blob: e45caf203f5bc40eda60cf8e726136dd81e3e100 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/unicode.h"
#include "platform/allocation.h"
#include "platform/globals.h"
#include "platform/syslog.h"
namespace dart {
// clang-format off
const int8_t Utf8::kTrailBytes[256] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 0, 0
};
// clang-format on
const uint32_t Utf8::kMagicBits[7] = {0, // Padding.
0x00000000, 0x00003080, 0x000E2080,
0x03C82080, 0xFA082080, 0x82082080};
// Minimum values of code points used to check shortest form.
const uint32_t Utf8::kOverlongMinimum[7] = {0, // Padding.
0x0, 0x80, 0x800,
0x10000, 0xFFFFFFFF, 0xFFFFFFFF};
// Returns the most restricted coding form in which the sequence of utf8
// characters in 'utf8_array' can be represented in, and the number of
// code units needed in that form.
intptr_t Utf8::CodeUnitCount(const uint8_t* utf8_array,
intptr_t array_len,
Type* type) {
intptr_t len = 0;
Type char_type = kLatin1;
for (intptr_t i = 0; i < array_len; i++) {
uint8_t code_unit = utf8_array[i];
if (!IsTrailByte(code_unit)) {
++len;
if (!IsLatin1SequenceStart(code_unit)) { // > U+00FF
if (IsSupplementarySequenceStart(code_unit)) { // >= U+10000
char_type = kSupplementary;
++len;
} else if (char_type == kLatin1) {
char_type = kBMP;
}
}
}
}
*type = char_type;
return len;
}
// Returns true if str is a valid NUL-terminated UTF-8 string.
bool Utf8::IsValid(const uint8_t* utf8_array, intptr_t array_len) {
intptr_t i = 0;
while (i < array_len) {
uint32_t ch = utf8_array[i] & 0xFF;
intptr_t j = 1;
if (ch >= 0x80) {
int8_t num_trail_bytes = kTrailBytes[ch];
bool is_malformed = false;
for (; j < num_trail_bytes; ++j) {
if ((i + j) < array_len) {
uint8_t code_unit = utf8_array[i + j];
is_malformed |= !IsTrailByte(code_unit);
ch = (ch << 6) + code_unit;
} else {
return false;
}
}
ch -= kMagicBits[num_trail_bytes];
if (!((is_malformed == false) && (j == num_trail_bytes) &&
!Utf::IsOutOfRange(ch) && !IsNonShortestForm(ch, j))) {
return false;
}
}
i += j;
}
return true;
}
intptr_t Utf8::Length(int32_t ch) {
if (ch <= kMaxOneByteChar) {
return 1;
} else if (ch <= kMaxTwoByteChar) {
return 2;
} else if (ch <= kMaxThreeByteChar) {
return 3;
}
ASSERT(ch <= kMaxFourByteChar);
return 4;
}
intptr_t Utf8::Encode(int32_t ch, char* dst) {
static const int kMask = ~(1 << 6);
if (ch <= kMaxOneByteChar) {
dst[0] = ch;
return 1;
}
if (ch <= kMaxTwoByteChar) {
dst[0] = 0xC0 | (ch >> 6);
dst[1] = 0x80 | (ch & kMask);
return 2;
}
if (ch <= kMaxThreeByteChar) {
dst[0] = 0xE0 | (ch >> 12);
dst[1] = 0x80 | ((ch >> 6) & kMask);
dst[2] = 0x80 | (ch & kMask);
return 3;
}
ASSERT(ch <= kMaxFourByteChar);
dst[0] = 0xF0 | (ch >> 18);
dst[1] = 0x80 | ((ch >> 12) & kMask);
dst[2] = 0x80 | ((ch >> 6) & kMask);
dst[3] = 0x80 | (ch & kMask);
return 4;
}
intptr_t Utf8::Decode(const uint8_t* utf8_array,
intptr_t array_len,
int32_t* dst) {
uint32_t ch = utf8_array[0] & 0xFF;
intptr_t i = 1;
if (ch >= 0x80) {
intptr_t num_trail_bytes = kTrailBytes[ch];
bool is_malformed = false;
for (; i < num_trail_bytes; ++i) {
if (i < array_len) {
uint8_t code_unit = utf8_array[i];
is_malformed |= !IsTrailByte(code_unit);
ch = (ch << 6) + code_unit;
} else {
*dst = -1;
return 0;
}
}
ch -= kMagicBits[num_trail_bytes];
if (!((is_malformed == false) && (i == num_trail_bytes) &&
!Utf::IsOutOfRange(ch) && !IsNonShortestForm(ch, i))) {
*dst = -1;
return 0;
}
}
*dst = ch;
return i;
}
intptr_t Utf8::ReportInvalidByte(const uint8_t* utf8_array,
intptr_t array_len,
intptr_t len) {
intptr_t i = 0;
intptr_t j = 0;
intptr_t num_bytes;
for (; (i < array_len) && (j < len); i += num_bytes, ++j) {
int32_t ch;
bool is_supplementary = IsSupplementarySequenceStart(utf8_array[i]);
num_bytes = Utf8::Decode(&utf8_array[i], (array_len - i), &ch);
if (ch == -1) {
break; // Invalid input.
