blob: 6edaba178731af7760f0366b1097bdfcd2dac023 [file] [log] [blame]
// Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/compiler/frontend/bytecode_flow_graph_builder.h"
#include "vm/compiler/backend/il_printer.h"
#include "vm/compiler/ffi.h"
#include "vm/compiler/frontend/bytecode_reader.h"
#include "vm/compiler/frontend/prologue_builder.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/object_store.h"
#include "vm/stack_frame.h"
#include "vm/stack_frame_kbc.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
#define B (flow_graph_builder_)
#define Z (zone_)
namespace dart {
DEFINE_FLAG(bool,
print_flow_graph_from_bytecode,
false,
"Print flow graph constructed from bytecode");
namespace kernel {
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandA() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeA(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandB() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeB(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandC() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeC(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandD() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeD(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandE() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeE(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandF() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeF(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandX() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeX(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandY() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeY(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Operand BytecodeFlowGraphBuilder::DecodeOperandT() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
intptr_t value = KernelBytecode::DecodeT(bytecode_instr_);
return Operand(value);
}
}
BytecodeFlowGraphBuilder::Constant BytecodeFlowGraphBuilder::ConstantAt(
Operand entry_index,
intptr_t add_index) {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
const Object& value = Object::ZoneHandle(
Z, object_pool_.ObjectAt(entry_index.value() + add_index));
return Constant(Z, value);
}
}
void BytecodeFlowGraphBuilder::PushConstant(Constant constant) {
if (is_generating_interpreter()) {
B->Push(constant.definition());
} else {
code_ += B->Constant(constant.value());
}
}
BytecodeFlowGraphBuilder::Constant BytecodeFlowGraphBuilder::PopConstant() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
ASSERT(!IsStackEmpty());
const Object& value = B->stack_->definition()->AsConstant()->value();
code_ += B->Drop();
return Constant(Z, value);
}
}
void BytecodeFlowGraphBuilder::LoadStackSlots(intptr_t num_slots) {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
ASSERT(GetStackDepth() >= num_slots);
}
void BytecodeFlowGraphBuilder::AllocateLocalVariables(
Operand frame_size,
intptr_t num_param_locals) {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
ASSERT(local_vars_.is_empty());
const intptr_t num_bytecode_locals = frame_size.value();
ASSERT(num_bytecode_locals >= 0);
intptr_t num_locals = num_bytecode_locals;
if (exception_var_ != nullptr) {
++num_locals;
}
if (stacktrace_var_ != nullptr) {
++num_locals;
}
if (scratch_var_ != nullptr) {
++num_locals;
}
if (parsed_function()->has_arg_desc_var()) {
++num_locals;
}
if (parsed_function()->has_entry_points_temp_var()) {
++num_locals;
}
if (num_locals == 0) {
return;
}
local_vars_.EnsureLength(num_bytecode_locals, nullptr);
for (intptr_t i = num_param_locals; i < num_bytecode_locals; ++i) {
String& name =
String::ZoneHandle(Z, Symbols::NewFormatted(thread(), "var%" Pd, i));
LocalVariable* local = new (Z)
LocalVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
name, Object::dynamic_type());
local->set_index(VariableIndex(-i));
local_vars_[i] = local;
}
intptr_t idx = num_bytecode_locals;
if (exception_var_ != nullptr) {
exception_var_->set_index(VariableIndex(-idx));
++idx;
}
if (stacktrace_var_ != nullptr) {
stacktrace_var_->set_index(VariableIndex(-idx));
++idx;
}
if (scratch_var_ != nullptr) {
scratch_var_->set_index(VariableIndex(-idx));
++idx;
}
if (parsed_function()->has_arg_desc_var()) {
parsed_function()->arg_desc_var()->set_index(VariableIndex(-idx));
++idx;
}
if (parsed_function()->has_entry_points_temp_var()) {
parsed_function()->entry_points_temp_var()->set_index(
VariableIndex(-idx));
++idx;
}
ASSERT(idx == num_locals);
ASSERT(parsed_function()->scope() == nullptr);
parsed_function()->AllocateBytecodeVariables(num_locals);
}
}
LocalVariable* BytecodeFlowGraphBuilder::AllocateParameter(
intptr_t param_index,
VariableIndex var_index) {
const String& name =
String::ZoneHandle(Z, function().ParameterNameAt(param_index));
const AbstractType& type =
AbstractType::ZoneHandle(Z, function().ParameterTypeAt(param_index));
CompileType* param_type = nullptr;
if (!inferred_types_attribute_.IsNull()) {
// Parameter types are assigned to synthetic PCs = -N,..,-1
// where N is number of parameters.
const intptr_t pc = -function().NumParameters() + param_index;
// Search from the beginning as parameters may be declared in arbitrary
// order.
inferred_types_index_ = 0;
const InferredTypeMetadata inferred_type = GetInferredType(pc);
if (!inferred_type.IsTrivial()) {
param_type = new (Z) CompileType(inferred_type.ToCompileType(Z));
}
}
LocalVariable* param_var =
new (Z) LocalVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
name, type, param_type);
param_var->set_index(var_index);
if (!function().IsNonImplicitClosureFunction() &&
(function().is_static() ||
((function().name() != Symbols::Call().raw()) &&
!parsed_function()->IsCovariantParameter(param_index) &&
!parsed_function()->IsGenericCovariantImplParameter(param_index)))) {
param_var->set_type_check_mode(LocalVariable::kTypeCheckedByCaller);
}
if (var_index.value() <= 0) {
local_vars_[-var_index.value()] = param_var;
}
return param_var;
}
void BytecodeFlowGraphBuilder::AllocateFixedParameters() {
if (is_generating_interpreter()) {
return;
}
ASSERT(!function().HasOptionalParameters());
const intptr_t num_fixed_params = function().num_fixed_parameters();
auto parameters =
new (Z) ZoneGrowableArray<LocalVariable*>(Z, num_fixed_params);
for (intptr_t i = 0; i < num_fixed_params; ++i) {
LocalVariable* param_var =
AllocateParameter(i, VariableIndex(num_fixed_params - i));
parameters->Add(param_var);
}
parsed_function()->SetRawParameters(parameters);
}
const KBCInstr*
BytecodeFlowGraphBuilder::AllocateParametersAndLocalsForEntryOptional() {
ASSERT(KernelBytecode::IsEntryOptionalOpcode(bytecode_instr_));
const intptr_t num_fixed_params = DecodeOperandA().value();
const intptr_t num_opt_pos_params = DecodeOperandB().value();
const intptr_t num_opt_named_params = DecodeOperandC().value();
ASSERT(num_fixed_params == function().num_fixed_parameters());
ASSERT(num_opt_pos_params == function().NumOptionalPositionalParameters());
ASSERT(num_opt_named_params == function().NumOptionalNamedParameters());
ASSERT((num_opt_pos_params == 0) || (num_opt_named_params == 0));
const intptr_t num_load_const = num_opt_pos_params + 2 * num_opt_named_params;
const KBCInstr* instr = KernelBytecode::Next(bytecode_instr_);
const KBCInstr* frame_instr = instr;
for (intptr_t i = 0; i < num_load_const; ++i) {
frame_instr = KernelBytecode::Next(frame_instr);
}
ASSERT(KernelBytecode::IsFrameOpcode(frame_instr));
const intptr_t num_extra_locals = KernelBytecode::DecodeD(frame_instr);
const intptr_t num_params =
num_fixed_params + num_opt_pos_params + num_opt_named_params;
const intptr_t total_locals = num_params + num_extra_locals;
AllocateLocalVariables(Operand(total_locals), num_params);
ZoneGrowableArray<const Instance*>* default_values =
new (Z) ZoneGrowableArray<const Instance*>(
Z, num_opt_pos_params + num_opt_named_params);
ZoneGrowableArray<LocalVariable*>* raw_parameters =
new (Z) ZoneGrowableArray<LocalVariable*>(Z, num_params);
intptr_t param = 0;
for (; param < num_fixed_params; ++param) {
LocalVariable* param_var = AllocateParameter(param, VariableIndex(-param));
raw_parameters->Add(param_var);
}
for (intptr_t i = 0; i < num_opt_pos_params; ++i, ++param) {
const KBCInstr* load_value_instr = instr;
instr = KernelBytecode::Next(instr);
ASSERT(KernelBytecode::IsLoadConstantOpcode(load_value_instr));
ASSERT(KernelBytecode::DecodeA(load_value_instr) == param);
const Object& default_value =
ConstantAt(Operand(KernelBytecode::DecodeE(load_value_instr))).value();
LocalVariable* param_var = AllocateParameter(param, VariableIndex(-param));
raw_parameters->Add(param_var);
default_values->Add(
&Instance::ZoneHandle(Z, Instance::RawCast(default_value.raw())));
}
if (num_opt_named_params > 0) {
default_values->EnsureLength(num_opt_named_params, nullptr);
raw_parameters->EnsureLength(num_params, nullptr);
