| // Copyright (c) 2012, the Dart project authors.  Please see the AUTHORS file | 
 | // for details. All rights reserved. Use of this source code is governed by a | 
 | // BSD-style license that can be found in the LICENSE file. | 
 | // Classes that describe assembly patterns as used by inline caches. | 
 |  | 
 | #ifndef RUNTIME_VM_INSTRUCTIONS_X64_H_ | 
 | #define RUNTIME_VM_INSTRUCTIONS_X64_H_ | 
 |  | 
 | #ifndef RUNTIME_VM_INSTRUCTIONS_H_ | 
 | #error "Do not include instructions_x64.h directly; use instructions.h instead." | 
 | #endif | 
 |  | 
 | #include "platform/unaligned.h" | 
 | #include "vm/allocation.h" | 
 |  | 
 | namespace dart { | 
 |  | 
 | intptr_t IndexFromPPLoadDisp8(uword start); | 
 | intptr_t IndexFromPPLoadDisp32(uword start); | 
 |  | 
 | // Template class for all instruction pattern classes. | 
 | // P has to specify a static pattern and a pattern length method. | 
 | template <class P> | 
 | class InstructionPattern : public ValueObject { | 
 |  public: | 
 |   explicit InstructionPattern(uword pc) : start_(pc) { ASSERT(pc != 0); } | 
 |  | 
 |   // Call to check if the instruction pattern at 'pc' match the instruction. | 
 |   // 'P::pattern()' returns the expected byte pattern in form of an integer | 
 |   // array with length of 'P::pattern_length_in_bytes()'. A '-1' element means | 
 |   // 'any byte'. | 
 |   bool IsValid() const { | 
 |     return TestBytesWith(P::pattern(), P::pattern_length_in_bytes()); | 
 |   } | 
 |  | 
 |  protected: | 
 |   uword start() const { return start_; } | 
 |  | 
 |  private: | 
 |   // Returns true if the 'num_bytes' bytes at 'start_' correspond to | 
 |   // array of integers 'data'. 'data' elements are either a byte or -1, which | 
 |   // represents any byte. | 
 |   bool TestBytesWith(const int* data, int num_bytes) const { | 
 |     ASSERT(data != NULL); | 
 |     const uint8_t* byte_array = reinterpret_cast<const uint8_t*>(start_); | 
 |     for (int i = 0; i < num_bytes; i++) { | 
 |       // Skip comparison for data[i] < 0. | 
 |       if ((data[i] >= 0) && (byte_array[i] != (0xFF & data[i]))) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   const uword start_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(InstructionPattern); | 
 | }; | 
 |  | 
 | class ReturnPattern : public InstructionPattern<ReturnPattern> { | 
 |  public: | 
 |   explicit ReturnPattern(uword pc) : InstructionPattern(pc) {} | 
 |  | 
 |   static const int* pattern() { | 
 |     static const int kReturnPattern[kLengthInBytes] = {0xC3}; | 
 |     return kReturnPattern; | 
 |   } | 
 |  | 
 |   static int pattern_length_in_bytes() { return kLengthInBytes; } | 
 |  | 
 |  private: | 
 |   static const int kLengthInBytes = 1; | 
 | }; | 
 |  | 
 | // push rbp | 
 | // mov rbp, rsp | 
 | class ProloguePattern : public InstructionPattern<ProloguePattern> { | 
 |  public: | 
 |   explicit ProloguePattern(uword pc) : InstructionPattern(pc) {} | 
 |  | 
 |   static const int* pattern() { | 
 |     static const int kProloguePattern[kLengthInBytes] = {0x55, 0x48, 0x89, | 
 |                                                          0xe5}; | 
 |     return kProloguePattern; | 
 |   } | 
 |  | 
 |   static int pattern_length_in_bytes() { return kLengthInBytes; } | 
 |  | 
 |  private: | 
 |   static const int kLengthInBytes = 4; | 
 | }; | 
 |  | 
 | // mov rbp, rsp | 
 | class SetFramePointerPattern | 
 |     : public InstructionPattern<SetFramePointerPattern> { | 
 |  public: | 
 |   explicit SetFramePointerPattern(uword pc) : InstructionPattern(pc) {} | 
 |  | 
 |   static const int* pattern() { | 
 |     static const int kFramePointerPattern[kLengthInBytes] = {0x48, 0x89, 0xe5}; | 
 |     return kFramePointerPattern; | 
 |   } | 
