()->definition();
}
if (!marked_defns_->Contains(defn->ssa_temp_index())) {
worklist_.Add(defn);
marked_defns_->Add(defn->ssa_temp_index());
}
}
RangeAnalysis::Direction RangeAnalysis::ToDirection(Value* val) {
if (val->BindsToConstant()) {
return (Smi::Cast(val->BoundConstant()).Value() >= 0) ? kPositive
: kNegative;
} else if (val->definition()->range() != NULL) {
Range* range = val->definition()->range();
if (Range::ConstantMin(range).ConstantValue() >= 0) {
return kPositive;
} else if (Range::ConstantMax(range).ConstantValue() <= 0) {
return kNegative;
}
}
return kUnknown;
}
Range* RangeAnalysis::InferInductionVariableRange(JoinEntryInstr* loop_header,
PhiInstr* var) {
BitVector* loop_info = loop_header->loop_info();
Definition* initial_value = NULL;
Direction direction = kUnknown;
ResetWorklist();
MarkDefinition(var);
while (!worklist_.is_empty()) {
Definition* defn = worklist_.RemoveLast();
if (defn->IsPhi()) {
PhiInstr* phi = defn->AsPhi();
for (intptr_t i = 0; i < phi->InputCount(); i++) {
Definition* defn = phi->InputAt(i)->definition();
if (!loop_info->Contains(defn->GetBlock()->preorder_number())) {
// The value is coming from outside of the loop.
if (initial_value == NULL) {
initial_value = defn;
continue;
} else if (initial_value == defn) {
continue;
} else {
return NULL;
}
}
MarkDefinition(defn);
}
} else if (defn->IsBinarySmiOp()) {
BinarySmiOpInstr* binary_op = defn->AsBinarySmiOp();
switch (binary_op->op_kind()) {
case Token::kADD: {
const Direction growth_right =
ToDirection(binary_op->right());
if (growth_right != kUnknown) {
UpdateDirection(&direction, growth_right);
MarkDefinition(binary_op->left()->definition());
break;
}
const Direction growth_left =
ToDirection(binary_op->left());
if (growth_left != kUnknown) {
UpdateDirection(&direction, growth_left);
MarkDefinition(binary_op->right()->definition());
break;
}
return NULL;
}
case Token::kSUB: {
const Direction growth_right =
ToDirection(binary_op->right());
if (growth_right != kUnknown) {
UpdateDirection(&direction, Invert(growth_right));
MarkDefinition(binary_op->left()->definition());
break;
}
return NULL;
}
default:
return NULL;
}
} else {
return NULL;
}
}
// We transitively discovered all dependencies of the given phi
// and confirmed that it depends on a single value coming from outside of
// the loop and some linear combinations of itself.
// Compute the range based on initial value and the direction of the growth.
switch (direction) {
case kPositive:
return new(I) Range(RangeBoundary::FromDefinition(initial_value),
RangeBoundary::MaxSmi());
case kNegative:
return new(I) Range(RangeBoundary::MinSmi(),
RangeBoundary::FromDefinition(initial_value));
case kUnknown:
case kBoth:
return Range::UnknownSmi();
}
UNREACHABLE();
return NULL;
}
void RangeAnalysis::InferRangesRecursive(BlockEntryInstr* block) {
JoinEntryInstr* join = block->AsJoinEntry();
if (join != NULL) {
const bool is_loop_header = (join->loop_info() != NULL);
for (PhiIterator it(join); !it.Done(); it.Advance()) {
PhiInstr* phi = it.Current();
if (definitions_->Contains(phi->ssa_temp_index())) {
if (is_loop_header) {
// Try recognizing simple induction variables.
Range* range = InferInductionVariableRange(join, phi);
if (range != NULL) {
phi->range_ = range;
continue;
}
}
phi->InferRange();
}
}
}
for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) {
Instruction* current = it.Current();
Definition* defn = current->AsDefinition();
if ((defn != NULL) &&
(defn->ssa_temp_index() != -1) &&
definitions_->Contains(defn->ssa_temp_index())) {
defn->InferRange();
} else if (FLAG_array_bounds_check_elimination &&
current->IsCheckArrayBound()) {
CheckArrayBoundInstr* check = current->AsCheckArrayBound();
RangeBoundary array_length =
RangeBoundary::FromDefinition(check->length()->definition());
if (check->IsRedundant(array_length)) {
it.RemoveCurrentFromGraph();
}
}
}
for (intptr_t i = 0; i < block->dominated_blocks().length(); ++i) {
InferRangesRecursive(block->dominated_blocks()[i]);
}
}
void RangeAnalysis::InferRanges() {
if (FLAG_trace_range_analysis) {
OS::Print("---- before range analysis -------\n");
FlowGraphPrinter printer(*flow_graph_);
printer.PrintBlocks();
}
// Initialize bitvector for quick filtering of int values.
definitions_ =
new(I) BitVector(flow_graph_->current_ssa_temp_index());
for (intptr_t i = 0; i < values_.length(); i++) {
definitions_->Add(values_[i]->ssa_temp_index());
}
for (intptr_t i = 0; i < constraints_.length(); i++) {
definitions_->Add(constraints_[i]->ssa_temp_index());
}
// Infer initial values of ranges.
const GrowableArray<Definition*>& initial =
*flow_graph_->graph_entry()->initial_definitions();
for (intptr_t i = 0; i < initial.length(); ++i) {
Definition* definition = initial[i];
if (definitions_->Contains(definition->ssa_temp_index())) {
definition->InferRange();
}
}
InferRangesRecursive(flow_graph_->graph_entry());
if (FLAG_trace_range_analysis) {
OS::Print("---- after range analysis -------\n");
FlowGraphPrinter printer(*flow_graph_);
printer.PrintBlocks();
}
}
void RangeAnalysis::RemoveConstraints() {
for (intptr_t i = 0; i < constraints_.length(); i++) {
Definition* def = constraints_[i]->value()->definition();
// Some constraints might be constraining constraints. Unwind the chain of
// constraints until we reach the actual definition.