ASSERT(scratch_var_ != nullptr);
for (intptr_t i = 0; i < num_opt_named_params; ++i, ++param) {
const KBCInstr* load_name_instr = instr;
const KBCInstr* load_value_instr = KernelBytecode::Next(load_name_instr);
instr = KernelBytecode::Next(load_value_instr);
ASSERT(KernelBytecode::IsLoadConstantOpcode(load_name_instr));
ASSERT(KernelBytecode::IsLoadConstantOpcode(load_value_instr));
const String& param_name = String::Cast(
ConstantAt(Operand(KernelBytecode::DecodeE(load_name_instr)))
.value());
ASSERT(param_name.IsSymbol());
const Object& default_value =
ConstantAt(Operand(KernelBytecode::DecodeE(load_value_instr)))
.value();
intptr_t param_index = num_fixed_params;
for (; param_index < num_params; ++param_index) {
if (function().ParameterNameAt(param_index) == param_name.raw()) {
break;
}
}
ASSERT(param_index < num_params);
ASSERT(default_values->At(param_index - num_fixed_params) == nullptr);
(*default_values)[param_index - num_fixed_params] =
&Instance::ZoneHandle(Z, Instance::RawCast(default_value.raw()));
const intptr_t local_index = KernelBytecode::DecodeA(load_name_instr);
ASSERT(local_index == KernelBytecode::DecodeA(load_value_instr));
LocalVariable* param_var =
AllocateParameter(param_index, VariableIndex(-param));
ASSERT(raw_parameters->At(param_index) == nullptr);
(*raw_parameters)[param_index] = param_var;
}
}
ASSERT(instr == frame_instr);
parsed_function()->set_default_parameter_values(default_values);
parsed_function()->SetRawParameters(raw_parameters);
return KernelBytecode::Next(frame_instr);
}
LocalVariable* BytecodeFlowGraphBuilder::LocalVariableAt(intptr_t local_index) {
ASSERT(!is_generating_interpreter());
if (local_index < 0) {
// Parameter
ASSERT(!function().HasOptionalParameters());
const intptr_t param_index = local_index +
function().num_fixed_parameters() +
kKBCParamEndSlotFromFp;
ASSERT((0 <= param_index) &&
(param_index < function().num_fixed_parameters()));
return parsed_function()->RawParameterVariable(param_index);
} else {
return local_vars_.At(local_index);
}
}
void BytecodeFlowGraphBuilder::StoreLocal(Operand local_index) {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
LocalVariable* local_var = LocalVariableAt(local_index.value());
code_ += B->StoreLocalRaw(position_, local_var);
}
}
void BytecodeFlowGraphBuilder::LoadLocal(Operand local_index) {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
} else {
LocalVariable* local_var = LocalVariableAt(local_index.value());
code_ += B->LoadLocal(local_var);
}
}
Value* BytecodeFlowGraphBuilder::Pop() {
LoadStackSlots(1);
return B->Pop();
}
intptr_t BytecodeFlowGraphBuilder::GetStackDepth() const {
ASSERT(!is_generating_interpreter());
return B->GetStackDepth();
}
bool BytecodeFlowGraphBuilder::IsStackEmpty() const {
ASSERT(!is_generating_interpreter());
return B->GetStackDepth() == 0;
}
ArgumentArray BytecodeFlowGraphBuilder::GetArguments(int count) {
ArgumentArray arguments =
new (Z) ZoneGrowableArray<PushArgumentInstr*>(Z, count);
arguments->SetLength(count);
for (intptr_t i = count - 1; i >= 0; --i) {
ASSERT(!IsStackEmpty());
Definition* arg_def = B->stack_->definition();
ASSERT(!arg_def->HasSSATemp());
ASSERT(arg_def->temp_index() >= i);
PushArgumentInstr* argument = new (Z) PushArgumentInstr(Pop());
if (code_.current == arg_def) {
code_ <<= argument;
} else {
Instruction* next = arg_def->next();
ASSERT(next != nullptr);
arg_def->LinkTo(argument);
argument->LinkTo(next);
}
arguments->data()[i] = argument;
}
return arguments;
}
InferredTypeMetadata BytecodeFlowGraphBuilder::GetInferredType(intptr_t pc) {
ASSERT(!inferred_types_attribute_.IsNull());
intptr_t i = inferred_types_index_;
const intptr_t len = inferred_types_attribute_.Length();
for (; i < len; i += InferredTypeBytecodeAttribute::kNumElements) {
ASSERT(i + InferredTypeBytecodeAttribute::kNumElements <= len);
const intptr_t attr_pc =
InferredTypeBytecodeAttribute::GetPCAt(inferred_types_attribute_, i);
if (attr_pc == pc) {
const InferredTypeMetadata result =
InferredTypeBytecodeAttribute::GetInferredTypeAt(
Z, inferred_types_attribute_, i);
// Found. Next time, continue search at the next entry.
inferred_types_index_ = i + InferredTypeBytecodeAttribute::kNumElements;
return result;
}
if (attr_pc > pc) {
break;
}
}
// Not found. Next time, continue search at the last inspected entry.
inferred_types_index_ = i;
return InferredTypeMetadata(kDynamicCid, InferredTypeMetadata::kFlagNullable);
}
void BytecodeFlowGraphBuilder::PropagateStackState(intptr_t target_pc) {
if (is_generating_interpreter() || IsStackEmpty()) {
return;
}
Value* current_stack = B->stack_;
Value* target_stack = stack_states_.Lookup(target_pc);
if (target_stack != nullptr) {
// Control flow join should observe the same stack state from
// all incoming branches.
RELEASE_ASSERT(target_stack == current_stack);
} else {
// Stack state propagation is supported for forward branches only.
RELEASE_ASSERT(target_pc > pc_);
stack_states_.Insert(target_pc, current_stack);
}
}
// Drop values from the stack unless they are used in control flow joins
// which are not generated yet (dartbug.com/36374).
void BytecodeFlowGraphBuilder::DropUnusedValuesFromStack() {
intptr_t drop_depth = GetStackDepth();
auto it = stack_states_.GetIterator();
for (const auto* current = it.Next(); current != nullptr;
current = it.Next()) {
if (current->key > pc_) {
Value* used_value = current->value;
Value* value = B->stack_;
// Find if a value on the expression stack is used in a propagated
// stack state, and adjust [drop_depth] to preserve it.
for (intptr_t i = 0; i < drop_depth; ++i) {
if (value == used_value) {
drop_depth = i;
break;
}
value = value->next_use();
}
}
}
for (intptr_t i = 0; i < drop_depth; ++i) {
B->Pop();
}
}
void BytecodeFlowGraphBuilder::BuildInstruction(KernelBytecode::Opcode opcode) {
switch (opcode) {
#define WIDE_CASE(name) case KernelBytecode::k##name##_Wide:
#define WIDE_CASE_0(name)
#define WIDE_CASE_A(name)
#define WIDE_CASE_D(name) WIDE_CASE(name)
#define WIDE_CASE_X(name) WIDE_CASE(name)
#define WIDE_CASE_T(name) WIDE_CASE(name)
#define WIDE_CASE_A_E(name) WIDE_CASE(name)
#define WIDE_CASE_A_Y(name) WIDE_CASE(name)
#define WIDE_CASE_D_F(name) WIDE_CASE(name)
#define WIDE_CASE_A_B_C(name)
#define BUILD_BYTECODE_CASE(name, encoding, kind, op1, op2, op3) \
BUILD_BYTECODE_CASE_##kind(name, encoding)
#define BUILD_BYTECODE_CASE_WIDE(name, encoding)
#define BUILD_BYTECODE_CASE_RESV(name, encoding)
#define BUILD_BYTECODE_CASE_ORDN(name, encoding) \
case KernelBytecode::k##name: \
WIDE_CASE_##encoding(name) Build##name(); \
break;
PUBLIC_KERNEL_BYTECODES_LIST(BUILD_BYTECODE_CASE)
#undef WIDE_CASE
#undef WIDE_CASE_0
#undef WIDE_CASE_A
#undef WIDE_CASE_D
#undef WIDE_CASE_X
#undef WIDE_CASE_T
#undef WIDE_CASE_A_E
#undef WIDE_CASE_A_Y
#undef WIDE_CASE_D_F
#undef WIDE_CASE_A_B_C
#undef BUILD_BYTECODE_CASE
#undef BUILD_BYTECODE_CASE_WIDE
#undef BUILD_BYTECODE_CASE_RESV
#undef BUILD_BYTECODE_CASE_ORDN
default:
FATAL1("Unsupported bytecode instruction %s\n",
KernelBytecode::NameOf(opcode));
}
}
void BytecodeFlowGraphBuilder::BuildEntry() {
AllocateLocalVariables(DecodeOperandD());
AllocateFixedParameters();
}
void BytecodeFlowGraphBuilder::BuildEntryFixed() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const intptr_t num_fixed_params = DecodeOperandA().value();
ASSERT(num_fixed_params == function().num_fixed_parameters());
AllocateLocalVariables(DecodeOperandE());
AllocateFixedParameters();
Fragment check_args;
ASSERT(throw_no_such_method_ == nullptr);
throw_no_such_method_ = B->BuildThrowNoSuchMethod();
check_args += B->LoadArgDescriptor();
check_args +=
B->LoadNativeField(Slot::ArgumentsDescriptor_positional_count());
check_args += B->IntConstant(num_fixed_params);
TargetEntryInstr *success1, *fail1;
check_args += B->BranchIfEqual(&success1, &fail1);
check_args = Fragment(check_args.entry, success1);
check_args += B->LoadArgDescriptor();
check_args += B->LoadNativeField(Slot::ArgumentsDescriptor_count());
check_args += B->IntConstant(num_fixed_params);
TargetEntryInstr *success2, *fail2;
check_args += B->BranchIfEqual(&success2, &fail2);
check_args = Fragment(check_args.entry, success2);
Fragment(fail1) + B->Goto(throw_no_such_method_);
Fragment(fail2) + B->Goto(throw_no_such_method_);
ASSERT(IsStackEmpty());
if (!B->IsInlining() && !B->IsCompiledForOsr()) {
code_ += check_args;
}
}
void BytecodeFlowGraphBuilder::BuildEntryOptional() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const KBCInstr* next_instr = AllocateParametersAndLocalsForEntryOptional();
LocalVariable* temp_var = nullptr;
if (function().HasOptionalNamedParameters()) {
ASSERT(scratch_var_ != nullptr);
temp_var = scratch_var_;
}
Fragment copy_args_prologue;
// Code generated for EntryOptional is considered a prologue code.