 |  | 
 |   static int pattern_length_in_bytes() { return kLengthInBytes; } | 
 |  | 
 |  private: | 
 |   static const int kLengthInBytes = 3; | 
 | }; | 
 |  | 
 | // callq *[rip+offset] | 
 | class PcRelativeCallPattern : public InstructionPattern<PcRelativeCallPattern> { | 
 |  public: | 
 |   static constexpr intptr_t kLowerCallingRange = -(DART_UINT64_C(1) << 31); | 
 |   static constexpr intptr_t kUpperCallingRange = (DART_UINT64_C(1) << 31) - 1; | 
 |  | 
 |   explicit PcRelativeCallPattern(uword pc) : InstructionPattern(pc) {} | 
 |  | 
 |   int32_t distance() { | 
 |     return LoadUnaligned(reinterpret_cast<int32_t*>(start() + 1)) + | 
 |            kLengthInBytes; | 
 |   } | 
 |  | 
 |   void set_distance(int32_t distance) { | 
 |     // [distance] is relative to the start of the instruction, x64 considers the | 
 |     // offset relative to next PC. | 
 |     StoreUnaligned(reinterpret_cast<int32_t*>(start() + 1), | 
 |                    distance - kLengthInBytes); | 
 |   } | 
 |  | 
 |   static const int* pattern() { | 
 |     static const int kPattern[kLengthInBytes] = {0xe8, -1, -1, -1, -1}; | 
 |     return kPattern; | 
 |   } | 
 |  | 
 |   static int pattern_length_in_bytes() { return kLengthInBytes; } | 
 |  | 
 |   static const int kLengthInBytes = 5; | 
 | }; | 
 |  | 
 | // Instruction pattern for a tail call to a signed 32-bit PC-relative offset | 
 | // | 
 | // The AOT compiler can emit PC-relative calls. If the destination of such a | 
 | // call is not in range for the "bl.<cond> <offset>" instruction, the AOT | 
 | // compiler will emit a trampoline which is in range. That trampoline will | 
 | // then tail-call to the final destination (also via PC-relative offset, but it | 
 | // supports a full signed 32-bit offset). | 
 | // | 
 | // The pattern of the trampoline looks like: | 
 | // | 
 | //     jmp $rip + <offset> | 
 | // | 
 | // (Strictly speaking the pc-relative call distance on X64 is big enough, but | 
 | // for making AOT relocation code (i.e. relocation.cc) platform independent and | 
 | // allow testing of trampolines on X64 we have it nonetheless) | 
 | class PcRelativeTrampolineJumpPattern : public ValueObject { | 
 |  public: | 
 |   static const int kLengthInBytes = 5; | 
 |  | 
 |   explicit PcRelativeTrampolineJumpPattern(uword pattern_start) | 
 |       : pattern_start_(pattern_start) {} | 
 |  | 
 |   void Initialize() { | 
 |     uint8_t* pattern = reinterpret_cast<uint8_t*>(pattern_start_); | 
 |     pattern[0] = 0xe9; | 
 |   } | 
 |  | 
 |   int32_t distance() { | 
 |     return LoadUnaligned(reinterpret_cast<int32_t*>(pattern_start_ + 1)) + | 
 |            kLengthInBytes; | 
 |   } | 
 |  | 
 |   void set_distance(intptr_t distance) { | 
 |     // [distance] is relative to the start of the instruction, x64 considers the | 
 |     // offset relative to next PC. | 
 |     StoreUnaligned(reinterpret_cast<int32_t*>(pattern_start_ + 1), | 
 |                    static_cast<int32_t>(distance - kLengthInBytes)); | 
 |   } | 
 |  | 
 |   bool IsValid() const { | 
 |     uint8_t* pattern = reinterpret_cast<uint8_t*>(pattern_start_); | 
 |     return pattern[0] == 0xe9; | 
 |   } | 
 |  | 
 |  private: | 
 |   uword pattern_start_; | 
 | }; | 
 |  | 
 | class PcRelativeTailCallPattern : public PcRelativeTrampolineJumpPattern { | 
 |  public: | 
 |   static constexpr intptr_t kLowerCallingRange = -(DART_INT64_C(1) << 31) + kLengthInBytes; | 
 |   static constexpr intptr_t kUpperCallingRange = (DART_INT64_C(1) << 31) - 1; | 
 |  | 
 |   explicit PcRelativeTailCallPattern(uword pc) | 
 |       : PcRelativeTrampolineJumpPattern(pc) {} | 
 | }; | 
 |  | 
 | }  // namespace dart | 
 |  | 
 | #endif  // RUNTIME_VM_INSTRUCTIONS_X64_H_ |