| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/compiler/runtime_api.h" |
| #include "vm/globals.h" |
| |
| // For `AllocateObjectInstr::WillAllocateNewOrRemembered` |
| #include "vm/compiler/backend/il.h" |
| |
| #define SHOULD_NOT_INCLUDE_RUNTIME |
| |
| #include "vm/compiler/backend/locations.h" |
| #include "vm/compiler/stub_code_compiler.h" |
| |
| #if defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME) |
| |
| #include "vm/class_id.h" |
| #include "vm/code_entry_kind.h" |
| #include "vm/compiler/assembler/assembler.h" |
| #include "vm/constants.h" |
| #include "vm/instructions.h" |
| #include "vm/static_type_exactness_state.h" |
| #include "vm/tags.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| |
| DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects."); |
| DEFINE_FLAG(bool, |
| use_slow_path, |
| false, |
| "Set to true for debugging & verifying the slow paths."); |
| DECLARE_FLAG(bool, precompiled_mode); |
| |
| namespace compiler { |
| |
| // Ensures that [RAX] is a new object, if not it will be added to the remembered |
| // set via a leaf runtime call. |
| // |
| // WARNING: This might clobber all registers except for [RAX], [THR] and [FP]. |
| // The caller should simply call LeaveStubFrame() and return. |
| static void EnsureIsNewOrRemembered(Assembler* assembler, |
| bool preserve_registers = true) { |
| // If the object is not remembered we call a leaf-runtime to add it to the |
| // remembered set. |
| Label done; |
| __ testq(RAX, Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
| __ BranchIf(NOT_ZERO, &done); |
| |
| if (preserve_registers) { |
| __ EnterCallRuntimeFrame(0); |
| } else { |
| __ ReserveAlignedFrameSpace(0); |
| } |
| __ movq(CallingConventions::kArg1Reg, RAX); |
| __ movq(CallingConventions::kArg2Reg, THR); |
| __ CallRuntime(kAddAllocatedObjectToRememberedSetRuntimeEntry, 2); |
| if (preserve_registers) { |
| __ LeaveCallRuntimeFrame(); |
| } |
| |
| __ Bind(&done); |
| } |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of last argument in argument array. |
| // RSP + 8*R10 : address of first argument in argument array. |
| // RSP + 8*R10 + 8 : address of return value. |
| // RBX : address of the runtime function to call. |
| // R10 : number of arguments to the call. |
| // Must preserve callee saved registers R12 and R13. |
| void StubCodeCompiler::GenerateCallToRuntimeStub(Assembler* assembler) { |
| const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
| const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
| |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(RAX, Immediate(VMTag::kDartCompiledTagId)); |
| __ cmpq(RAX, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing VM code. |
| __ movq(Assembler::VMTagAddress(), RBX); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| __ subq(RSP, Immediate(target::NativeArguments::StructSize())); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass target::NativeArguments structure by value and call runtime. |
| __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| __ movq(Address(RSP, argc_tag_offset), |
| R10); // Set argc in target::NativeArguments. |
| // Compute argv. |
| __ leaq(RAX, |
| Address(RBP, R10, TIMES_8, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ movq(Address(RSP, argv_offset), |
| RAX); // Set argv in target::NativeArguments. |
| __ addq(RAX, |
| Immediate(1 * target::kWordSize)); // Retval is next to 1st argument. |
| __ movq(Address(RSP, retval_offset), |
| RAX); // Set retval in target::NativeArguments. |
| #if defined(_WIN64) |
| ASSERT(target::NativeArguments::StructSize() > |
| CallingConventions::kRegisterTransferLimit); |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| #endif |
| __ CallCFunction(RBX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
| } |
| |
| __ LeaveStubFrame(); |
| |
| // The following return can jump to a lazy-deopt stub, which assumes RAX |
| // contains a return value and will save it in a GC-visible way. We therefore |