// Prologue should span a range of block ids, so start a new block at the
// beginning and end a block at the end.
JoinEntryInstr* prologue_entry = B->BuildJoinEntry();
copy_args_prologue += B->Goto(prologue_entry);
copy_args_prologue = Fragment(copy_args_prologue.entry, prologue_entry);
ASSERT(throw_no_such_method_ == nullptr);
throw_no_such_method_ = B->BuildThrowNoSuchMethod();
PrologueBuilder prologue_builder(parsed_function(), B->last_used_block_id_,
B->IsCompiledForOsr(), B->IsInlining());
copy_args_prologue += prologue_builder.BuildOptionalParameterHandling(
throw_no_such_method_, temp_var);
B->last_used_block_id_ = prologue_builder.last_used_block_id();
JoinEntryInstr* prologue_exit = B->BuildJoinEntry();
copy_args_prologue += B->Goto(prologue_exit);
copy_args_prologue.current = prologue_exit;
if (!B->IsInlining() && !B->IsCompiledForOsr()) {
code_ += copy_args_prologue;
}
prologue_info_ =
PrologueInfo(prologue_entry->block_id(), prologue_exit->block_id() - 1);
// Skip LoadConstant and Frame instructions.
next_pc_ = pc_ + (next_instr - bytecode_instr_);
ASSERT(IsStackEmpty());
}
void BytecodeFlowGraphBuilder::BuildLoadConstant() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
// Handled in EntryOptional instruction.
UNREACHABLE();
}
void BytecodeFlowGraphBuilder::BuildFrame() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
// Handled in EntryOptional instruction.
UNREACHABLE();
}
void BytecodeFlowGraphBuilder::BuildCheckFunctionTypeArgs() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const intptr_t expected_num_type_args = DecodeOperandA().value();
LocalVariable* type_args_var = LocalVariableAt(DecodeOperandE().value());
ASSERT(function().IsGeneric());
if (throw_no_such_method_ == nullptr) {
throw_no_such_method_ = B->BuildThrowNoSuchMethod();
}
Fragment setup_type_args;
JoinEntryInstr* done = B->BuildJoinEntry();
// Type args are always optional, so length can always be zero.
// If expect_type_args, a non-zero length must match the declaration length.
TargetEntryInstr *then, *fail;
setup_type_args += B->LoadArgDescriptor();
setup_type_args +=
B->LoadNativeField(Slot::ArgumentsDescriptor_type_args_len());
if (expected_num_type_args != 0) {
JoinEntryInstr* join2 = B->BuildJoinEntry();
LocalVariable* len = B->MakeTemporary();
TargetEntryInstr* otherwise;
setup_type_args += B->LoadLocal(len);
setup_type_args += B->IntConstant(0);
setup_type_args += B->BranchIfEqual(&then, &otherwise);
TargetEntryInstr* then2;
Fragment check_len(otherwise);
check_len += B->LoadLocal(len);
check_len += B->IntConstant(expected_num_type_args);
check_len += B->BranchIfEqual(&then2, &fail);
Fragment null_type_args(then);
null_type_args += B->NullConstant();
null_type_args += B->StoreLocalRaw(TokenPosition::kNoSource, type_args_var);
null_type_args += B->Drop();
null_type_args += B->Goto(join2);
Fragment store_type_args(then2);
store_type_args += B->LoadArgDescriptor();
store_type_args += B->LoadNativeField(Slot::ArgumentsDescriptor_count());
store_type_args += B->LoadFpRelativeSlot(
compiler::target::kWordSize *
(1 + compiler::target::frame_layout.param_end_from_fp),
CompileType::CreateNullable(/*is_nullable=*/true, kTypeArgumentsCid));
store_type_args +=
B->StoreLocalRaw(TokenPosition::kNoSource, type_args_var);
store_type_args += B->Drop();
store_type_args += B->Goto(join2);
Fragment(join2) + B->Drop() + B->Goto(done);
Fragment(fail) + B->Goto(throw_no_such_method_);
} else {
setup_type_args += B->IntConstant(0);
setup_type_args += B->BranchIfEqual(&then, &fail);
Fragment(then) + B->Goto(done);
Fragment(fail) + B->Goto(throw_no_such_method_);
}
setup_type_args = Fragment(setup_type_args.entry, done);
ASSERT(IsStackEmpty());
if (expected_num_type_args != 0) {
parsed_function()->set_function_type_arguments(type_args_var);
parsed_function()->SetRawTypeArgumentsVariable(type_args_var);
}
if (!B->IsInlining() && !B->IsCompiledForOsr()) {
code_ += setup_type_args;
}
}
void BytecodeFlowGraphBuilder::BuildCheckStack() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const intptr_t loop_depth = DecodeOperandA().value();
if (loop_depth == 0) {
ASSERT(IsStackEmpty());
code_ += B->CheckStackOverflowInPrologue(position_);
} else {
const intptr_t stack_depth = B->GetStackDepth();
code_ += B->CheckStackOverflow(position_, stack_depth, loop_depth);
}
}
void BytecodeFlowGraphBuilder::BuildDebugCheck() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
// DebugStepCheck instructions are emitted for all explicit DebugCheck
// opcodes as well as for implicit DEBUG_CHECK executed by the interpreter
// for some opcodes, but not before the first explicit DebugCheck opcode is
// encountered.
build_debug_step_checks_ = true;
BuildDebugStepCheck();
}
void BytecodeFlowGraphBuilder::BuildPushConstant() {
PushConstant(ConstantAt(DecodeOperandD()));
}
void BytecodeFlowGraphBuilder::BuildPushNull() {
code_ += B->NullConstant();
}
void BytecodeFlowGraphBuilder::BuildPushTrue() {
code_ += B->Constant(Bool::True());
}
void BytecodeFlowGraphBuilder::BuildPushFalse() {
code_ += B->Constant(Bool::False());
}
void BytecodeFlowGraphBuilder::BuildPushInt() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
code_ += B->IntConstant(DecodeOperandX().value());
}
void BytecodeFlowGraphBuilder::BuildStoreLocal() {
LoadStackSlots(1);
const Operand local_index = DecodeOperandX();
StoreLocal(local_index);
}
void BytecodeFlowGraphBuilder::BuildPopLocal() {
BuildStoreLocal();
code_ += B->Drop();
}
void BytecodeFlowGraphBuilder::BuildPush() {
const Operand local_index = DecodeOperandX();
LoadLocal(local_index);
}
void BytecodeFlowGraphBuilder::BuildDirectCallCommon(bool is_unchecked_call) {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
// A DebugStepCheck is performed as part of the calling stub.
const Function& target = Function::Cast(ConstantAt(DecodeOperandD()).value());
const intptr_t argc = DecodeOperandF().value();
const auto recognized_kind = MethodRecognizer::RecognizeKind(target);
if (recognized_kind == MethodRecognizer::kFfiAsFunctionInternal) {
BuildFfiAsFunction();
return;
} else if (FLAG_precompiled_mode &&
recognized_kind == MethodRecognizer::kFfiNativeCallbackFunction) {
BuildFfiNativeCallbackFunction();
return;
}
// Recognize identical() call.
// Note: similar optimization is performed in AST flow graph builder - see
// StreamingFlowGraphBuilder::BuildStaticInvocation, special_case_identical.
// TODO(alexmarkov): find a better place for this optimization.
if (target.name() == Symbols::Identical().raw()) {
const auto& owner = Class::Handle(Z, target.Owner());
if (owner.IsTopLevel() && (owner.library() == Library::CoreLibrary())) {
ASSERT(argc == 2);
code_ += B->StrictCompare(Token::kEQ_STRICT, /*number_check=*/true);
return;
}
}
if (!FLAG_causal_async_stacks &&
recognized_kind == MethodRecognizer::kAsyncStackTraceHelper) {
ASSERT(argc == 1);
// Drop the ignored parameter to _asyncStackTraceHelper(:async_op).
code_ += B->Drop();
code_ += B->NullConstant();
return;
}
if (recognized_kind == MethodRecognizer::kStringBaseInterpolate) {
ASSERT(argc == 1);
code_ += B->StringInterpolate(position_);
return;
}
const Array& arg_desc_array =
Array::Cast(ConstantAt(DecodeOperandD(), 1).value());
const ArgumentsDescriptor arg_desc(arg_desc_array);
ArgumentArray arguments = GetArguments(argc);
StaticCallInstr* call = new (Z) StaticCallInstr(
position_, target, arg_desc.TypeArgsLen(),
Array::ZoneHandle(Z, arg_desc.GetArgumentNames()), arguments,
*ic_data_array_, B->GetNextDeoptId(),
target.IsDynamicFunction() ? ICData::kSuper : ICData::kStatic);
if (is_unchecked_call) {
call->set_entry_kind(Code::EntryKind::kUnchecked);
}
if (!call->InitResultType(Z)) {
if (!inferred_types_attribute_.IsNull()) {
const InferredTypeMetadata result_type = GetInferredType(pc_);
if (!result_type.IsTrivial()) {
call->SetResultType(Z, result_type.ToCompileType(Z));
}
}
}
code_ <<= call;
B->Push(call);
}
void BytecodeFlowGraphBuilder::BuildDirectCall() {
BuildDirectCallCommon(/* is_unchecked_call = */ false);
}
void BytecodeFlowGraphBuilder::BuildUncheckedDirectCall() {
BuildDirectCallCommon(/* is_unchecked_call = */ true);
}
static void ComputeTokenKindAndCheckedArguments(
const String& name,
const ArgumentsDescriptor& arg_desc,
Token::Kind* token_kind,
intptr_t* checked_argument_count) {
*token_kind = MethodTokenRecognizer::RecognizeTokenKind(name);
*checked_argument_count = 1;
if (*token_kind != Token::kILLEGAL) {
intptr_t argument_count = arg_desc.Count();
ASSERT(argument_count <= 2);
*checked_argument_count = (*token_kind == Token::kSET) ? 1 : argument_count;
} else if (Library::IsPrivateCoreLibName(name,
Symbols::_simpleInstanceOf())) {
ASSERT(arg_desc.Count() == 2);
*checked_argument_count = 2;
*token_kind = Token::kIS;
} else if (Library::IsPrivateCoreLibName(name, Symbols::_instanceOf())) {
*token_kind = Token::kIS;
}
}
void BytecodeFlowGraphBuilder::BuildInterfaceCallCommon(
bool is_unchecked_call,
bool is_instantiated_call) {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
// A DebugStepCheck is performed as part of the calling stub.