while (def->IsConstraint()) {
def = def->AsConstraint()->value()->definition();
}
constraints_[i]->ReplaceUsesWith(def);
constraints_[i]->RemoveFromGraph();
}
}
IntegerInstructionSelector::IntegerInstructionSelector(FlowGraph* flow_graph)
: flow_graph_(flow_graph),
isolate_(NULL) {
ASSERT(flow_graph_ != NULL);
isolate_ = flow_graph_->isolate();
ASSERT(isolate_ != NULL);
selected_uint32_defs_ =
new(I) BitVector(flow_graph_->current_ssa_temp_index());
}
void IntegerInstructionSelector::Select() {
if (FLAG_trace_integer_ir_selection) {
OS::Print("---- starting integer ir selection -------\n");
}
FindPotentialUint32Definitions();
FindUint32NarrowingDefinitions();
Propagate();
ReplaceInstructions();
if (FLAG_trace_integer_ir_selection) {
OS::Print("---- after integer ir selection -------\n");
FlowGraphPrinter printer(*flow_graph_);
printer.PrintBlocks();
}
}
bool IntegerInstructionSelector::IsPotentialUint32Definition(Definition* def) {
// TODO(johnmccutchan): Consider Smi operations, to avoid unnecessary tagging
// & untagged of intermediate results.
// TODO(johnmccutchan): Consider phis.
return def->IsBoxInteger() || // BoxMint.
def->IsUnboxInteger() || // UnboxMint.
def->IsBinaryMintOp() ||
def->IsShiftMintOp() ||
def->IsUnaryMintOp();
}
void IntegerInstructionSelector::FindPotentialUint32Definitions() {
if (FLAG_trace_integer_ir_selection) {
OS::Print("++++ Finding potential Uint32 definitions:\n");
}
for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator();
!block_it.Done();
block_it.Advance()) {
BlockEntryInstr* block = block_it.Current();
for (ForwardInstructionIterator instr_it(block);
!instr_it.Done();
instr_it.Advance()) {
Instruction* current = instr_it.Current();
Definition* defn = current->AsDefinition();
if ((defn != NULL) && (defn->ssa_temp_index() != -1)) {
if (IsPotentialUint32Definition(defn)) {
if (FLAG_trace_integer_ir_selection) {
OS::Print("Adding %s\n", current->ToCString());
}
potential_uint32_defs_.Add(defn);
}
}
}
}
}
// BinaryMintOp masks and stores into unsigned typed arrays that truncate the
// value into a Uint32 range.
bool IntegerInstructionSelector::IsUint32NarrowingDefinition(Definition* def) {
if (def->IsBinaryMintOp()) {
BinaryMintOpInstr* op = def->AsBinaryMintOp();
// Must be a mask operation.
if (op->op_kind() != Token::kBIT_AND) {
return false;
}
Range* range = op->range();
if ((range == NULL) ||
!range->IsWithin(0, static_cast<int64_t>(kMaxUint32))) {
return false;
}
return true;
}
// TODO(johnmccutchan): Add typed array stores.
return false;
}
void IntegerInstructionSelector::FindUint32NarrowingDefinitions() {
ASSERT(selected_uint32_defs_ != NULL);
if (FLAG_trace_integer_ir_selection) {
OS::Print("++++ Selecting Uint32 definitions:\n");
OS::Print("++++ Initial set:\n");
}
for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) {
Definition* defn = potential_uint32_defs_[i];
if (IsUint32NarrowingDefinition(defn)) {
if (FLAG_trace_integer_ir_selection) {
OS::Print("Adding %s\n", defn->ToCString());
}
selected_uint32_defs_->Add(defn->ssa_temp_index());
}
}
}
bool IntegerInstructionSelector::AllUsesAreUint32Narrowing(Value* list_head) {
for (Value::Iterator it(list_head);
!it.Done();
it.Advance()) {
Value* use = it.Current();
Definition* defn = use->instruction()->AsDefinition();
if ((defn == NULL) ||
(defn->ssa_temp_index() == -1) ||
!selected_uint32_defs_->Contains(defn->ssa_temp_index())) {
return false;
}
}
return true;
}
bool IntegerInstructionSelector::CanBecomeUint32(Definition* def) {
ASSERT(IsPotentialUint32Definition(def));
if (def->IsBoxInteger()) {
// If a BoxInteger's input is a candidate, the box is a candidate.
BoxIntegerInstr* box = def->AsBoxInteger();
Definition* box_input = box->value()->definition();
return selected_uint32_defs_->Contains(box_input->ssa_temp_index());
}
// A right shift with an input outside of Uint32 range cannot be converted
// because we need the high bits.
if (def->IsShiftMintOp()) {
ShiftMintOpInstr* op = def->AsShiftMintOp();
if (op->op_kind() == Token::kSHR) {
Definition* shift_input = op->left()->definition();
ASSERT(shift_input != NULL);
Range* range = shift_input->range();
if ((range == NULL) ||
!range->IsWithin(0, static_cast<int64_t>(kMaxUint32))) {
return false;
}
}
}
if (!def->HasUses()) {
// No uses, skip.
return false;
}
return AllUsesAreUint32Narrowing(def->input_use_list()) &&
AllUsesAreUint32Narrowing(def->env_use_list());
}
void IntegerInstructionSelector::Propagate() {
ASSERT(selected_uint32_defs_ != NULL);
bool changed = true;
intptr_t iteration = 0;
while (changed) {
if (FLAG_trace_integer_ir_selection) {
OS::Print("+++ Iteration: %" Pd "\n", iteration++);
}
changed = false;
for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) {
Definition* defn = potential_uint32_defs_[i];
if (selected_uint32_defs_->Contains(defn->ssa_temp_index())) {
// Already marked as a candidate, skip.