| // have to ensure RAX does not contain any garbage value left from the C |
| // function we called (which has return type "void"). |
| // (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.) |
| __ xorq(RAX, RAX); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStub( |
| Assembler* assembler, |
| bool save_fpu_registers, |
| const RuntimeEntry* target, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return) { |
| // We want the saved registers to appear like part of the caller's frame, so |
| // we push them before calling EnterStubFrame. |
| __ PushRegisters(kDartAvailableCpuRegs, |
| save_fpu_registers ? kAllFpuRegistersList : 0); |
| |
| const intptr_t kSavedCpuRegisterSlots = |
| Utils::CountOneBitsWord(kDartAvailableCpuRegs); |
| |
| const intptr_t kSavedFpuRegisterSlots = |
| save_fpu_registers |
| ? kNumberOfFpuRegisters * kFpuRegisterSize / target::kWordSize |
| : 0; |
| |
| const intptr_t kAllSavedRegistersSlots = |
| kSavedCpuRegisterSlots + kSavedFpuRegisterSlots; |
| |
| // Copy down the return address so the stack layout is correct. |
| __ pushq(Address(RSP, kAllSavedRegistersSlots * target::kWordSize)); |
| |
| __ movq(CODE_REG, Address(THR, self_code_stub_offset_from_thread)); |
| |
| __ EnterStubFrame(); |
| __ CallRuntime(*target, /*argument_count=*/0); |
| if (!allow_return) { |
| __ Breakpoint(); |
| return; |
| } |
| __ LeaveStubFrame(); |
| |
| // Drop "official" return address -- we can just use the one stored above the |
| // saved registers. |
| __ Drop(1); |
| |
| __ PopRegisters(kDartAvailableCpuRegs, |
| save_fpu_registers ? kAllFpuRegistersList : 0); |
| |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateEnterSafepointStub(Assembler* assembler) { |
| RegisterSet all_registers; |
| all_registers.AddAllGeneralRegisters(); |
| __ PushRegisters(all_registers.cpu_registers(), |
| all_registers.fpu_registers()); |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| __ movq(RAX, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread())); |
| __ CallCFunction(RAX); |
| __ LeaveFrame(); |
| |
| __ PopRegisters(all_registers.cpu_registers(), all_registers.fpu_registers()); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointStub(Assembler* assembler) { |
| RegisterSet all_registers; |
| all_registers.AddAllGeneralRegisters(); |
| __ PushRegisters(all_registers.cpu_registers(), |
| all_registers.fpu_registers()); |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Set the execution state to VM while waiting for the safepoint to end. |
| // This isn't strictly necessary but enables tests to check that we're not |
| // in native code anymore. See tests/ffi/function_gc_test.dart for example. |
| __ movq(Address(THR, target::Thread::execution_state_offset()), |
| Immediate(target::Thread::vm_execution_state())); |
| |
| __ movq(RAX, Address(THR, kExitSafepointRuntimeEntry.OffsetFromThread())); |
| __ CallCFunction(RAX); |
| __ LeaveFrame(); |
| |
| __ PopRegisters(all_registers.cpu_registers(), all_registers.fpu_registers()); |
| __ ret(); |
| } |
| |
| // Calls native code within a safepoint. |
| // |
| // On entry: |
| // Stack: arguments set up and aligned for native call, excl. shadow space |
| // RBX = target address to call |
| // |
| // On exit: |
| // Stack pointer lowered by shadow space |
| // RBX, R12 clobbered |
| void StubCodeCompiler::GenerateCallNativeThroughSafepointStub( |
| Assembler* assembler) { |
| __ TransitionGeneratedToNative(RBX, FPREG, /*enter_safepoint=*/true); |
| |
| __ popq(R12); |
| __ CallCFunction(RBX); |
| |
| __ TransitionNativeToGenerated(/*leave_safepoint=*/true); |
| |
| // Faster than jmp because it doesn't confuse the branch predictor. |
| __ pushq(R12); |
| __ ret(); |
| } |
| |
| #if !defined(DART_PRECOMPILER) |
| void StubCodeCompiler::GenerateJITCallbackTrampolines( |
| Assembler* assembler, |
| intptr_t next_callback_id) { |
| Label done; |
| |
| // RAX is volatile and not used for passing any arguments. |
| COMPILE_ASSERT(!IsCalleeSavedRegister(RAX) && !IsArgumentRegister(RAX)); |