const Function& interface_target =
Function::Cast(ConstantAt(DecodeOperandD()).value());
const String& name = String::ZoneHandle(Z, interface_target.name());
ASSERT(name.IsSymbol());
const Array& arg_desc_array =
Array::Cast(ConstantAt(DecodeOperandD(), 1).value());
const ArgumentsDescriptor arg_desc(arg_desc_array);
Token::Kind token_kind;
intptr_t checked_argument_count;
ComputeTokenKindAndCheckedArguments(name, arg_desc, &token_kind,
&checked_argument_count);
const intptr_t argc = DecodeOperandF().value();
const ArgumentArray arguments = GetArguments(argc);
InstanceCallInstr* call = new (Z) InstanceCallInstr(
position_, name, token_kind, arguments, arg_desc.TypeArgsLen(),
Array::ZoneHandle(Z, arg_desc.GetArgumentNames()), checked_argument_count,
*ic_data_array_, B->GetNextDeoptId(), interface_target);
if (!inferred_types_attribute_.IsNull()) {
const InferredTypeMetadata result_type = GetInferredType(pc_);
if (!result_type.IsTrivial()) {
call->SetResultType(Z, result_type.ToCompileType(Z));
}
}
if (is_unchecked_call) {
call->set_entry_kind(Code::EntryKind::kUnchecked);
}
if (is_instantiated_call) {
const AbstractType& static_receiver_type =
AbstractType::Cast(ConstantAt(DecodeOperandD(), 2).value());
call->set_receivers_static_type(&static_receiver_type);
} else {
const Class& owner = Class::Handle(Z, interface_target.Owner());
const AbstractType& type =
AbstractType::ZoneHandle(Z, owner.DeclarationType());
call->set_receivers_static_type(&type);
}
code_ <<= call;
B->Push(call);
}
void BytecodeFlowGraphBuilder::BuildInterfaceCall() {
BuildInterfaceCallCommon(/*is_unchecked_call=*/false,
/*is_instantiated_call=*/false);
}
void BytecodeFlowGraphBuilder::BuildInstantiatedInterfaceCall() {
BuildInterfaceCallCommon(/*is_unchecked_call=*/false,
/*is_instantiated_call=*/true);
}
void BytecodeFlowGraphBuilder::BuildUncheckedInterfaceCall() {
BuildInterfaceCallCommon(/*is_unchecked_call=*/true,
/*is_instantiated_call=*/false);
}
void BytecodeFlowGraphBuilder::BuildUncheckedClosureCall() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
BuildDebugStepCheck();
const Array& arg_desc_array =
Array::Cast(ConstantAt(DecodeOperandD()).value());
const ArgumentsDescriptor arg_desc(arg_desc_array);
const intptr_t argc = DecodeOperandF().value();
LocalVariable* receiver_temp = B->MakeTemporary();
code_ += B->CheckNull(position_, receiver_temp, Symbols::Call(),
/*clear_temp=*/false);
code_ += B->LoadNativeField(Slot::Closure_function());
Value* function = Pop();
const ArgumentArray arguments = GetArguments(argc);
ClosureCallInstr* call = new (Z) ClosureCallInstr(
function, arguments, arg_desc.TypeArgsLen(),
Array::ZoneHandle(Z, arg_desc.GetArgumentNames()), position_,
B->GetNextDeoptId(), Code::EntryKind::kUnchecked);
// TODO(alexmarkov): use inferred result type for ClosureCallInstr
// if (!inferred_types_attribute_.IsNull()) {
// const InferredTypeMetadata result_type = GetInferredType(pc_);
// if (!result_type.IsTrivial()) {
// call->SetResultType(Z, result_type.ToCompileType(Z));
// }
// }
code_ <<= call;
B->Push(call);
}
void BytecodeFlowGraphBuilder::BuildDynamicCall() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
// A DebugStepCheck is performed as part of the calling stub.
const UnlinkedCall& selector =
UnlinkedCall::Cast(ConstantAt(DecodeOperandD()).value());
const ArgumentsDescriptor arg_desc(
Array::Handle(Z, selector.args_descriptor()));
const String& name = String::ZoneHandle(Z, selector.target_name());
Token::Kind token_kind;
intptr_t checked_argument_count;
ComputeTokenKindAndCheckedArguments(name, arg_desc, &token_kind,
&checked_argument_count);
const intptr_t argc = DecodeOperandF().value();
const ArgumentArray arguments = GetArguments(argc);
const Function& interface_target = Function::null_function();
InstanceCallInstr* call = new (Z) InstanceCallInstr(
position_, name, token_kind, arguments, arg_desc.TypeArgsLen(),
Array::ZoneHandle(Z, arg_desc.GetArgumentNames()), checked_argument_count,
*ic_data_array_, B->GetNextDeoptId(), interface_target);
if (!inferred_types_attribute_.IsNull()) {
const InferredTypeMetadata result_type = GetInferredType(pc_);
if (!result_type.IsTrivial()) {
call->SetResultType(Z, result_type.ToCompileType(Z));
}
}
code_ <<= call;
B->Push(call);
}
void BytecodeFlowGraphBuilder::BuildNativeCall() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
ASSERT(function().is_native());
B->InlineBailout("BytecodeFlowGraphBuilder::BuildNativeCall");
const auto& name = String::ZoneHandle(Z, function().native_name());
const intptr_t num_args =
function().NumParameters() + (function().IsGeneric() ? 1 : 0);
ArgumentArray arguments = GetArguments(num_args);
auto* call =
new (Z) NativeCallInstr(&name, &function(), FLAG_link_natives_lazily,
function().end_token_pos(), arguments);
code_ <<= call;
B->Push(call);
}
void BytecodeFlowGraphBuilder::BuildAllocate() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const Class& klass = Class::Cast(ConstantAt(DecodeOperandD()).value());
const ArgumentArray arguments =
new (Z) ZoneGrowableArray<PushArgumentInstr*>(Z, 0);
AllocateObjectInstr* allocate =
new (Z) AllocateObjectInstr(position_, klass, arguments);
code_ <<= allocate;
B->Push(allocate);
}
void BytecodeFlowGraphBuilder::BuildAllocateT() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const Class& klass = Class::Cast(PopConstant().value());
const ArgumentArray arguments = GetArguments(1);
AllocateObjectInstr* allocate =
new (Z) AllocateObjectInstr(position_, klass, arguments);
code_ <<= allocate;
B->Push(allocate);
}
void BytecodeFlowGraphBuilder::BuildAllocateContext() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const intptr_t context_id = DecodeOperandA().value();
const intptr_t num_context_vars = DecodeOperandE().value();
auto& context_slots = CompilerState::Current().GetDummyContextSlots(
context_id, num_context_vars);
code_ += B->AllocateContext(context_slots);
}
void BytecodeFlowGraphBuilder::BuildCloneContext() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(1);
const intptr_t context_id = DecodeOperandA().value();
const intptr_t num_context_vars = DecodeOperandE().value();
auto& context_slots = CompilerState::Current().GetDummyContextSlots(
context_id, num_context_vars);
CloneContextInstr* clone_instruction = new (Z) CloneContextInstr(
TokenPosition::kNoSource, Pop(), context_slots, B->GetNextDeoptId());
code_ <<= clone_instruction;
B->Push(clone_instruction);
}
void BytecodeFlowGraphBuilder::BuildCreateArrayTOS() {
LoadStackSlots(2);
code_ += B->CreateArray();
}
const Slot& ClosureSlotByField(const Field& field) {
const intptr_t offset = field.Offset();
if (offset == Closure::instantiator_type_arguments_offset()) {
return Slot::Closure_instantiator_type_arguments();
} else if (offset == Closure::function_type_arguments_offset()) {
return Slot::Closure_function_type_arguments();
} else if (offset == Closure::delayed_type_arguments_offset()) {
return Slot::Closure_delayed_type_arguments();
} else if (offset == Closure::function_offset()) {
return Slot::Closure_function();
} else if (offset == Closure::context_offset()) {
return Slot::Closure_context();
} else {
RELEASE_ASSERT(offset == Closure::hash_offset());
return Slot::Closure_hash();
}
}
void BytecodeFlowGraphBuilder::BuildStoreFieldTOS() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(2);
Operand cp_index = DecodeOperandD();
const Field& field = Field::Cast(ConstantAt(cp_index, 1).value());
ASSERT(Smi::Cast(ConstantAt(cp_index).value()).Value() * kWordSize ==
field.Offset());
if (field.Owner() == isolate()->object_store()->closure_class()) {
// Stores to _Closure fields are lower-level.
code_ += B->StoreInstanceField(position_, ClosureSlotByField(field));
} else {
// The rest of the StoreFieldTOS are for field initializers.