continue;
}
if (defn->IsConstant()) {
// Skip constants.
continue;
}
if (CanBecomeUint32(defn)) {
if (FLAG_trace_integer_ir_selection) {
OS::Print("Adding %s\n", defn->ToCString());
}
// Found a new candidate.
selected_uint32_defs_->Add(defn->ssa_temp_index());
// Haven't reached fixed point yet.
changed = true;
}
}
}
if (FLAG_trace_integer_ir_selection) {
OS::Print("Reached fixed point\n");
}
}
Definition* IntegerInstructionSelector::ConstructReplacementFor(
Definition* def) {
// Should only see mint definitions.
ASSERT(IsPotentialUint32Definition(def));
// Should not see constant instructions.
ASSERT(!def->IsConstant());
if (def->IsBinaryMintOp()) {
BinaryMintOpInstr* op = def->AsBinaryMintOp();
Token::Kind op_kind = op->op_kind();
Value* left = op->left()->CopyWithType();
Value* right = op->right()->CopyWithType();
intptr_t deopt_id = op->DeoptimizationTarget();
return new(I) BinaryUint32OpInstr(op_kind, left, right, deopt_id);
} else if (def->IsBoxInteger()) {
BoxIntegerInstr* box = def->AsBoxInteger();
Value* value = box->value()->CopyWithType();
return new(I) BoxUint32Instr(value);
} else if (def->IsUnboxInteger()) {
UnboxIntegerInstr* unbox = def->AsUnboxInteger();
Value* value = unbox->value()->CopyWithType();
intptr_t deopt_id = unbox->deopt_id();
return new(I) UnboxUint32Instr(value, deopt_id);
} else if (def->IsUnaryMintOp()) {
UnaryMintOpInstr* op = def->AsUnaryMintOp();
Token::Kind op_kind = op->op_kind();
Value* value = op->value()->CopyWithType();
intptr_t deopt_id = op->DeoptimizationTarget();
return new(I) UnaryUint32OpInstr(op_kind, value, deopt_id);
} else if (def->IsShiftMintOp()) {
ShiftMintOpInstr* op = def->AsShiftMintOp();
Token::Kind op_kind = op->op_kind();
Value* left = op->left()->CopyWithType();
Value* right = op->right()->CopyWithType();
intptr_t deopt_id = op->DeoptimizationTarget();
return new(I) ShiftUint32OpInstr(op_kind, left, right, deopt_id);
}
UNREACHABLE();
return NULL;
}
void IntegerInstructionSelector::ReplaceInstructions() {
if (FLAG_trace_integer_ir_selection) {
OS::Print("++++ Replacing instructions:\n");
}
for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) {
Definition* defn = potential_uint32_defs_[i];
if (!selected_uint32_defs_->Contains(defn->ssa_temp_index())) {
// Not a candidate.
continue;
}
Definition* replacement = ConstructReplacementFor(defn);
ASSERT(replacement != NULL);
if (FLAG_trace_integer_ir_selection) {
OS::Print("Replacing %s with %s\n", defn->ToCString(),
replacement->ToCString());
}
defn->ReplaceWith(replacement, NULL);
ASSERT(flow_graph_->VerifyUseLists());
}
}
RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) {
if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) {
return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs);
}
return RangeBoundary(kSymbol, reinterpret_cast<intptr_t>(defn), offs);
}
RangeBoundary RangeBoundary::LowerBound() const {
if (IsInfinity()) {
return NegativeInfinity();
}
if (IsConstant()) return *this;
return Add(Range::ConstantMin(symbol()->range()),
RangeBoundary::FromConstant(offset_),
NegativeInfinity());
}
RangeBoundary RangeBoundary::UpperBound() const {
if (IsInfinity()) {
return PositiveInfinity();
}
if (IsConstant()) return *this;
return Add(Range::ConstantMax(symbol()->range()),
RangeBoundary::FromConstant(offset_),
PositiveInfinity());
}
RangeBoundary RangeBoundary::Add(const RangeBoundary& a,
const RangeBoundary& b,
const RangeBoundary& overflow) {
if (a.IsInfinity() || b.IsInfinity()) return overflow;
ASSERT(a.IsConstant() && b.IsConstant());
if (Utils::WillAddOverflow(a.ConstantValue(), b.ConstantValue())) {
return overflow;
}
int64_t result = a.ConstantValue() + b.ConstantValue();
return RangeBoundary::FromConstant(result);
}
RangeBoundary RangeBoundary::Sub(const RangeBoundary& a,
const RangeBoundary& b,
const RangeBoundary& overflow) {
if (a.IsInfinity() || b.IsInfinity()) return overflow;
ASSERT(a.IsConstant() && b.IsConstant());
if (Utils::WillSubOverflow(a.ConstantValue(), b.ConstantValue())) {
return overflow;
}
int64_t result = a.ConstantValue() - b.ConstantValue();
return RangeBoundary::FromConstant(result);
}
bool RangeBoundary::SymbolicAdd(const RangeBoundary& a,
const RangeBoundary& b,
RangeBoundary* result) {
if (a.IsSymbol() && b.IsConstant()) {
if (Utils::WillAddOverflow(a.offset(), b.ConstantValue())) {
return false;
}
const int64_t offset = a.offset() + b.ConstantValue();
*result = RangeBoundary::FromDefinition(a.symbol(), offset);
return true;
} else if (b.IsSymbol() && a.IsConstant()) {
return SymbolicAdd(b, a, result);
}
return false;
}
bool RangeBoundary::SymbolicSub(const RangeBoundary& a,
const RangeBoundary& b,
RangeBoundary* result) {
if (a.IsSymbol() && b.IsConstant()) {
if (Utils::WillSubOverflow(a.offset(), b.ConstantValue())) {
return false;
}
const int64_t offset = a.offset() - b.ConstantValue();
*result = RangeBoundary::FromDefinition(a.symbol(), offset);
return true;
}
return false;
}
static Definition* UnwrapConstraint(Definition* defn) {
while (defn->IsConstraint()) {
defn = defn->AsConstraint()->value()->definition();
}
return defn;
}
static bool AreEqualDefinitions(Definition* a, Definition* b) {
a = UnwrapConstraint(a);
b = UnwrapConstraint(b);
return (a == b) ||
(a->AllowsCSE() &&
a->Dependencies().IsNone() &&
b->AllowsCSE() &&
b->Dependencies().IsNone() &&
a->Equals(b));
}
// Returns true if two range boundaries refer to the same symbol.