| |
| for (intptr_t i = 0; |
| i < NativeCallbackTrampolines::NumCallbackTrampolinesPerPage(); ++i) { |
| __ movq(RAX, compiler::Immediate(next_callback_id + i)); |
| __ jmp(&done); |
| } |
| |
| ASSERT(__ CodeSize() == |
| kNativeCallbackTrampolineSize * |
| NativeCallbackTrampolines::NumCallbackTrampolinesPerPage()); |
| |
| __ Bind(&done); |
| |
| const intptr_t shared_stub_start = __ CodeSize(); |
| |
| // Save THR which is callee-saved. |
| __ pushq(THR); |
| |
| // 2 = THR & return address |
| COMPILE_ASSERT(2 == StubCodeCompiler::kNativeCallbackTrampolineStackDelta); |
| |
| // Save the callback ID. |
| __ pushq(RAX); |
| |
| // Save all registers which might hold arguments. |
| __ PushRegisters(CallingConventions::kArgumentRegisters, |
| CallingConventions::kFpuArgumentRegisters); |
| |
| // Load the thread, verify the callback ID and exit the safepoint. |
| // |
| // We exit the safepoint inside DLRT_GetThreadForNativeCallbackTrampoline |
| // in order to save code size on this shared stub. |
| { |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| COMPILE_ASSERT(RAX != CallingConventions::kArg1Reg); |
| __ movq(CallingConventions::kArg1Reg, RAX); |
| __ movq(RAX, compiler::Immediate(reinterpret_cast<int64_t>( |
| DLRT_GetThreadForNativeCallbackTrampoline))); |
| __ CallCFunction(RAX); |
| __ movq(THR, RAX); |
| |
| __ LeaveFrame(); |
| } |
| |
| // Restore the arguments. |
| __ PopRegisters(CallingConventions::kArgumentRegisters, |
| CallingConventions::kFpuArgumentRegisters); |
| |
| // Restore the callback ID. |
| __ popq(RAX); |
| |
| // Current state: |
| // |
| // Stack: |
| // <old stack (arguments)> |
| // <return address> |
| // <saved THR> |
| // |
| // Registers: Like entry, except RAX == callback_id and THR == thread |
| // All argument registers are untouched. |
| |
| COMPILE_ASSERT(!IsCalleeSavedRegister(TMP) && !IsArgumentRegister(TMP)); |
| |
| // Load the target from the thread. |
| __ movq(TMP, compiler::Address( |
| THR, compiler::target::Thread::callback_code_offset())); |
| __ movq(TMP, compiler::FieldAddress( |
| TMP, compiler::target::GrowableObjectArray::data_offset())); |
| __ movq(TMP, __ ElementAddressForRegIndex( |
| /*external=*/false, |
| /*array_cid=*/kArrayCid, |
| /*index, smi-tagged=*/compiler::target::kWordSize * 2, |
| /*array=*/TMP, |
| /*index=*/RAX)); |
| __ movq(TMP, compiler::FieldAddress( |
| TMP, compiler::target::Code::entry_point_offset())); |
| |
| // On entry to the function, there will be two extra slots on the stack: |
| // the saved THR and the return address. The target will know to skip them. |
| __ call(TMP); |
| |
| // EnterSafepoint takes care to not clobber *any* registers (besides TMP). |
| __ EnterSafepoint(); |
| |
| // Restore THR (callee-saved). |
| __ popq(THR); |
| |
| __ ret(); |
| |
| // 'kNativeCallbackSharedStubSize' is an upper bound because the exact |
| // instruction size can vary slightly based on OS calling conventions. |
| ASSERT((__ CodeSize() - shared_stub_start) <= kNativeCallbackSharedStubSize); |
| ASSERT(__ CodeSize() <= VirtualMemory::PageSize()); |
| |
| #if defined(DEBUG) |
| while (__ CodeSize() < VirtualMemory::PageSize()) { |
| __ Breakpoint(); |
| } |
| #endif |
| } |
| #endif // !defined(DART_PRECOMPILER) |
| |
| // RBX: The extracted method. |
| // RDX: The type_arguments_field_offset (or 0) |
| void StubCodeCompiler::GenerateBuildMethodExtractorStub( |
| Assembler* assembler, |
| const Object& closure_allocation_stub, |
| const Object& context_allocation_stub) { |
| const intptr_t kReceiverOffsetInWords = |
| target::frame_layout.param_end_from_fp + 1; |
| |
| __ EnterStubFrame(); |
| |
| // Push type_arguments vector (or null) |
| Label no_type_args; |
| __ movq(RCX, Address(THR, target::Thread::object_null_offset())); |
| __ cmpq(RDX, Immediate(0)); |
| __ j(EQUAL, &no_type_args, Assembler::kNearJump); |
| __ movq(RAX, Address(RBP, target::kWordSize * kReceiverOffsetInWords)); |
| __ movq(RCX, Address(RAX, RDX, TIMES_1, 0)); |
