blob: b35a5ad5008902fc37717d11a5b37e52cccd899b [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of dart.core;
/**
* All numbers in dart are instances of [num].
*
* It is a compile-time error for any type other than the types int and double
* to attempt to extend or implement num.
*/
abstract class num implements Comparable<num> {
/** Addition operator. */
num operator +(num other);
/** Subtraction operator. */
num operator -(num other);
/** Multiplication operator. */
num operator *(num other);
/**
* Euclidean modulo operator.
*
* Returns the remainder of the euclidean division. The euclidean division of
* two integers `a` and `b` yields two integers `q` and `r` such that
* `a == b*q + r` and `0 <= r < a.abs()`.
*
* The euclidean division is only defined for integers, but can be easily
* extended to work with doubles. In that case `r` may have a non-integer
* value, but it still verifies `0 <= r < |a|`.
*
* The sign of the returned value `r` is always positive.
*
* See [remainder] for the remainder of the truncating division.
*/
num operator %(num other);
/** Division operator. */
double operator /(num other);
/**
* Truncating division operator.
*
* If either operand is a [double] then the result of the truncating division
* [:a ~/ b:] is equivalent to [:(a / b).truncate().toInt():].
*
* If both operands are [int]s then [:a ~/ b:] performs the truncating
* integer division.
*/
int operator ~/(num other);
/** Negate operator. */
num operator -();
/**
* Returns the remainder of the truncating division of `this` by [other].
*
* The result `r` of this operation satisfies: `this == this ~/ other + r`.
* As a consequence the remainder `r` has the same sign as the dividend
* `this`.
*/
num remainder(num other);
/** Relational less than operator. */
bool operator <(num other);
/** Relational less than or equal operator. */
bool operator <=(num other);
/** Relational greater than operator. */
bool operator >(num other);
/** Relational greater than or equal operator. */
bool operator >=(num other);
bool get isNaN;
bool get isNegative;
bool get isInfinite;
/** Returns the absolute value of this [num]. */
num abs();
/**
* Returns the integer closest to `this`.
*
* Rounds away from zero when there is no closest integer:
* [:(3.5).round() == 4:] and [:(-3.5).round() == -4:].
*
* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
*/
int round();
/**
* Returns the greatest integer no greater than `this`.
*
* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
*/
int floor();
/**
* Returns the least integer no smaller than `this`.
*
* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
*/
int ceil();
/**
* Returns the integer obtained by discarding any fractional
* digits from `this`.
*
* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
*/
int truncate();
/**
* Returns the integer value closest to `this`.
*
* Rounds away from zero when there is no closest integer:
* [:(3.5).round() == 4:] and [:(-3.5).round() == -4:].
*
* The result is a double.
*/
double roundToDouble();
/**
* Returns the greatest integer value no greater than `this`.
*
* The result is a double.
*/
double floorToDouble();
/**
* Returns the least integer value no smaller than `this`.
*
* The result is a double.
*/
double ceilToDouble();
/**
* Returns the integer obtained by discarding any fractional
* digits from `this`.
*
* The result is a double.
*/
double truncateToDouble();
/**
* Clamps [this] to be in the range [lowerLimit]-[upperLimit]. The comparison
* is done using [compareTo] and therefore takes [:-0.0:] into account.
* It also implies that [double.NAN] is treated as the maximal double value.
*/
num clamp(num lowerLimit, num upperLimit);
/** Truncates this [num] to an integer and returns the result as an [int]. */
int toInt();
/**
* Return this [num] as a [double].
*
* If the number is not representable as a [double], an
* approximation is returned. For numerically large integers, the
* approximation may be infinite.
*/
double toDouble();
/**
* Returns a decimal-point string-representation of `this`.
*
* Converts `this` to a [double] before computing the string representation.
*
* If the absolute value of `this` is greater or equal to `10^21` then this
* methods returns an exponential representation computed by
* `this.toStringAsExponential()`. Otherwise the result
* is the closest string representation with exactly [fractionDigits] digits
* after the decimal point. If [fractionDigits] equals 0 then the decimal
* point is omitted.