static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) {
return a.IsSymbol() && b.IsSymbol() &&
AreEqualDefinitions(a.symbol(), b.symbol());
}
bool RangeBoundary::Equals(const RangeBoundary& other) const {
if (IsConstant() && other.IsConstant()) {
return ConstantValue() == other.ConstantValue();
} else if (IsInfinity() && other.IsInfinity()) {
return kind() == other.kind();
} else if (IsSymbol() && other.IsSymbol()) {
return (offset() == other.offset()) && DependOnSameSymbol(*this, other);
} else if (IsUnknown() && other.IsUnknown()) {
return true;
}
return false;
}
RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary,
int64_t shift_count,
const RangeBoundary& overflow) {
ASSERT(value_boundary.IsConstant());
ASSERT(shift_count >= 0);
int64_t limit = 64 - shift_count;
int64_t value = value_boundary.ConstantValue();
if ((value == 0) ||
(shift_count == 0) ||
((limit > 0) && Utils::IsInt(static_cast<int>(limit), value))) {
// Result stays in 64 bit range.
int64_t result = value << shift_count;
return RangeBoundary(result);
}
return overflow;
}
static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a,
const RangeBoundary& overflow) {
if (a.IsConstant() || a.IsInfinity()) {
return a;
}
int64_t offset = a.offset();
Definition* symbol = a.symbol();
bool changed;
do {
changed = false;
if (symbol->IsConstraint()) {
symbol = symbol->AsConstraint()->value()->definition();
changed = true;
} else if (symbol->IsBinarySmiOp()) {
BinarySmiOpInstr* op = symbol->AsBinarySmiOp();
Definition* left = op->left()->definition();
Definition* right = op->right()->definition();
switch (op->op_kind()) {
case Token::kADD:
if (right->IsConstant()) {
int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value();
if (Utils::WillAddOverflow(offset, rhs)) {
return overflow;
}
offset += rhs;
symbol = left;
changed = true;
} else if (left->IsConstant()) {
int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value();
if (Utils::WillAddOverflow(offset, rhs)) {
return overflow;
}
offset += rhs;
symbol = right;
changed = true;
}
break;
case Token::kSUB:
if (right->IsConstant()) {
int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value();
if (Utils::WillSubOverflow(offset, rhs)) {
return overflow;
}
offset -= rhs;
symbol = left;
changed = true;
}
break;
default:
break;
}
}
} while (changed);
return RangeBoundary::FromDefinition(symbol, offset);
}
static bool CanonicalizeMaxBoundary(RangeBoundary* a) {
if (!a->IsSymbol()) return false;
Range* range = a->symbol()->range();
if ((range == NULL) || !range->max().IsSymbol()) return false;
if (Utils::WillAddOverflow(range->max().offset(), a->offset())) {
*a = RangeBoundary::PositiveInfinity();
return true;
}
const int64_t offset = range->max().offset() + a->offset();
*a = CanonicalizeBoundary(
RangeBoundary::FromDefinition(range->max().symbol(), offset),
RangeBoundary::PositiveInfinity());
return true;
}
static bool CanonicalizeMinBoundary(RangeBoundary* a) {
if (!a->IsSymbol()) return false;
Range* range = a->symbol()->range();
if ((range == NULL) || !range->min().IsSymbol()) return false;
if (Utils::WillAddOverflow(range->min().offset(), a->offset())) {
*a = RangeBoundary::NegativeInfinity();
return true;
}
const int64_t offset = range->min().offset() + a->offset();
*a = CanonicalizeBoundary(
RangeBoundary::FromDefinition(range->min().symbol(), offset),
RangeBoundary::NegativeInfinity());
return true;
}
RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b,
RangeSize size) {
ASSERT(!(a.IsNegativeInfinity() || b.IsNegativeInfinity()));
ASSERT(!a.IsUnknown() || !b.IsUnknown());
if (a.IsUnknown() && !b.IsUnknown()) {
return b;
}
if (!a.IsUnknown() && b.IsUnknown()) {
return a;
}
if (size == kRangeBoundarySmi) {
if (a.IsSmiMaximumOrAbove() && !b.IsSmiMaximumOrAbove()) {
return b;
}
if (!a.IsSmiMaximumOrAbove() && b.IsSmiMaximumOrAbove()) {
return a;
}
} else {
ASSERT(size == kRangeBoundaryInt64);
if (a.IsMaximumOrAbove() && !b.IsMaximumOrAbove()) {
return b;
}
if (!a.IsMaximumOrAbove() && b.IsMaximumOrAbove()) {
return a;
}
}
if (a.Equals(b)) {
return b;
}
{
RangeBoundary canonical_a =
CanonicalizeBoundary(a, RangeBoundary::PositiveInfinity());
RangeBoundary canonical_b =
CanonicalizeBoundary(b, RangeBoundary::PositiveInfinity());
do {
if (DependOnSameSymbol(canonical_a, canonical_b)) {
a = canonical_a;
b = canonical_b;