| __ Bind(&no_type_args); |
| __ pushq(RCX); |
| |
| // Push extracted method. |
| __ pushq(RBX); |
| |
| // Allocate context. |
| { |
| Label done, slow_path; |
| __ TryAllocateArray(kContextCid, target::Context::InstanceSize(1), |
| &slow_path, Assembler::kFarJump, |
| RAX, // instance |
| RSI, // end address |
| RDI); |
| __ movq(RSI, Address(THR, target::Thread::object_null_offset())); |
| __ movq(FieldAddress(RAX, target::Context::parent_offset()), RSI); |
| __ movq(FieldAddress(RAX, target::Context::num_variables_offset()), |
| Immediate(1)); |
| __ jmp(&done); |
| |
| __ Bind(&slow_path); |
| |
| __ LoadImmediate(/*num_vars=*/R10, Immediate(1)); |
| __ LoadObject(CODE_REG, context_allocation_stub); |
| __ call(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| |
| __ Bind(&done); |
| } |
| |
| // Store receiver in context |
| __ movq(RSI, Address(RBP, target::kWordSize * kReceiverOffsetInWords)); |
| __ StoreIntoObject( |
| RAX, FieldAddress(RAX, target::Context::variable_offset(0)), RSI); |
| |
| // Push context. |
| __ pushq(RAX); |
| |
| // Allocate closure. |
| __ LoadObject(CODE_REG, closure_allocation_stub); |
| __ call(FieldAddress( |
| CODE_REG, target::Code::entry_point_offset(CodeEntryKind::kUnchecked))); |
| |
| // Populate closure object. |
| __ popq(RCX); // Pop context. |
| __ StoreIntoObject(RAX, FieldAddress(RAX, target::Closure::context_offset()), |
| RCX); |
| __ popq(RCX); // Pop extracted method. |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, target::Closure::function_offset()), RCX); |
| __ popq(RCX); // Pop type argument vector. |
| __ StoreIntoObjectNoBarrier( |
| RAX, |
| FieldAddress(RAX, target::Closure::instantiator_type_arguments_offset()), |
| RCX); |
| __ LoadObject(RCX, EmptyTypeArguments()); |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, target::Closure::delayed_type_arguments_offset()), |
| RCX); |
| |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateNullErrorSharedWithoutFPURegsStub( |
| Assembler* assembler) { |
| GenerateSharedStub( |
| assembler, /*save_fpu_registers=*/false, &kNullErrorRuntimeEntry, |
| target::Thread::null_error_shared_without_fpu_regs_stub_offset(), |
| /*allow_return=*/false); |
| } |
| |
| void StubCodeCompiler::GenerateNullErrorSharedWithFPURegsStub( |
| Assembler* assembler) { |
| GenerateSharedStub( |
| assembler, /*save_fpu_registers=*/true, &kNullErrorRuntimeEntry, |
| target::Thread::null_error_shared_with_fpu_regs_stub_offset(), |
| /*allow_return=*/false); |
| } |
| |
| void StubCodeCompiler::GenerateStackOverflowSharedWithoutFPURegsStub( |
| Assembler* assembler) { |
| GenerateSharedStub( |
| assembler, /*save_fpu_registers=*/false, &kStackOverflowRuntimeEntry, |
| target::Thread::stack_overflow_shared_without_fpu_regs_stub_offset(), |
| /*allow_return=*/true); |
| } |
| |
| void StubCodeCompiler::GenerateStackOverflowSharedWithFPURegsStub( |
| Assembler* assembler) { |
| GenerateSharedStub( |
| assembler, /*save_fpu_registers=*/true, &kStackOverflowRuntimeEntry, |
| target::Thread::stack_overflow_shared_with_fpu_regs_stub_offset(), |
| /*allow_return=*/true); |
| } |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RDI : stop message (const char*). |
| // Must preserve all registers. |
| void StubCodeCompiler::GeneratePrintStopMessageStub(Assembler* assembler) { |
| __ EnterCallRuntimeFrame(0); |
| // Call the runtime leaf function. RDI already contains the parameter. |
| #if defined(_WIN64) |
| __ movq(CallingConventions::kArg1Reg, RDI); |
| #endif |
| __ CallRuntime(kPrintStopMessageRuntimeEntry, 1); |
| __ LeaveCallRuntimeFrame(); |
| __ ret(); |
| } |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of return value. |
| // RAX : address of first argument in argument array. |
| // RBX : address of the native function to call. |
| // R10 : argc_tag including number of arguments and function kind. |
| static void GenerateCallNativeWithWrapperStub(Assembler* assembler, |
| Address wrapper_address) { |
| const intptr_t native_args_struct_offset = 0; |