// TODO(alexmarkov): Consider adding a flag to StoreFieldTOS or even
// adding a separate bytecode instruction.
code_ += B->StoreInstanceFieldGuarded(field,
/* is_initialization_store = */ true);
}
}
void BytecodeFlowGraphBuilder::BuildLoadFieldTOS() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(1);
Operand cp_index = DecodeOperandD();
const Field& field = Field::Cast(ConstantAt(cp_index, 1).value());
ASSERT(Smi::Cast(ConstantAt(cp_index).value()).Value() * kWordSize ==
field.Offset());
if (field.Owner() == isolate()->object_store()->closure_class()) {
// Loads from _Closure fields are lower-level.
code_ += B->LoadNativeField(ClosureSlotByField(field));
} else {
code_ += B->LoadField(field);
}
}
void BytecodeFlowGraphBuilder::BuildStoreContextParent() {
LoadStackSlots(2);
code_ += B->StoreInstanceField(position_, Slot::Context_parent());
}
void BytecodeFlowGraphBuilder::BuildLoadContextParent() {
LoadStackSlots(1);
code_ += B->LoadNativeField(Slot::Context_parent());
}
void BytecodeFlowGraphBuilder::BuildStoreContextVar() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(2);
const intptr_t context_id = DecodeOperandA().value();
const intptr_t var_index = DecodeOperandE().value();
auto var =
CompilerState::Current().GetDummyCapturedVariable(context_id, var_index);
code_ += B->StoreInstanceField(
position_, Slot::GetContextVariableSlotFor(thread(), *var));
}
void BytecodeFlowGraphBuilder::BuildLoadContextVar() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(1);
const intptr_t context_id = DecodeOperandA().value();
const intptr_t var_index = DecodeOperandE().value();
auto var =
CompilerState::Current().GetDummyCapturedVariable(context_id, var_index);
code_ += B->LoadNativeField(Slot::GetContextVariableSlotFor(thread(), *var));
}
void BytecodeFlowGraphBuilder::BuildLoadTypeArgumentsField() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(1);
const intptr_t offset =
Smi::Cast(ConstantAt(DecodeOperandD()).value()).Value() * kWordSize;
code_ += B->LoadNativeField(Slot::GetTypeArgumentsSlotAt(thread(), offset));
}
void BytecodeFlowGraphBuilder::BuildStoreStaticTOS() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(1);
Operand cp_index = DecodeOperandD();
const Field& field = Field::Cast(ConstantAt(cp_index).value());
code_ += B->StoreStaticField(position_, field);
}
void BytecodeFlowGraphBuilder::BuildLoadStatic() {
const Constant operand = ConstantAt(DecodeOperandD());
const auto& field = Field::Cast(operand.value());
// All constant expressions (including access to const fields) are evaluated
// in bytecode. However, values of injected cid fields are only available in
// the VM. In such case, evaluate const fields with known value here.
if (field.is_const() && !field.has_initializer()) {
const auto& value = Object::ZoneHandle(Z, field.StaticValue());
ASSERT((value.raw() != Object::sentinel().raw()) &&
(value.raw() != Object::transition_sentinel().raw()));
code_ += B->Constant(value);
return;
}
PushConstant(operand);
code_ += B->LoadStaticField();
}
static_assert(KernelBytecode::kMinSupportedBytecodeFormatVersion < 19,
"Cleanup PushStatic bytecode instruction");
void BytecodeFlowGraphBuilder::BuildPushStatic() {
// Note: Field object is both pushed into the stack and
// available in constant pool entry D.
// TODO(alexmarkov): clean this up. If we stop pushing field object
// explicitly, we might need the following code to get it from constant
// pool: PushConstant(ConstantAt(DecodeOperandD()));
code_ += B->LoadStaticField();
}
void BytecodeFlowGraphBuilder::BuildStoreIndexedTOS() {
LoadStackSlots(3);
code_ += B->StoreIndexed(kArrayCid);
}
void BytecodeFlowGraphBuilder::BuildBooleanNegateTOS() {
LoadStackSlots(1);
code_ += B->BooleanNegate();
}
void BytecodeFlowGraphBuilder::BuildInstantiateType() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const AbstractType& type =
AbstractType::Cast(ConstantAt(DecodeOperandD()).value());
LoadStackSlots(2);
code_ += B->InstantiateType(type);
}
void BytecodeFlowGraphBuilder::BuildInstantiateTypeArgumentsTOS() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const TypeArguments& type_args =
TypeArguments::Cast(ConstantAt(DecodeOperandE()).value());
LoadStackSlots(2);
code_ += B->InstantiateTypeArguments(type_args);
}
void BytecodeFlowGraphBuilder::BuildAssertBoolean() {
LoadStackSlots(1);
code_ += B->AssertBool(position_);
}
void BytecodeFlowGraphBuilder::BuildAssertAssignable() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(5);
const String& dst_name = String::Cast(PopConstant().value());
Value* function_type_args = Pop();
Value* instantiator_type_args = Pop();
const AbstractType& dst_type = AbstractType::Cast(PopConstant().value());
Value* value = Pop();
AssertAssignableInstr* instr = new (Z) AssertAssignableInstr(
position_, value, instantiator_type_args, function_type_args, dst_type,
dst_name, B->GetNextDeoptId());
code_ <<= instr;
B->Push(instr);
}
void BytecodeFlowGraphBuilder::BuildAssertSubtype() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(5);
const String& dst_name = String::Cast(PopConstant().value());
const AbstractType& super_type = AbstractType::Cast(PopConstant().value());
const AbstractType& sub_type = AbstractType::Cast(PopConstant().value());
Value* function_type_args = Pop();
Value* instantiator_type_args = Pop();
AssertSubtypeInstr* instr = new (Z)
AssertSubtypeInstr(position_, instantiator_type_args, function_type_args,
sub_type, super_type, dst_name, B->GetNextDeoptId());
code_ <<= instr;
}
void BytecodeFlowGraphBuilder::BuildCheckReceiverForNull() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const String& selector = String::Cast(ConstantAt(DecodeOperandD()).value());
LocalVariable* receiver_temp = B->MakeTemporary();
code_ +=
B->CheckNull(position_, receiver_temp, selector, /*clear_temp=*/false);
code_ += B->Drop();
}
void BytecodeFlowGraphBuilder::BuildJump() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const intptr_t target_pc = pc_ + DecodeOperandT().value();
JoinEntryInstr* join = jump_targets_.Lookup(target_pc);
ASSERT(join != nullptr);
code_ += B->Goto(join);
PropagateStackState(target_pc);
B->stack_ = nullptr;
}
void BytecodeFlowGraphBuilder::BuildJumpIfNoAsserts() {
ASSERT(IsStackEmpty());
if (!isolate()->asserts()) {
BuildJump();
// Skip all instructions up to the target PC, as they are all unreachable.
// If not skipped, some of the assert code may be considered reachable
// (if it contains jumps) and generated. The problem is that generated
// code may expect values left on the stack from unreachable
// (and not generated) code which immediately follows this Jump.
next_pc_ = pc_ + DecodeOperandT().value();
ASSERT(next_pc_ > pc_);
}
}
void BytecodeFlowGraphBuilder::BuildJumpIfNotZeroTypeArgs() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
TargetEntryInstr *is_zero, *is_not_zero;
code_ += B->LoadArgDescriptor();
code_ += B->LoadNativeField(Slot::ArgumentsDescriptor_type_args_len());
code_ += B->IntConstant(0);
code_ += B->BranchIfEqual(&is_zero, &is_not_zero);
const intptr_t target_pc = pc_ + DecodeOperandT().value();
JoinEntryInstr* join = jump_targets_.Lookup(target_pc);
ASSERT(join != nullptr);
Fragment(is_not_zero) += B->Goto(join);
PropagateStackState(target_pc);
code_ = Fragment(code_.entry, is_zero);
}
void BytecodeFlowGraphBuilder::BuildJumpIfStrictCompare(Token::Kind cmp_kind) {
ASSERT((cmp_kind == Token::kEQ) || (cmp_kind == Token::kNE));
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LoadStackSlots(2);
// Fallthrough should correspond to 'then' branch target.
// This results in a slightly better regalloc.