break;
}
} while (CanonicalizeMaxBoundary(&canonical_a) ||
CanonicalizeMaxBoundary(&canonical_b));
}
if (DependOnSameSymbol(a, b)) {
return (a.offset() <= b.offset()) ? a : b;
}
const int64_t min_a = a.UpperBound().Clamp(size).ConstantValue();
const int64_t min_b = b.UpperBound().Clamp(size).ConstantValue();
return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b));
}
RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b,
RangeSize size) {
ASSERT(!(a.IsPositiveInfinity() || b.IsPositiveInfinity()));
ASSERT(!a.IsUnknown() || !b.IsUnknown());
if (a.IsUnknown() && !b.IsUnknown()) {
return b;
}
if (!a.IsUnknown() && b.IsUnknown()) {
return a;
}
if (size == kRangeBoundarySmi) {
if (a.IsSmiMinimumOrBelow() && !b.IsSmiMinimumOrBelow()) {
return b;
}
if (!a.IsSmiMinimumOrBelow() && b.IsSmiMinimumOrBelow()) {
return a;
}
} else {
ASSERT(size == kRangeBoundaryInt64);
if (a.IsMinimumOrBelow() && !b.IsMinimumOrBelow()) {
return b;
}
if (!a.IsMinimumOrBelow() && b.IsMinimumOrBelow()) {
return a;
}
}
if (a.Equals(b)) {
return b;
}
{
RangeBoundary canonical_a =
CanonicalizeBoundary(a, RangeBoundary::NegativeInfinity());
RangeBoundary canonical_b =
CanonicalizeBoundary(b, RangeBoundary::NegativeInfinity());
do {
if (DependOnSameSymbol(canonical_a, canonical_b)) {
a = canonical_a;
b = canonical_b;
break;
}
} while (CanonicalizeMinBoundary(&canonical_a) ||
CanonicalizeMinBoundary(&canonical_b));
}
if (DependOnSameSymbol(a, b)) {
return (a.offset() <= b.offset()) ? b : a;
}
const int64_t max_a = a.LowerBound().Clamp(size).ConstantValue();
const int64_t max_b = b.LowerBound().Clamp(size).ConstantValue();
return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b));
}
int64_t RangeBoundary::ConstantValue() const {
ASSERT(IsConstant());
return value_;
}
bool Range::IsPositive() const {
if (min().IsNegativeInfinity()) {
return false;
}
if (min().LowerBound().ConstantValue() < 0) {
return false;
}
if (max().IsPositiveInfinity()) {
return true;
}
return max().UpperBound().ConstantValue() >= 0;
}
bool Range::OnlyLessThanOrEqualTo(int64_t val) const {
if (max().IsPositiveInfinity()) {
// Cannot be true.
return false;
}
if (max().UpperBound().ConstantValue() > val) {
// Not true.
return false;
}
return true;
}
bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const {
if (min().IsNegativeInfinity()) {
return false;
}
if (min().LowerBound().ConstantValue() < val) {
return false;
}
return true;
}
// Inclusive.
bool Range::IsWithin(int64_t min_int, int64_t max_int) const {
RangeBoundary lower_min = min().LowerBound();
if (lower_min.IsNegativeInfinity() || (lower_min.ConstantValue() < min_int)) {
return false;
}
RangeBoundary upper_max = max().UpperBound();
if (upper_max.IsPositiveInfinity() || (upper_max.ConstantValue() > max_int)) {
return false;
}
return true;
}
bool Range::Overlaps(int64_t min_int, int64_t max_int) const {
RangeBoundary lower = min().LowerBound();
RangeBoundary upper = max().UpperBound();
const int64_t this_min = lower.IsNegativeInfinity() ?
RangeBoundary::kMin : lower.ConstantValue();
const int64_t this_max = upper.IsPositiveInfinity() ?
RangeBoundary::kMax : upper.ConstantValue();
if ((this_min <= min_int) && (min_int <= this_max)) return true;
if ((this_min <= max_int) && (max_int <= this_max)) return true;
if ((min_int < this_min) && (max_int > this_max)) return true;
return false;
}
bool Range::IsUnsatisfiable() const {
// Infinity case: [+inf, ...] || [..., -inf]
if (min().IsPositiveInfinity() || max().IsNegativeInfinity()) {
return true;
}
// Constant case: For example [0, -1].
if (Range::ConstantMin(this).ConstantValue() >
Range::ConstantMax(this).ConstantValue()) {
return true;
}
// Symbol case: For example [v+1, v].
if (DependOnSameSymbol(min(), max()) && min().offset() > max().offset()) {
return true;
}
return false;
}
void Range::Clamp(RangeBoundary::RangeSize size) {
min_ = min_.Clamp(size);
max_ = max_.Clamp(size);
}
void Range::Shl(const Range* left,
const Range* right,
RangeBoundary* result_min,
RangeBoundary* result_max) {
ASSERT(left != NULL);
ASSERT(right != NULL);
ASSERT(result_min != NULL);
ASSERT(result_max != NULL);
RangeBoundary left_max = Range::ConstantMax(left);
RangeBoundary left_min = Range::ConstantMin(left);
// A negative shift count always deoptimizes (and throws), so the minimum
// shift count is zero.