| const intptr_t thread_offset = |
| target::NativeArguments::thread_offset() + native_args_struct_offset; |
| const intptr_t argc_tag_offset = |
| target::NativeArguments::argc_tag_offset() + native_args_struct_offset; |
| const intptr_t argv_offset = |
| target::NativeArguments::argv_offset() + native_args_struct_offset; |
| const intptr_t retval_offset = |
| target::NativeArguments::retval_offset() + native_args_struct_offset; |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(R8, Immediate(VMTag::kDartCompiledTagId)); |
| __ cmpq(R8, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ movq(Assembler::VMTagAddress(), RBX); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // RDI) and align frame before entering the C++ world. |
| __ subq(RSP, Immediate(target::NativeArguments::StructSize())); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass target::NativeArguments structure by value and call native function. |
| __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
| __ movq(Address(RSP, argc_tag_offset), |
| R10); // Set argc in target::NativeArguments. |
| __ movq(Address(RSP, argv_offset), |
| RAX); // Set argv in target::NativeArguments. |
| __ leaq(RAX, |
| Address(RBP, 2 * target::kWordSize)); // Compute return value addr. |
| __ movq(Address(RSP, retval_offset), |
| RAX); // Set retval in target::NativeArguments. |
| |
| // Pass the pointer to the target::NativeArguments. |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| // Pass pointer to function entrypoint. |
| __ movq(CallingConventions::kArg2Reg, RBX); |
| |
| __ movq(RAX, wrapper_address); |
| __ CallCFunction(RAX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
| } |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateCallNoScopeNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::no_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| void StubCodeCompiler::GenerateCallAutoScopeNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::auto_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of return value. |
| // RAX : address of first argument in argument array. |
| // RBX : address of the native function to call. |
| // R10 : argc_tag including number of arguments and function kind. |
| void StubCodeCompiler::GenerateCallBootstrapNativeStub(Assembler* assembler) { |
| const intptr_t native_args_struct_offset = 0; |
| const intptr_t thread_offset = |
| target::NativeArguments::thread_offset() + native_args_struct_offset; |
| const intptr_t argc_tag_offset = |
| target::NativeArguments::argc_tag_offset() + native_args_struct_offset; |
| const intptr_t argv_offset = |
| target::NativeArguments::argv_offset() + native_args_struct_offset; |
| const intptr_t retval_offset = |
| target::NativeArguments::retval_offset() + native_args_struct_offset; |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(R8, Immediate(VMTag::kDartCompiledTagId)); |
| __ cmpq(R8, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ movq(Assembler::VMTagAddress(), RBX); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // RDI) and align frame before entering the C++ world. |
| __ subq(RSP, Immediate(target::NativeArguments::StructSize())); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass target::NativeArguments structure by value and call native function. |
| __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
| __ movq(Address(RSP, argc_tag_offset), |
| R10); // Set argc in target::NativeArguments. |
| __ movq(Address(RSP, argv_offset), |
| RAX); // Set argv in target::NativeArguments. |
| __ leaq(RAX, |
| Address(RBP, 2 * target::kWordSize)); // Compute return value addr. |
| __ movq(Address(RSP, retval_offset), |
| RAX); // Set retval in target::NativeArguments. |
| |
| // Pass the pointer to the target::NativeArguments. |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| __ CallCFunction(RBX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
| } |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| // Input parameters: |