TargetEntryInstr* then_entry = nullptr;
TargetEntryInstr* else_entry = nullptr;
code_ += B->BranchIfEqual(&then_entry, &else_entry,
/* negate = */ (cmp_kind == Token::kEQ));
const intptr_t target_pc = pc_ + DecodeOperandT().value();
JoinEntryInstr* join = jump_targets_.Lookup(target_pc);
ASSERT(join != nullptr);
code_ = Fragment(else_entry);
code_ += B->Goto(join);
PropagateStackState(target_pc);
code_ = Fragment(then_entry);
}
void BytecodeFlowGraphBuilder::BuildJumpIfEqStrict() {
BuildJumpIfStrictCompare(Token::kEQ);
}
void BytecodeFlowGraphBuilder::BuildJumpIfNeStrict() {
BuildJumpIfStrictCompare(Token::kNE);
}
void BytecodeFlowGraphBuilder::BuildJumpIfTrue() {
code_ += B->Constant(Bool::True());
BuildJumpIfStrictCompare(Token::kEQ);
}
void BytecodeFlowGraphBuilder::BuildJumpIfFalse() {
code_ += B->Constant(Bool::False());
BuildJumpIfStrictCompare(Token::kEQ);
}
void BytecodeFlowGraphBuilder::BuildJumpIfNull() {
code_ += B->NullConstant();
BuildJumpIfStrictCompare(Token::kEQ);
}
void BytecodeFlowGraphBuilder::BuildJumpIfNotNull() {
code_ += B->NullConstant();
BuildJumpIfStrictCompare(Token::kNE);
}
void BytecodeFlowGraphBuilder::BuildJumpIfUnchecked() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
ASSERT(IsStackEmpty());
const intptr_t target_pc = pc_ + DecodeOperandT().value();
JoinEntryInstr* target = jump_targets_.Lookup(target_pc);
ASSERT(target != nullptr);
FunctionEntryInstr* unchecked_entry = nullptr;
const intptr_t kCheckedEntry =
static_cast<intptr_t>(UncheckedEntryPointStyle::kNone);
const intptr_t kUncheckedEntry =
static_cast<intptr_t>(UncheckedEntryPointStyle::kSharedWithVariable);
switch (entry_point_style_) {
case UncheckedEntryPointStyle::kNone: {
JoinEntryInstr* do_checks = B->BuildJoinEntry();
code_ += B->Goto(B->InliningUncheckedEntry() ? target : do_checks);
code_ = Fragment(do_checks);
} break;
case UncheckedEntryPointStyle::kSeparate: {
// Route normal entry to checks.
if (FLAG_enable_testing_pragmas) {
code_ += B->IntConstant(kCheckedEntry);
code_ += B->BuildEntryPointsIntrospection();
}
Fragment do_checks = code_;
// Create a separate unchecked entry point.
unchecked_entry = B->BuildFunctionEntry(graph_entry_);
code_ = Fragment(unchecked_entry);
// Re-build prologue for unchecked entry point. It can only contain
// Entry, CheckStack and DebugCheck instructions.
bytecode_instr_ = raw_bytecode_;
ASSERT(KernelBytecode::IsEntryOpcode(bytecode_instr_));
bytecode_instr_ = KernelBytecode::Next(bytecode_instr_);
while (!KernelBytecode::IsJumpIfUncheckedOpcode(bytecode_instr_)) {
ASSERT(KernelBytecode::IsCheckStackOpcode(bytecode_instr_) ||
KernelBytecode::IsDebugCheckOpcode(bytecode_instr_));
ASSERT(jump_targets_.Lookup(bytecode_instr_ - raw_bytecode_) ==
nullptr);
BuildInstruction(KernelBytecode::DecodeOpcode(bytecode_instr_));
bytecode_instr_ = KernelBytecode::Next(bytecode_instr_);
}
ASSERT((bytecode_instr_ - raw_bytecode_) == pc_);
if (FLAG_enable_testing_pragmas) {
code_ += B->IntConstant(
static_cast<intptr_t>(UncheckedEntryPointStyle::kSeparate));
code_ += B->BuildEntryPointsIntrospection();
}
code_ += B->Goto(target);
code_ = do_checks;
} break;
case UncheckedEntryPointStyle::kSharedWithVariable: {
LocalVariable* ep_var = parsed_function()->entry_points_temp_var();
// Dispatch based on the value of entry_points_temp_var.
TargetEntryInstr *do_checks, *skip_checks;
if (FLAG_enable_testing_pragmas) {
code_ += B->LoadLocal(ep_var);
code_ += B->BuildEntryPointsIntrospection();
}
code_ += B->LoadLocal(ep_var);
code_ += B->IntConstant(kUncheckedEntry);
code_ += B->BranchIfEqual(&skip_checks, &do_checks, /*negate=*/false);
code_ = Fragment(skip_checks);
code_ += B->Goto(target);
// Relink the body of the function from normal entry to 'prologue_join'.
JoinEntryInstr* prologue_join = B->BuildJoinEntry();
FunctionEntryInstr* normal_entry = graph_entry_->normal_entry();
if (normal_entry->next() != nullptr) {
prologue_join->LinkTo(normal_entry->next());
normal_entry->set_next(nullptr);
}
unchecked_entry = B->BuildFunctionEntry(graph_entry_);
code_ = Fragment(unchecked_entry);
code_ += B->IntConstant(kUncheckedEntry);
code_ += B->StoreLocal(TokenPosition::kNoSource, ep_var);
code_ += B->Drop();
code_ += B->Goto(prologue_join);
code_ = Fragment(normal_entry);
code_ += B->IntConstant(kCheckedEntry);
code_ += B->StoreLocal(TokenPosition::kNoSource, ep_var);
code_ += B->Drop();
code_ += B->Goto(prologue_join);
code_ = Fragment(do_checks);
} break;
}
if (unchecked_entry != nullptr) {
B->RecordUncheckedEntryPoint(graph_entry_, unchecked_entry);
}
}
void BytecodeFlowGraphBuilder::BuildDrop1() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
// AdjustSP(-1);
} else {
code_ += B->Drop();
}
}
void BytecodeFlowGraphBuilder::BuildReturnTOS() {
BuildDebugStepCheck();
LoadStackSlots(1);
ASSERT(code_.is_open());
code_ += B->Return(position_);
ASSERT(IsStackEmpty());
}
void BytecodeFlowGraphBuilder::BuildTrap() {
code_ += Fragment(new (Z) StopInstr("Bytecode Trap instruction")).closed();
}
void BytecodeFlowGraphBuilder::BuildThrow() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
if (DecodeOperandA().value() == 0) {
// throw
LoadStackSlots(1);
code_ += B->PushArgument();
code_ += B->ThrowException(position_);
} else {
// rethrow
LoadStackSlots(2);
GetArguments(2);
code_ += Fragment(new (Z) ReThrowInstr(position_, kInvalidTryIndex,
B->GetNextDeoptId()))
.closed();
}
ASSERT(code_.is_closed());
if (!IsStackEmpty()) {
DropUnusedValuesFromStack();
B->stack_ = nullptr;
}
}
void BytecodeFlowGraphBuilder::BuildMoveSpecial() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
LocalVariable* special_var = nullptr;
switch (DecodeOperandA().value()) {
case KernelBytecode::kExceptionSpecialIndex:
ASSERT(exception_var_ != nullptr);
special_var = exception_var_;
break;
case KernelBytecode::kStackTraceSpecialIndex:
ASSERT(stacktrace_var_ != nullptr);
special_var = stacktrace_var_;
break;
default:
UNREACHABLE();
}
code_ += B->LoadLocal(special_var);
StoreLocal(DecodeOperandY());
code_ += B->Drop();
}
void BytecodeFlowGraphBuilder::BuildSetFrame() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
// No-op in compiled code.
ASSERT(IsStackEmpty());
}
void BytecodeFlowGraphBuilder::BuildEqualsNull() {
BuildDebugStepCheck();
ASSERT(scratch_var_ != nullptr);
LoadStackSlots(1);
TargetEntryInstr* true_branch = nullptr;
TargetEntryInstr* false_branch = nullptr;
code_ += B->BranchIfNull(&true_branch, &false_branch);
JoinEntryInstr* join = B->BuildJoinEntry();
code_ = Fragment(true_branch);
code_ += B->Constant(Bool::True());
code_ += B->StoreLocalRaw(position_, scratch_var_);
code_ += B->Drop();
code_ += B->Goto(join);
code_ = Fragment(false_branch);
code_ += B->Constant(Bool::False());
code_ += B->StoreLocalRaw(position_, scratch_var_);
code_ += B->Drop();
code_ += B->Goto(join);
code_ = Fragment(join);
code_ += B->LoadLocal(scratch_var_);
}
void BytecodeFlowGraphBuilder::BuildPrimitiveOp(
const String& name,
Token::Kind token_kind,
const AbstractType& static_receiver_type,
int num_args) {
ASSERT((num_args == 1) || (num_args == 2));
ASSERT(MethodTokenRecognizer::RecognizeTokenKind(name) == token_kind);
// A DebugStepCheck is performed as part of the calling stub.