int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(),
static_cast<int64_t>(0));
int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(),
static_cast<int64_t>(0));
*result_min = RangeBoundary::Shl(
left_min,
left_min.ConstantValue() > 0 ? right_min : right_max,
left_min.ConstantValue() > 0
? RangeBoundary::PositiveInfinity()
: RangeBoundary::NegativeInfinity());
*result_max = RangeBoundary::Shl(
left_max,
left_max.ConstantValue() > 0 ? right_max : right_min,
left_max.ConstantValue() > 0
? RangeBoundary::PositiveInfinity()
: RangeBoundary::NegativeInfinity());
}
void Range::Shr(const Range* left,
const Range* right,
RangeBoundary* result_min,
RangeBoundary* result_max) {
RangeBoundary left_max = Range::ConstantMax(left);
RangeBoundary left_min = Range::ConstantMin(left);
// A negative shift count always deoptimizes (and throws), so the minimum
// shift count is zero.
int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(),
static_cast<int64_t>(0));
int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(),
static_cast<int64_t>(0));
*result_min = RangeBoundary::Shr(
left_min,
left_min.ConstantValue() > 0 ? right_max : right_min);
*result_max = RangeBoundary::Shr(
left_max,
left_max.ConstantValue() > 0 ? right_min : right_max);
}
bool Range::And(const Range* left_range,
const Range* right_range,
RangeBoundary* result_min,
RangeBoundary* result_max) {
ASSERT(left_range != NULL);
ASSERT(right_range != NULL);
ASSERT(result_min != NULL);
ASSERT(result_max != NULL);
if (Range::ConstantMin(right_range).ConstantValue() >= 0) {
*result_min = RangeBoundary::FromConstant(0);
*result_max = Range::ConstantMax(right_range);
return true;
}
if (Range::ConstantMin(left_range).ConstantValue() >= 0) {
*result_min = RangeBoundary::FromConstant(0);
*result_max = Range::ConstantMax(left_range);
return true;
}
return false;
}
static bool IsArrayLength(Definition* defn) {
if (defn == NULL) {
return false;
}
LoadFieldInstr* load = defn->AsLoadField();
return (load != NULL) && load->IsImmutableLengthLoad();
}
void Range::Add(const Range* left_range,
const Range* right_range,
RangeBoundary* result_min,
RangeBoundary* result_max,
Definition* left_defn) {
ASSERT(left_range != NULL);
ASSERT(right_range != NULL);
ASSERT(result_min != NULL);
ASSERT(result_max != NULL);
RangeBoundary left_min =
IsArrayLength(left_defn) ?
RangeBoundary::FromDefinition(left_defn) : left_range->min();
RangeBoundary left_max =
IsArrayLength(left_defn) ?
RangeBoundary::FromDefinition(left_defn) : left_range->max();
if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), result_min)) {
*result_min = RangeBoundary::Add(left_range->min().LowerBound(),
right_range->min().LowerBound(),
RangeBoundary::NegativeInfinity());
}
if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), result_max)) {
*result_max = RangeBoundary::Add(right_range->max().UpperBound(),
left_range->max().UpperBound(),
RangeBoundary::PositiveInfinity());
}
}
void Range::Sub(const Range* left_range,
const Range* right_range,
RangeBoundary* result_min,
RangeBoundary* result_max,
Definition* left_defn) {
ASSERT(left_range != NULL);
ASSERT(right_range != NULL);
ASSERT(result_min != NULL);
ASSERT(result_max != NULL);
RangeBoundary left_min =
IsArrayLength(left_defn) ?
RangeBoundary::FromDefinition(left_defn) : left_range->min();
RangeBoundary left_max =
IsArrayLength(left_defn) ?
RangeBoundary::FromDefinition(left_defn) : left_range->max();
if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), result_min)) {
*result_min = RangeBoundary::Sub(left_range->min().LowerBound(),
right_range->max().UpperBound(),
RangeBoundary::NegativeInfinity());
}
if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), result_max)) {
*result_max = RangeBoundary::Sub(left_range->max().UpperBound(),
right_range->min().LowerBound(),
RangeBoundary::PositiveInfinity());
}
}
bool Range::Mul(const Range* left_range,
const Range* right_range,
RangeBoundary* result_min,
RangeBoundary* result_max) {
ASSERT(left_range != NULL);
ASSERT(right_range != NULL);
ASSERT(result_min != NULL);
ASSERT(result_max != NULL);
const int64_t left_max = ConstantAbsMax(left_range);
const int64_t right_max = ConstantAbsMax(right_range);
if ((left_max <= -kSmiMin) && (right_max <= -kSmiMin) &&
((left_max == 0) || (right_max <= kMaxInt64 / left_max))) {
// Product of left and right max values stays in 64 bit range.
const int64_t mul_max = left_max * right_max;
if (Smi::IsValid(mul_max) && Smi::IsValid(-mul_max)) {
const int64_t r_min =
OnlyPositiveOrZero(*left_range, *right_range) ? 0 : -mul_max;
*result_min = RangeBoundary::FromConstant(r_min);
const int64_t r_max =
OnlyNegativeOrZero(*left_range, *right_range) ? 0 : mul_max;
*result_max = RangeBoundary::FromConstant(r_max);
return true;
}
}
return false;
}
// Both the a and b ranges are >= 0.
bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) {
return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0);
}
// Both the a and b ranges are <= 0.
bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) {
return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0);
}
// Return the maximum absolute value included in range.
int64_t Range::ConstantAbsMax(const Range* range) {
if (range == NULL) {
return RangeBoundary::kMax;
}
const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).ConstantValue());
const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).ConstantValue());
return Utils::Maximum(abs_min, abs_max);
}
Range* Range::BinaryOp(const Token::Kind op,
const Range* left_range,
const Range* right_range,
Definition* left_defn) {
ASSERT(left_range != NULL);
ASSERT(right_range != NULL);
// Both left and right ranges are finite.