| // R10: arguments descriptor array. |
| void StubCodeCompiler::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| // Setup space on stack for return value. |
| __ pushq(Immediate(0)); |
| __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object result. |
| __ popq(R10); // Restore arguments descriptor array. |
| // Remove the stub frame as we are about to jump to the dart function. |
| __ LeaveStubFrame(); |
| |
| __ movq(RBX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RBX); |
| } |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // R10: arguments descriptor array. |
| void StubCodeCompiler::GenerateFixCallersTargetStub(Assembler* assembler) { |
| Label monomorphic; |
| __ BranchOnMonomorphicCheckedEntryJIT(&monomorphic); |
| |
| // This was a static call. |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::fix_callers_target_code_offset())); |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| // Setup space on stack for return value. |
| __ pushq(Immediate(0)); |
| __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object. |
| __ popq(R10); // Restore arguments descriptor array. |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| |
| __ Bind(&monomorphic); |
| // This was a switchable call. |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::fix_callers_target_code_offset())); |
| __ EnterStubFrame(); |
| __ pushq(RBX); // Preserve cache (guarded CID as Smi). |
| __ pushq(RDX); // Preserve receiver. |
| __ pushq(Immediate(0)); // Result slot. |
| __ CallRuntime(kFixCallersTargetMonomorphicRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object. |
| __ popq(RDX); // Restore receiver. |
| __ popq(RBX); // Restore cache (guarded CID as Smi). |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
| CodeEntryKind::kMonomorphic))); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| // Called from object allocate instruction when the allocation stub has been |
| // disabled. |
| void StubCodeCompiler::GenerateFixAllocationStubTargetStub( |
| Assembler* assembler) { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::fix_allocation_stub_code_offset())); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ pushq(Immediate(0)); |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object. |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| // Input parameters: |
| // R10: smi-tagged argument count, may be zero. |
| // RBP[target::frame_layout.param_end_from_fp + 1]: last argument. |
| static void PushArrayOfArguments(Assembler* assembler) { |
| __ LoadObject(R12, NullObject()); |
| // Allocate array to store arguments of caller. |
| __ movq(RBX, R12); // Null element type for raw Array. |
| __ Call(StubCodeAllocateArray()); |
| __ SmiUntag(R10); |
| // RAX: newly allocated array. |
| // R10: length of the array (was preserved by the stub). |
| __ pushq(RAX); // Array is in RAX and on top of stack. |
| __ leaq(R12, |
| Address(RBP, R10, TIMES_8, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ leaq(RBX, FieldAddress(RAX, target::Array::data_offset())); |
| // R12: address of first argument on stack. |
| // RBX: address of first argument in array. |
| Label loop, loop_condition; |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ jmp(&loop_condition, kJumpLength); |
| __ Bind(&loop); |
| __ movq(RDI, Address(R12, 0)); |
| // Generational barrier is needed, array is not necessarily in new space. |
| __ StoreIntoObject(RAX, Address(RBX, 0), RDI); |
| __ addq(RBX, Immediate(target::kWordSize)); |
| __ subq(R12, Immediate(target::kWordSize)); |
| __ Bind(&loop_condition); |
| __ decq(R10); |
| __ j(POSITIVE, &loop, Assembler::kNearJump); |
| } |
| |
| // Used by eager and lazy deoptimization. Preserve result in RAX if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterDartFrame(0, PP, kNoRegister) below: |
| // +------------------+ |
| // | Saved PP | <- PP |
| // +------------------+ |
| // | PC marker | <- TOS |
| // +------------------+ |
| // | Saved FP | <- FP of stub |
| // +------------------+ |
