blob: 0341530ae220590056a8e8a4131a9bc2634cde9a [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_OS_LINUX)
#include "vm/cpuinfo.h"
#include "vm/cpuid.h"
#include "vm/proccpuinfo.h"
#include "platform/assert.h"
// As with Windows, on IA32 and X64, we use the cpuid instruction.
// The analogous instruction is privileged on ARM and MIPS, so we resort to
// reading from /proc/cpuinfo.
namespace dart {
CpuInfoMethod CpuInfo::method_ = kCpuInfoDefault;
const char* CpuInfo::fields_[kCpuInfoMax] = {0};
void CpuInfo::InitOnce() {
#if defined(HOST_ARCH_IA32) || defined(HOST_ARCH_X64)
fields_[kCpuInfoProcessor] = "vendor_id";
fields_[kCpuInfoModel] = "model name";
fields_[kCpuInfoHardware] = "model name";
fields_[kCpuInfoFeatures] = "flags";
method_ = kCpuInfoCpuId;
CpuId::InitOnce();
#elif defined(HOST_ARCH_ARM) || defined(HOST_ARCH_ARM64)
// TODO(zra): Verify that these field names are correct for arm64.
fields_[kCpuInfoProcessor] = "Processor";
fields_[kCpuInfoModel] = "model name";
fields_[kCpuInfoHardware] = "Hardware";
fields_[kCpuInfoFeatures] = "Features";
method_ = kCpuInfoSystem;
ProcCpuInfo::InitOnce();
#elif defined(HOST_ARCH_MIPS)
fields_[kCpuInfoProcessor] = "system type";
fields_[kCpuInfoModel] = "cpu model";
fields_[kCpuInfoHardware] = "cpu model";
fields_[kCpuInfoFeatures] = "ASEs implemented";
method_ = kCpuInfoSystem;
ProcCpuInfo::InitOnce();
#else
#error Unrecognized target architecture
#endif
}
void CpuInfo::Cleanup() {
if (method_ == kCpuInfoCpuId) {
CpuId::Cleanup();
} else {
ASSERT(method_ == kCpuInfoSystem);
ProcCpuInfo::Cleanup();
}
}
bool CpuInfo::FieldContains(CpuInfoIndices idx, const char* search_string) {
if (method_ == kCpuInfoCpuId) {
return strstr(CpuId::field(idx), search_string);
} else {
ASSERT(method_ == kCpuInfoSystem);
return ProcCpuInfo::FieldContains(FieldName(idx), search_string);
}
}
bool CpuInfo::FieldContainsByString(const char* field,
const char* search_string) {
if (method_ == kCpuInfoCpuId) {
for (int i = 0; i < kCpuInfoMax; i++) {
if (strcmp(field, fields_[i]) == 0) {
return FieldContains(static_cast<CpuInfoIndices>(i), search_string);
}
}
UNIMPLEMENTED();
return false;
} else {
ASSERT(method_ == kCpuInfoSystem);
return ProcCpuInfo::FieldContains(field, search_string);
}
}
const char* CpuInfo::ExtractField(CpuInfoIndices idx) {
if (method_ == kCpuInfoCpuId) {
return CpuId::field(idx);
} else {
ASSERT(method_ == kCpuInfoSystem);
return ProcCpuInfo::ExtractField(FieldName(idx));
}
}
const char* CpuInfo::ExtractFieldByString(const char* field) {
if (method_ == kCpuInfoCpuId) {
for (int i = 0; i < kCpuInfoMax; i++) {
if (strcmp(field, fields_[i]) == 0) {
return ExtractField(static_cast<CpuInfoIndices>(i));
}
}
UNIMPLEMENTED();
return NULL;
} else {
ASSERT(method_ == kCpuInfoSystem);
return ProcCpuInfo::ExtractField(field);
}
}
bool CpuInfo::HasField(const char* field) {
if (method_ == kCpuInfoCpuId) {
return (strcmp(field, fields_[kCpuInfoProcessor]) == 0) ||
(strcmp(field, fields_[kCpuInfoModel]) == 0) ||
(strcmp(field, fields_[kCpuInfoHardware]) == 0) ||
(strcmp(field, fields_[kCpuInfoFeatures]) == 0);
} else {
ASSERT(method_ == kCpuInfoSystem);
return ProcCpuInfo::HasField(field);
}
}
} // namespace dart
#endif // defined(TARGET_OS_LINUX)