ASSERT(left_range->IsFinite());
ASSERT(right_range->IsFinite());
RangeBoundary min;
RangeBoundary max;
ASSERT(min.IsUnknown() && max.IsUnknown());
switch (op) {
case Token::kADD:
Range::Add(left_range, right_range, &min, &max, left_defn);
break;
case Token::kSUB:
Range::Sub(left_range, right_range, &min, &max, left_defn);
break;
case Token::kMUL: {
if (!Range::Mul(left_range, right_range, &min, &max)) {
return NULL;
}
break;
}
case Token::kSHL: {
Range::Shl(left_range, right_range, &min, &max);
break;
}
case Token::kSHR: {
Range::Shr(left_range, right_range, &min, &max);
break;
}
case Token::kBIT_AND:
if (!Range::And(left_range, right_range, &min, &max)) {
return NULL;
}
break;
default:
return NULL;
break;
}
ASSERT(!min.IsUnknown() && !max.IsUnknown());
return new Range(min, max);
}
void Definition::InferRange() {
if (Type()->ToCid() == kSmiCid) {
if (range_ == NULL) {
range_ = Range::UnknownSmi();
}
} else if (IsMintDefinition()) {
if (range_ == NULL) {
range_ = Range::Unknown();
}
} else {
// Only Smi and Mint supported.
UNREACHABLE();
}
}
void PhiInstr::InferRange() {
RangeBoundary new_min;
RangeBoundary new_max;
ASSERT(Type()->ToCid() == kSmiCid);
for (intptr_t i = 0; i < InputCount(); i++) {
Range* input_range = InputAt(i)->definition()->range();
if (input_range == NULL) {
range_ = Range::UnknownSmi();
return;
}
if (new_min.IsUnknown()) {
new_min = Range::ConstantMin(input_range);
} else {
new_min = RangeBoundary::Min(new_min,
Range::ConstantMinSmi(input_range),
RangeBoundary::kRangeBoundarySmi);
}
if (new_max.IsUnknown()) {
new_max = Range::ConstantMax(input_range);
} else {
new_max = RangeBoundary::Max(new_max,
Range::ConstantMaxSmi(input_range),
RangeBoundary::kRangeBoundarySmi);
}
}
ASSERT(new_min.IsUnknown() == new_max.IsUnknown());
if (new_min.IsUnknown()) {
range_ = Range::UnknownSmi();
return;
}
range_ = new Range(new_min, new_max);
}
void ConstantInstr::InferRange() {
if (value_.IsSmi()) {
if (range_ == NULL) {
int64_t value = Smi::Cast(value_).Value();
range_ = new Range(RangeBoundary::FromConstant(value),
RangeBoundary::FromConstant(value));
}
} else if (value_.IsMint()) {
if (range_ == NULL) {
int64_t value = Mint::Cast(value_).value();
range_ = new Range(RangeBoundary::FromConstant(value),
RangeBoundary::FromConstant(value));
}
} else {
// Only Smi and Mint supported.
UNREACHABLE();
}
}
void UnboxIntegerInstr::InferRange() {
if (range_ == NULL) {
Definition* unboxed = value()->definition();
ASSERT(unboxed != NULL);
Range* range = unboxed->range();
if (range == NULL) {
range_ = Range::Unknown();
return;
}
range_ = new Range(range->min(), range->max());
}
}
void ConstraintInstr::InferRange() {
Range* value_range = value()->definition()->range();
// Only constraining smi values.
ASSERT(value()->IsSmiValue());
RangeBoundary min;
RangeBoundary max;
{
RangeBoundary value_min = (value_range == NULL) ?
RangeBoundary() : value_range->min();
RangeBoundary constraint_min = constraint()->min();
min = RangeBoundary::Max(value_min, constraint_min,
RangeBoundary::kRangeBoundarySmi);
}
ASSERT(!min.IsUnknown());
{
RangeBoundary value_max = (value_range == NULL) ?
RangeBoundary() : value_range->max();
RangeBoundary constraint_max = constraint()->max();
max = RangeBoundary::Min(value_max, constraint_max,
RangeBoundary::kRangeBoundarySmi);
}
ASSERT(!max.IsUnknown());
range_ = new Range(min, max);
// Mark branches that generate unsatisfiable constraints as constant.
if (target() != NULL && range_->IsUnsatisfiable()) {
BranchInstr* branch =
target()->PredecessorAt(0)->last_instruction()->AsBranch();
if (target() == branch->true_successor()) {
// True unreachable.
if (FLAG_trace_constant_propagation) {
OS::Print("Range analysis: True unreachable (B%" Pd ")\n",
branch->true_successor()->block_id());
}
branch->set_constant_target(branch->false_successor());
} else {
ASSERT(target() == branch->false_successor());
// False unreachable.