| // | return-address | (deoptimization point) |
| // +------------------+ |
| // | Saved CODE_REG | |
| // +------------------+ |
| // | ... | <- SP of optimized frame |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| DeoptStubKind kind) { |
| // DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_result_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - RAX); |
| const intptr_t saved_exception_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - RAX); |
| const intptr_t saved_stacktrace_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - RDX); |
| // Result in RAX is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) { |
| if (i == CODE_REG) { |
| // Save the original value of CODE_REG pushed before invoking this stub |
| // instead of the value used to call this stub. |
| __ pushq(Address(RBP, 2 * target::kWordSize)); |
| } else { |
| __ pushq(static_cast<Register>(i)); |
| } |
| } |
| __ subq(RSP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize)); |
| intptr_t offset = 0; |
| for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { |
| XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); |
| __ movups(Address(RSP, offset), xmm_reg); |
| offset += kFpuRegisterSize; |
| } |
| |
| // Pass address of saved registers block. |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| bool is_lazy = |
| (kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow); |
| __ movq(CallingConventions::kArg2Reg, Immediate(is_lazy ? 1 : 0)); |
| __ ReserveAlignedFrameSpace(0); // Ensure stack is aligned before the call. |
| __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2); |
| // Result (RAX) is stack-size (FP - SP) in bytes. |
| |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into RBX temporarily. |
| __ movq(RBX, Address(RBP, saved_result_slot_from_fp * target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into RBX temporarily. |
| __ movq(RBX, |
| Address(RBP, saved_exception_slot_from_fp * target::kWordSize)); |
| __ movq(RDX, |
| Address(RBP, saved_stacktrace_slot_from_fp * target::kWordSize)); |
| } |
| |
| // There is a Dart Frame on the stack. We must restore PP and leave frame. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| __ popq(RCX); // Preserve return address. |
| __ movq(RSP, RBP); // Discard optimized frame. |
| __ subq(RSP, RAX); // Reserve space for deoptimized frame. |
| __ pushq(RCX); // Restore return address. |
| |
| // DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| if (kind == kLazyDeoptFromReturn) { |
| __ pushq(RBX); // Preserve result as first local. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ pushq(RBX); // Preserve exception as first local. |
| __ pushq(RDX); // Preserve stacktrace as second local. |
| } |
| __ ReserveAlignedFrameSpace(0); |
| // Pass last FP as a parameter. |
| __ movq(CallingConventions::kArg1Reg, RBP); |
| __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into RBX. |
| __ movq(RBX, Address(RBP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore exception into RBX. |
| __ movq(RBX, Address(RBP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| // Restore stacktrace into RDX. |
| __ movq(RDX, Address(RBP, (target::frame_layout.first_local_from_fp - 1) * |
| target::kWordSize)); |
| } |
| // Code above cannot cause GC. |
| // There is a Dart Frame on the stack. We must restore PP and leave frame. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| // Enter stub frame with loading PP. The caller's PP is not materialized yet. |
| __ EnterStubFrame(); |
| if (kind == kLazyDeoptFromReturn) { |
| __ pushq(RBX); // Preserve result, it will be GC-d here. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ pushq(RBX); // Preserve exception. |
| __ pushq(RDX); // Preserve stacktrace. |
| } |
| __ pushq(Immediate(target::ToRawSmi(0))); // Space for the result. |
| __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
| // Result tells stub how many bytes to remove from the expression stack |