}
if (is_supplementary) {
j = j + 1;
}
}
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// Remain silent while libFuzzer is active, since
// the output only slows down the in-process fuzzing.
#else
Syslog::PrintErr("Invalid UTF8 sequence encountered, ");
for (intptr_t idx = 0; idx < 10 && (i + idx) < array_len; idx++) {
Syslog::PrintErr("(Error Code: %X + idx: %" Pd " )", utf8_array[idx + i],
(idx + i));
}
Syslog::PrintErr("\n");
#endif
return i;
}
bool Utf8::DecodeToLatin1(const uint8_t* utf8_array,
intptr_t array_len,
uint8_t* dst,
intptr_t len) {
intptr_t i = 0;
intptr_t j = 0;
intptr_t num_bytes;
for (; (i < array_len) && (j < len); i += num_bytes, ++j) {
int32_t ch;
ASSERT(IsLatin1SequenceStart(utf8_array[i]));
num_bytes = Utf8::Decode(&utf8_array[i], (array_len - i), &ch);
if (ch == -1) {
return false; // Invalid input.
}
ASSERT(Utf::IsLatin1(ch));
dst[j] = ch;
}
if ((i < array_len) && (j == len)) {
return false; // Output overflow.
}
return true; // Success.
}
bool Utf8::DecodeToUTF16(const uint8_t* utf8_array,
intptr_t array_len,
uint16_t* dst,
intptr_t len) {
intptr_t i = 0;
intptr_t j = 0;
intptr_t num_bytes;
for (; (i < array_len) && (j < len); i += num_bytes, ++j) {
int32_t ch;
bool is_supplementary = IsSupplementarySequenceStart(utf8_array[i]);
num_bytes = Utf8::Decode(&utf8_array[i], (array_len - i), &ch);
if (ch == -1) {
return false; // Invalid input.
}
if (is_supplementary) {
if (j == (len - 1)) return false; // Output overflow.
Utf16::Encode(ch, &dst[j]);
j = j + 1;
} else {
dst[j] = ch;
}
}
if ((i < array_len) && (j == len)) {
return false; // Output overflow.
}
return true; // Success.
}
bool Utf8::DecodeToUTF32(const uint8_t* utf8_array,
intptr_t array_len,
int32_t* dst,
intptr_t len) {
intptr_t i = 0;
intptr_t j = 0;
intptr_t num_bytes;
for (; (i < array_len) && (j < len); i += num_bytes, ++j) {
int32_t ch;
num_bytes = Utf8::Decode(&utf8_array[i], (array_len - i), &ch);
if (ch == -1) {
return false; // Invalid input.
}
dst[j] = ch;
}
if ((i < array_len) && (j == len)) {
return false; // Output overflow.
}
return true; // Success.
}
bool Utf8::DecodeCStringToUTF32(const char* str, int32_t* dst, intptr_t len) {
ASSERT(str != NULL);
intptr_t array_len = strlen(str);
const uint8_t* utf8_array = reinterpret_cast<const uint8_t*>(str);
return Utf8::DecodeToUTF32(utf8_array, array_len, dst, len);
}
void Utf16::Encode(int32_t codepoint, uint16_t* dst) {
ASSERT(codepoint > Utf16::kMaxCodeUnit);
ASSERT(dst != NULL);
dst[0] = (Utf16::kLeadSurrogateOffset + (codepoint >> 10));
dst[1] = (0xDC00 + (codepoint & 0x3FF));
}
} // namespace dart