if (FLAG_trace_constant_propagation) {
OS::Print("Range analysis: False unreachable (B%" Pd ")\n",
branch->false_successor()->block_id());
}
branch->set_constant_target(branch->true_successor());
}
}
}
void LoadFieldInstr::InferRange() {
if ((range_ == NULL) &&
((recognized_kind() == MethodRecognizer::kObjectArrayLength) ||
(recognized_kind() == MethodRecognizer::kImmutableArrayLength))) {
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(Array::kMaxElements));
return;
}
if ((range_ == NULL) &&
(recognized_kind() == MethodRecognizer::kTypedDataLength)) {
range_ = new Range(RangeBoundary::FromConstant(0), RangeBoundary::MaxSmi());
return;
}
if ((range_ == NULL) &&
(recognized_kind() == MethodRecognizer::kStringBaseLength)) {
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(String::kMaxElements));
return;
}
Definition::InferRange();
}
void LoadIndexedInstr::InferRange() {
switch (class_id()) {
case kTypedDataInt8ArrayCid:
range_ = new Range(RangeBoundary::FromConstant(-128),
RangeBoundary::FromConstant(127));
break;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(255));
break;
case kTypedDataInt16ArrayCid:
range_ = new Range(RangeBoundary::FromConstant(-32768),
RangeBoundary::FromConstant(32767));
break;
case kTypedDataUint16ArrayCid:
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(65535));
break;
case kTypedDataInt32ArrayCid:
if (Typed32BitIsSmi()) {
range_ = Range::UnknownSmi();
} else {
range_ = new Range(RangeBoundary::FromConstant(kMinInt32),
RangeBoundary::FromConstant(kMaxInt32));
}
break;
case kTypedDataUint32ArrayCid:
if (Typed32BitIsSmi()) {
range_ = Range::UnknownSmi();
} else {
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(kMaxUint32));
}
break;
case kOneByteStringCid:
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(0xFF));
break;
case kTwoByteStringCid:
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(0xFFFF));
break;
default:
Definition::InferRange();
break;
}
}
void IfThenElseInstr::InferRange() {
const intptr_t min = Utils::Minimum(if_true_, if_false_);
const intptr_t max = Utils::Maximum(if_true_, if_false_);
range_ = new Range(RangeBoundary::FromConstant(min),
RangeBoundary::FromConstant(max));
}
void BinarySmiOpInstr::InferRange() {
// TODO(vegorov): canonicalize BinarySmiOp to always have constant on the
// right and a non-constant on the left.
Definition* left_defn = left()->definition();
Range* left_range = left_defn->range();
Range* right_range = right()->definition()->range();
if ((left_range == NULL) || (right_range == NULL)) {
range_ = Range::UnknownSmi();
return;
}
Range* possible_range = Range::BinaryOp(op_kind(),
left_range,
right_range,
left_defn);
if ((range_ == NULL) && (possible_range == NULL)) {
// Initialize.
range_ = Range::UnknownSmi();
return;
}
if (possible_range == NULL) {
// Nothing new.
return;
}
range_ = possible_range;
ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown());
// Calculate overflowed status before clamping.
const bool overflowed = range_->min().LowerBound().OverflowedSmi() ||
range_->max().UpperBound().OverflowedSmi();
set_overflow(overflowed);
// Clamp value to be within smi range.
range_->Clamp(RangeBoundary::kRangeBoundarySmi);
}
void BinaryMintOpInstr::InferRange() {
// TODO(vegorov): canonicalize BinaryMintOpInstr to always have constant on
// the right and a non-constant on the left.
Definition* left_defn = left()->definition();
Range* left_range = left_defn->range();
Range* right_range = right()->definition()->range();
if ((left_range == NULL) || (right_range == NULL)) {
range_ = Range::Unknown();
return;
}
Range* possible_range = Range::BinaryOp(op_kind(),
left_range,
right_range,
left_defn);
if ((range_ == NULL) && (possible_range == NULL)) {
// Initialize.
range_ = Range::Unknown();
return;
}
if (possible_range == NULL) {
// Nothing new.
return;
}
range_ = possible_range;
ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown());
// Calculate overflowed status before clamping.
const bool overflowed = range_->min().LowerBound().OverflowedMint() ||
range_->max().UpperBound().OverflowedMint();
set_can_overflow(overflowed);
// Clamp value to be within mint range.
range_->Clamp(RangeBoundary::kRangeBoundaryInt64);
}
void ShiftMintOpInstr::InferRange() {
Definition* left_defn = left()->definition();
Range* left_range = left_defn->range();
Range* right_range = right()->definition()->range();
if ((left_range == NULL) || (right_range == NULL)) {
range_ = Range::Unknown();
return;
}
Range* possible_range = Range::BinaryOp(op_kind(),
left_range,
right_range,
left_defn);
if ((range_ == NULL) && (possible_range == NULL)) {
// Initialize.
range_ = Range::Unknown();
return;
}
if (possible_range == NULL) {
// Nothing new.
return;
}
range_ = possible_range;
ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown());
// Calculate overflowed status before clamping.
const bool overflowed = range_->min().LowerBound().OverflowedMint() ||
range_->max().UpperBound().OverflowedMint();
set_can_overflow(overflowed);
// Clamp value to be within mint range.
range_->Clamp(RangeBoundary::kRangeBoundaryInt64);
}
void BoxIntegerInstr::InferRange() {
Range* input_range = value()->definition()->range();
if (input_range != NULL) {
bool is_smi = !input_range->min().LowerBound().OverflowedSmi() &&
!input_range->max().UpperBound().OverflowedSmi();
set_is_smi(is_smi);
// The output range is the same as the input range.
range_ = input_range;
}
}
bool CheckArrayBoundInstr::IsRedundant(const RangeBoundary& length) {
Range* index_range = index()->definition()->range();
// Range of the index is unknown can't decide if the check is redundant.
if (index_range == NULL) {
return false;
}
// Range of the index is not positive. Check can't be redundant.
if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) {
return false;
}
RangeBoundary max = CanonicalizeBoundary(index_range->max(),
RangeBoundary::PositiveInfinity());
if (max.OverflowedSmi()) {
return false;
}
RangeBoundary max_upper = max.UpperBound();
RangeBoundary length_lower = length.LowerBound();
if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) {
return false;
}
// Try to compare constant boundaries.
if (max_upper.ConstantValue() < length_lower.ConstantValue()) {
return true;
}
RangeBoundary canonical_length =
CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity());
if (canonical_length.OverflowedSmi()) {
return false;
}
// Try symbolic comparison.
do {
if (DependOnSameSymbol(max, canonical_length)) {
return max.offset() < canonical_length.offset();
}
} while (CanonicalizeMaxBoundary(&max) ||
CanonicalizeMinBoundary(&canonical_length));
// Failed to prove that maximum is bounded with array length.
return false;
}
} // namespace dart