*
* The parameter [fractionDigits] must be an integer satisfying:
* [:0 <= fractionDigits <= 20:].
*
* Examples:
*
* 1.toStringAsFixed(3); // 1.000
* (4321.12345678).toStringAsFixed(3); // 4321.123
* (4321.12345678).toStringAsFixed(5); // 4321.12346
* 123456789012345678901.toStringAsFixed(3); // 123456789012345683968.000
* 1000000000000000000000.toStringAsFixed(3); // 1e+21
* 5.25.toStringAsFixed(0); // 5
*/
String toStringAsFixed(int fractionDigits);
/**
* Returns an exponential string-representation of `this`.
*
* Converts `this` to a [double] before computing the string representation.
*
* If [fractionDigits] is given then it must be an integer satisfying:
* [:0 <= fractionDigits <= 20:]. In this case the string contains exactly
* [fractionDigits] after the decimal point. Otherwise, without the parameter,
* the returned string uses the shortest number of digits that accurately
* represent [this].
*
* If [fractionDigits] equals 0 then the decimal point is omitted.
* Examples:
*
* 1.toStringAsExponential(); // 1e+0
* 1.toStringAsExponential(3); // 1.000e+0
* 123456.toStringAsExponential(); // 1.23456e+5
* 123456.toStringAsExponential(3); // 1.235e+5
* 123.toStringAsExponential(0); // 1e+2
*/
String toStringAsExponential([int fractionDigits]);
/**
* Converts `this` to a double and returns a string representation with
* exactly [precision] significant digits.
*
* The parameter [precision] must be an integer satisfying:
* [:1 <= precision <= 21:].
*
* Examples:
*
* 1.toStringAsPrecision(2); // 1.0
* 1e15.toStringAsPrecision(3); // 1.00+15
* 1234567.toStringAsPrecision(3); // 1.23e+6
* 1234567.toStringAsPrecision(9); // 1234567.00
* 12345678901234567890.toStringAsPrecision(20); // 12345678901234567168
* 12345678901234567890.toStringAsPrecision(14); // 1.2345678901235e+19
* 0.00000012345.toPrecision(15); // 1.23450000000000e-7
* 0.0000012345.toPrecision(15); // 0.00000123450000000000
*/
String toStringAsPrecision(int precision);
/**
* Returns the shortest string that correctly represent the input number.
*
* All [double]s in the range `10^-6` (inclusive) to `10^21` (exclusive)
* are converted to their decimal representation with at least one digit
* after the decimal point. For all other doubles,
* except for special values like `NaN` or `Infinity`, this method returns an
* exponential representation (see [toStringAsExponential]).
*
* Returns `"NaN"` for [double.NAN], `"Infinity"` for [double.INFINITY], and
* `"-Infinity"` for [double.MINUS_INFINITY].
*
* An [int] is converted to a decimal representation with no decimal point.
*
* Examples:
*
* (0.000001).toString(); // "0.000001"
* (0.0000001).toString(); // "1e-7"
* (111111111111111111111.0).toString(); // "111111111111111110000.0"
* (100000000000000000000.0).toString(); // "100000000000000000000.0"
* (1000000000000000000000.0).toString(); // "1e+21"
* (1111111111111111111111.0).toString(); // "1.1111111111111111e+21"
* 1.toString(); // "1"
* 111111111111111111111.toString(); // "111111111111111110000"
* 100000000000000000000.toString(); // "100000000000000000000"
* 1000000000000000000000.toString(); // "1000000000000000000000"
* 1111111111111111111111.toString(); // "1111111111111111111111"
* 1.234e5.toString(); // 123400
* 1234.5e6.toString(); // 1234500000
* 12.345e67.toString(); // 1.2345e+68
*
* Note: the conversion may round the output if the returned string
* is accurate enough to uniquely identify the input-number.
* For example the most precise representation of the [double] `9e59` equals
* `"899999999999999918767229449717619953810131273674690656206848"`, but
* this method returns the shorter (but still uniquely identifying) `"9e59"`.
*
*/
String toString();
}