LoadStackSlots(num_args);
const ArgumentArray arguments = GetArguments(num_args);
InstanceCallInstr* call = new (Z) InstanceCallInstr(
position_, name, token_kind, arguments, 0, Array::null_array(), num_args,
*ic_data_array_, B->GetNextDeoptId());
call->set_receivers_static_type(&static_receiver_type);
code_ <<= call;
B->Push(call);
}
void BytecodeFlowGraphBuilder::BuildIntOp(const String& name,
Token::Kind token_kind,
int num_args) {
BuildPrimitiveOp(name, token_kind,
AbstractType::ZoneHandle(Z, Type::IntType()), num_args);
}
void BytecodeFlowGraphBuilder::BuildDoubleOp(const String& name,
Token::Kind token_kind,
int num_args) {
BuildPrimitiveOp(name, token_kind,
AbstractType::ZoneHandle(Z, Type::Double()), num_args);
}
void BytecodeFlowGraphBuilder::BuildNegateInt() {
BuildIntOp(Symbols::UnaryMinus(), Token::kNEGATE, 1);
}
void BytecodeFlowGraphBuilder::BuildAddInt() {
BuildIntOp(Symbols::Plus(), Token::kADD, 2);
}
void BytecodeFlowGraphBuilder::BuildSubInt() {
BuildIntOp(Symbols::Minus(), Token::kSUB, 2);
}
void BytecodeFlowGraphBuilder::BuildMulInt() {
BuildIntOp(Symbols::Star(), Token::kMUL, 2);
}
void BytecodeFlowGraphBuilder::BuildTruncDivInt() {
BuildIntOp(Symbols::TruncDivOperator(), Token::kTRUNCDIV, 2);
}
void BytecodeFlowGraphBuilder::BuildModInt() {
BuildIntOp(Symbols::Percent(), Token::kMOD, 2);
}
void BytecodeFlowGraphBuilder::BuildBitAndInt() {
BuildIntOp(Symbols::Ampersand(), Token::kBIT_AND, 2);
}
void BytecodeFlowGraphBuilder::BuildBitOrInt() {
BuildIntOp(Symbols::BitOr(), Token::kBIT_OR, 2);
}
void BytecodeFlowGraphBuilder::BuildBitXorInt() {
BuildIntOp(Symbols::Caret(), Token::kBIT_XOR, 2);
}
void BytecodeFlowGraphBuilder::BuildShlInt() {
BuildIntOp(Symbols::LeftShiftOperator(), Token::kSHL, 2);
}
void BytecodeFlowGraphBuilder::BuildShrInt() {
BuildIntOp(Symbols::RightShiftOperator(), Token::kSHR, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareIntEq() {
BuildIntOp(Symbols::EqualOperator(), Token::kEQ, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareIntGt() {
BuildIntOp(Symbols::RAngleBracket(), Token::kGT, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareIntLt() {
BuildIntOp(Symbols::LAngleBracket(), Token::kLT, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareIntGe() {
BuildIntOp(Symbols::GreaterEqualOperator(), Token::kGTE, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareIntLe() {
BuildIntOp(Symbols::LessEqualOperator(), Token::kLTE, 2);
}
void BytecodeFlowGraphBuilder::BuildNegateDouble() {
BuildDoubleOp(Symbols::UnaryMinus(), Token::kNEGATE, 1);
}
void BytecodeFlowGraphBuilder::BuildAddDouble() {
BuildDoubleOp(Symbols::Plus(), Token::kADD, 2);
}
void BytecodeFlowGraphBuilder::BuildSubDouble() {
BuildDoubleOp(Symbols::Minus(), Token::kSUB, 2);
}
void BytecodeFlowGraphBuilder::BuildMulDouble() {
BuildDoubleOp(Symbols::Star(), Token::kMUL, 2);
}
void BytecodeFlowGraphBuilder::BuildDivDouble() {
BuildDoubleOp(Symbols::Slash(), Token::kDIV, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareDoubleEq() {
BuildDoubleOp(Symbols::EqualOperator(), Token::kEQ, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareDoubleGt() {
BuildDoubleOp(Symbols::RAngleBracket(), Token::kGT, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareDoubleLt() {
BuildDoubleOp(Symbols::LAngleBracket(), Token::kLT, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareDoubleGe() {
BuildDoubleOp(Symbols::GreaterEqualOperator(), Token::kGTE, 2);
}
void BytecodeFlowGraphBuilder::BuildCompareDoubleLe() {
BuildDoubleOp(Symbols::LessEqualOperator(), Token::kLTE, 2);
}
void BytecodeFlowGraphBuilder::BuildAllocateClosure() {
if (is_generating_interpreter()) {
UNIMPLEMENTED(); // TODO(alexmarkov): interpreter
}
const Function& target = Function::Cast(ConstantAt(DecodeOperandD()).value());
code_ += B->AllocateClosure(position_, target);
}
// Builds graph for a call to 'dart:ffi::_asFunctionInternal'. The stack must
// look like:
//
// <receiver> => pointer argument
// <type arguments vector> => signatures
// ...
void BytecodeFlowGraphBuilder::BuildFfiAsFunction() {
// The bytecode FGB doesn't eagerly insert PushArguments, so the type
// arguments won't be wrapped in a PushArgumentsInstr.
const TypeArguments& type_args =
TypeArguments::Cast(B->Peek(/*depth=*/1)->AsConstant()->value());
// Drop type arguments, preserving pointer.
code_ += B->DropTempsPreserveTop(1);
code_ += B->BuildFfiAsFunctionInternalCall(type_args);
}
// Builds graph for a call to 'dart:ffi::_nativeCallbackFunction'.
// The call-site must look like this (guaranteed by the FE which inserts it):
//
// _nativeCallbackFunction<NativeSignatureType>(target, exceptionalReturn)
//
// Therefore the stack shall look like:
//
// <exceptional return value> => ensured (by FE) to be a constant
// <target> => closure, ensured (by FE) to be a (non-partially-instantiated)
// static tearoff
// <type args> => [NativeSignatureType]
void BytecodeFlowGraphBuilder::BuildFfiNativeCallbackFunction() {
#if defined(TARGET_ARCH_DBC)
UNREACHABLE();
#else
const TypeArguments& type_args =
TypeArguments::Cast(B->Peek(/*depth=*/2)->AsConstant()->value());
ASSERT(type_args.IsInstantiated() && type_args.Length() == 1);
const Function& native_sig = Function::Handle(
Z, Type::Cast(AbstractType::Handle(Z, type_args.TypeAt(0))).signature());
const Closure& target_closure =
Closure::Cast(B->Peek(/*depth=*/1)->AsConstant()->value());
ASSERT(!target_closure.IsNull());
Function& target = Function::Handle(Z, target_closure.function());
ASSERT(!target.IsNull() && target.IsImplicitClosureFunction());
target = target.parent_function();
const Instance& exceptional_return =
Instance::Cast(B->Peek(/*depth=*/0)->AsConstant()->value());
const Function& result =
Function::ZoneHandle(Z, compiler::ffi::NativeCallbackFunction(
native_sig, target, exceptional_return));
code_ += B->Constant(result);
code_ += B->DropTempsPreserveTop(3);
#endif
}
void BytecodeFlowGraphBuilder::BuildDebugStepCheck() {
#if !defined(PRODUCT)
if (build_debug_step_checks_) {
code_ += B->DebugStepCheck(position_);
}
#endif // !defined(PRODUCT)
}
intptr_t BytecodeFlowGraphBuilder::GetTryIndex(const PcDescriptors& descriptors,
intptr_t pc) {
const uword pc_offset =
KernelBytecode::BytecodePcToOffset(pc, /* is_return_address = */ true);
PcDescriptors::Iterator iter(descriptors, RawPcDescriptors::kAnyKind);
intptr_t try_index = kInvalidTryIndex;
while (iter.MoveNext()) {
const intptr_t current_try_index = iter.TryIndex();
const uword start_pc = iter.PcOffset();
if (pc_offset < start_pc) {
break;
}
const bool has_next = iter.MoveNext();
ASSERT(has_next);
const uword end_pc = iter.PcOffset();
if (start_pc <= pc_offset && pc_offset < end_pc) {
ASSERT(try_index < current_try_index);
try_index = current_try_index;
}
}
return try_index;
}
JoinEntryInstr* BytecodeFlowGraphBuilder::EnsureControlFlowJoin(
const PcDescriptors& descriptors,
intptr_t pc) {
ASSERT((0 <= pc) && (pc < bytecode_length_));
JoinEntryInstr* join = jump_targets_.Lookup(pc);
if (join == nullptr) {
join = B->BuildJoinEntry(GetTryIndex(descriptors, pc));
jump_targets_.Insert(pc, join);
}
return join;
}
bool BytecodeFlowGraphBuilder::RequiresScratchVar(const KBCInstr* instr) {
switch (KernelBytecode::DecodeOpcode(instr)) {
case KernelBytecode::kEntryOptional:
return KernelBytecode::DecodeC(instr) > 0;
case KernelBytecode::kEqualsNull:
return true;
case KernelBytecode::kNativeCall:
case KernelBytecode::kNativeCall_Wide:
return MethodRecognizer::RecognizeKind(function()) ==
MethodRecognizer::kListFactory;
default:
return false;
}
}
void BytecodeFlowGraphBuilder::CollectControlFlow(
const PcDescriptors& descriptors,
const ExceptionHandlers& handlers,
GraphEntryInstr* graph_entry) {
bool seen_jump_if_unchecked = false;
for (intptr_t pc = 0; pc < bytecode_length_;) {
const KBCInstr* instr = &(raw_bytecode_[pc]);
if (KernelBytecode::IsJumpOpcode(instr)) {
const intptr_t target = pc + KernelBytecode::DecodeT(instr);
EnsureControlFlowJoin(descriptors, target);
if (KernelBytecode::IsJumpIfUncheckedOpcode(instr)) {
if (seen_jump_if_unchecked) {
FATAL1(
"Multiple JumpIfUnchecked bytecode instructions are not allowed: "
"%s.",
function().ToFullyQualifiedCString());
}
seen_jump_if_unchecked = true;
ASSERT(entry_point_style_ == UncheckedEntryPointStyle::kNone);
entry_point_style_ = ChooseEntryPointStyle(instr);
if (entry_point_style_ ==
UncheckedEntryPointStyle::kSharedWithVariable) {
parsed_function_->EnsureEntryPointsTemp();
}
}
} else if (KernelBytecode::IsCheckStackOpcode(instr) &&
(KernelBytecode::DecodeA(instr) != 0)) {
// (dartbug.com/36590) BlockEntryInstr::FindOsrEntryAndRelink assumes
// that CheckStackOverflow instruction is at the beginning of a join
// block.
EnsureControlFlowJoin(descriptors, pc);
}
if ((scratch_var_ == nullptr) && RequiresScratchVar(instr)) {
scratch_var_ = new (Z)
LocalVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::ExprTemp(), Object::dynamic_type());
}
pc += (KernelBytecode::Next(instr) - instr);
}
PcDescriptors::Iterator iter(descriptors, RawPcDescriptors::kAnyKind);
while (iter.MoveNext()) {
const intptr_t start_pc = KernelBytecode::OffsetToBytecodePc(
iter.PcOffset(), /* is_return_address = */ true);
EnsureControlFlowJoin(descriptors, start_pc);
const bool has_next = iter.MoveNext();
ASSERT(has_next);
const intptr_t end_pc = KernelBytecode::OffsetToBytecodePc(
iter.PcOffset(), /* is_return_address = */ true);
EnsureControlFlowJoin(descriptors, end_pc);
}
if (handlers.num_entries() > 0) {
B->InlineBailout("kernel::BytecodeFlowGraphBuilder::CollectControlFlow");
exception_var_ = new (Z)
LocalVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::ExceptionVar(), Object::dynamic_type());
stacktrace_var_ = new (Z)
LocalVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::StackTraceVar(), Object::dynamic_type());
}
for (intptr_t try_index = 0; try_index < handlers.num_entries();
++try_index) {
ExceptionHandlerInfo handler_info;
handlers.GetHandlerInfo(try_index, &handler_info);
const intptr_t handler_pc = KernelBytecode::OffsetToBytecodePc(
handler_info.handler_pc_offset, /* is_return_address = */ false);
JoinEntryInstr* join = EnsureControlFlowJoin(descriptors, handler_pc);
// Make sure exception handler starts with SetFrame bytecode instruction.
ASSERT(KernelBytecode::IsSetFrameOpcode(&(raw_bytecode_[handler_pc])));
const Array& handler_types =
Array::ZoneHandle(Z, handlers.GetHandledTypes(try_index));
CatchBlockEntryInstr* entry = new (Z) CatchBlockEntryInstr(
handler_info.is_generated != 0, B->AllocateBlockId(),
handler_info.outer_try_index, graph_entry, handler_types, try_index,
handler_info.needs_stacktrace != 0, B->GetNextDeoptId(), nullptr,
nullptr, exception_var_, stacktrace_var_);
graph_entry->AddCatchEntry(entry);
code_ = Fragment(entry);
code_ += B->Goto(join);
}
}
UncheckedEntryPointStyle BytecodeFlowGraphBuilder::ChooseEntryPointStyle(
const KBCInstr* jump_if_unchecked) {
ASSERT(KernelBytecode::IsJumpIfUncheckedOpcode(jump_if_unchecked));
if (!function().MayHaveUncheckedEntryPoint(isolate())) {
return UncheckedEntryPointStyle::kNone;
}
// Separate entry points are used if bytecode has the following pattern:
// Entry
// CheckStack (optional)
// DebugCheck (optional)
// JumpIfUnchecked
//
const KBCInstr* instr = raw_bytecode_;
if (!KernelBytecode::IsEntryOpcode(instr)) {
return UncheckedEntryPointStyle::kSharedWithVariable;
}
instr = KernelBytecode::Next(instr);
if (KernelBytecode::IsCheckStackOpcode(instr)) {
instr = KernelBytecode::Next(instr);
}
if (KernelBytecode::IsDebugCheckOpcode(instr)) {
instr = KernelBytecode::Next(instr);
}
if (instr != jump_if_unchecked) {
return UncheckedEntryPointStyle::kSharedWithVariable;
}
return UncheckedEntryPointStyle::kSeparate;
}
void BytecodeFlowGraphBuilder::CreateParameterVariables() {
const Bytecode& bytecode = Bytecode::Handle(Z, function().bytecode());
object_pool_ = bytecode.object_pool();
bytecode_instr_ = reinterpret_cast<const KBCInstr*>(bytecode.PayloadStart());
if (KernelBytecode::IsEntryOptionalOpcode(bytecode_instr_)) {
scratch_var_ = parsed_function_->EnsureExpressionTemp();
AllocateParametersAndLocalsForEntryOptional();
} else if (KernelBytecode::IsEntryOpcode(bytecode_instr_)) {
AllocateLocalVariables(DecodeOperandD());
AllocateFixedParameters();
} else if (KernelBytecode::IsEntryFixedOpcode(bytecode_instr_)) {
AllocateLocalVariables(DecodeOperandE());
AllocateFixedParameters();
} else {
UNREACHABLE();
}
}
intptr_t BytecodeFlowGraphBuilder::UpdateScope(
BytecodeLocalVariablesIterator* iter,
intptr_t pc) {
// Leave scopes that have ended.
while ((current_scope_ != nullptr) && (current_scope_->end_pc_ <= pc)) {
for (LocalVariable* local : current_scope_->hidden_vars_) {
local_vars_[-local->index().value()] = local;
}
current_scope_ = current_scope_->parent_;
}
// Enter scopes that have started.
intptr_t next_pc = bytecode_length_;
while (!iter->IsDone()) {
if (iter->IsScope()) {
if (iter->StartPC() > pc) {
next_pc = iter->StartPC();
break;
}
if (iter->EndPC() > pc) {
// Push new scope and declare its variables.
current_scope_ = new (Z) BytecodeScope(
Z, iter->EndPC(), iter->ContextLevel(), current_scope_);
if (!seen_parameters_scope_) {
// Skip variables from the first scope as it may contain variables
// which were used in prologue (parameters, function type arguments).
// The already used variables should not be replaced with new ones.
seen_parameters_scope_ = true;
iter->MoveNext();
continue;
}
while (iter->MoveNext() && iter->IsVariableDeclaration()) {
const intptr_t index = iter->Index();
if (!iter->IsCaptured() && (index >= 0)) {
LocalVariable* local = new (Z) LocalVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource,
String::ZoneHandle(Z, iter->Name()),
AbstractType::ZoneHandle(Z, iter->Type()));
local->set_index(VariableIndex(-index));
ASSERT(local_vars_[index]->index().value() == -index);
current_scope_->hidden_vars_.Add(local_vars_[index]);
local_vars_[index] = local;
}
}
continue;
}
}
iter->MoveNext();
}
if (current_scope_ != nullptr && next_pc > current_scope_->end_pc_) {
next_pc = current_scope_->end_pc_;
}
B->set_context_depth(
current_scope_ != nullptr ? current_scope_->context_level_ : 0);
return next_pc;
}
FlowGraph* BytecodeFlowGraphBuilder::BuildGraph() {
const Bytecode& bytecode = Bytecode::Handle(Z, function().bytecode());
object_pool_ = bytecode.object_pool();
raw_bytecode_ = reinterpret_cast<const KBCInstr*>(bytecode.PayloadStart());
bytecode_length_ = bytecode.Size() / sizeof(KBCInstr);
graph_entry_ = new (Z) GraphEntryInstr(*parsed_function_, B->osr_id_);
auto normal_entry = B->BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
const PcDescriptors& descriptors =
PcDescriptors::Handle(Z, bytecode.pc_descriptors());
const ExceptionHandlers& handlers =
ExceptionHandlers::Handle(Z, bytecode.exception_handlers());
CollectControlFlow(descriptors, handlers, graph_entry_);
inferred_types_attribute_ ^= BytecodeReader::GetBytecodeAttribute(
function(), Symbols::vm_inferred_type_metadata());
kernel::BytecodeSourcePositionsIterator source_pos_iter(Z, bytecode);
bool update_position = source_pos_iter.MoveNext();
kernel::BytecodeLocalVariablesIterator local_vars_iter(Z, bytecode);
intptr_t next_pc_to_update_scope =
local_vars_iter.MoveNext() ? 0 : bytecode_length_;
code_ = Fragment(normal_entry);
for (pc_ = 0; pc_ < bytecode_length_; pc_ = next_pc_) {
bytecode_instr_ = &(raw_bytecode_[pc_]);
next_pc_ = pc_ + (KernelBytecode::Next(bytecode_instr_) - bytecode_instr_);
JoinEntryInstr* join = jump_targets_.Lookup(pc_);
if (join != nullptr) {
Value* stack_state = stack_states_.Lookup(pc_);
if (code_.is_open()) {
if (stack_state != B->stack_) {
ASSERT(stack_state == nullptr);
stack_states_.Insert(pc_, B->stack_);
}
code_ += B->Goto(join);
} else {
ASSERT(IsStackEmpty());
B->stack_ = stack_state;
}
code_ = Fragment(join);
join->set_stack_depth(B->GetStackDepth());
B->SetCurrentTryIndex(join->try_index());
} else {
// Unreachable bytecode is not allowed.
ASSERT(!code_.is_closed());
}
while (update_position &&
static_cast<uword>(pc_) >= source_pos_iter.PcOffset()) {
position_ = source_pos_iter.TokenPos();
update_position = source_pos_iter.MoveNext();
}
if (pc_ >= next_pc_to_update_scope) {
next_pc_to_update_scope = UpdateScope(&local_vars_iter, pc_);
}
BuildInstruction(KernelBytecode::DecodeOpcode(bytecode_instr_));
if (code_.is_closed()) {
ASSERT(IsStackEmpty());
}
}
// When compiling for OSR, use a depth first search to find the OSR
// entry and make graph entry jump to it instead of normal entry.
// Catch entries are always considered reachable, even if they
// become unreachable after OSR.
if (B->IsCompiledForOsr()) {
graph_entry_->RelinkToOsrEntry(Z, B->last_used_block_id_ + 1);
}
FlowGraph* flow_graph = new (Z) FlowGraph(
*parsed_function_, graph_entry_, B->last_used_block_id_, prologue_info_);
if (FLAG_print_flow_graph_from_bytecode) {
FlowGraphPrinter::PrintGraph("Constructed from bytecode", flow_graph);
}
return flow_graph;
}
} // namespace kernel
} // namespace dart
#endif // !defined(DART_PRECOMPILED_RUNTIME)