| // of the bottom-most frame. They were used as materialization arguments. |
| __ popq(RBX); |
| __ SmiUntag(RBX); |
| if (kind == kLazyDeoptFromReturn) { |
| __ popq(RAX); // Restore result. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ popq(RDX); // Restore stacktrace. |
| __ popq(RAX); // Restore exception. |
| } |
| __ LeaveStubFrame(); |
| |
| __ popq(RCX); // Pop return address. |
| __ addq(RSP, RBX); // Remove materialization arguments. |
| __ pushq(RCX); // Push return address. |
| // The caller is responsible for emitting the return instruction. |
| } |
| |
| // RAX: result, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub( |
| Assembler* assembler) { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ pushq(Immediate(kZapCodeReg)); |
| // Return address for "call" to deopt stub. |
| __ pushq(Immediate(kZapReturnAddress)); |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::lazy_deopt_from_return_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn); |
| __ ret(); |
| } |
| |
| // RAX: exception, must be preserved |
| // RDX: stacktrace, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub( |
| Assembler* assembler) { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ pushq(Immediate(kZapCodeReg)); |
| // Return address for "call" to deopt stub. |
| __ pushq(Immediate(kZapReturnAddress)); |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::lazy_deopt_from_throw_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateDeoptimizeStub(Assembler* assembler) { |
| __ popq(TMP); |
| __ pushq(CODE_REG); |
| __ pushq(TMP); |
| __ movq(CODE_REG, Address(THR, target::Thread::deoptimize_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| __ ret(); |
| } |
| |
| static void GenerateDispatcherCode(Assembler* assembler, |
| Label* call_target_function) { |
| __ Comment("NoSuchMethodDispatch"); |
| // When lazily generated invocation dispatchers are disabled, the |
| // miss-handler may return null. |
| __ CompareObject(RAX, NullObject()); |
| __ j(NOT_EQUAL, call_target_function); |
| __ EnterStubFrame(); |
| // Load the receiver. |
| __ movq(RDI, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ movq(RAX, |
| Address(RBP, RDI, TIMES_HALF_WORD_SIZE, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ pushq(Immediate(0)); // Setup space on stack for result. |
| __ pushq(RAX); // Receiver. |
| __ pushq(RBX); // ICData/MegamorphicCache. |
| __ pushq(R10); // Arguments descriptor array. |
| |
| // Adjust arguments count. |
| __ cmpq( |
| FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| __ movq(R10, RDI); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addq(R10, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| |
| // R10: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs); |
| __ Drop(4); |
| __ popq(RAX); // Return value. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateMegamorphicMissStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| // Load the receiver into RAX. The argument count in the arguments |
| // descriptor in R10 is a smi. |
| __ movq(RAX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| // Three words (saved pp, saved fp, stub's pc marker) |
| // in the stack above the return address. |
| __ movq(RAX, |
| Address(RSP, RAX, TIMES_4, |
| target::frame_layout.saved_below_pc() * target::kWordSize)); |
| // Preserve IC data and arguments descriptor. |
| __ pushq(RBX); |
| __ pushq(R10); |
| |
| // Space for the result of the runtime call. |
| __ pushq(Immediate(0)); |
| __ pushq(RDX); // Receiver. |
| __ pushq(RBX); // IC data. |
| __ pushq(R10); // Arguments descriptor. |
| __ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry, 3); |
| // Discard arguments. |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); // Return value from the runtime call (function). |
| __ popq(R10); // Restore arguments descriptor. |
| __ popq(RBX); // Restore IC data. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| if (!FLAG_lazy_dispatchers) { |
| Label call_target_function; |
| GenerateDispatcherCode(assembler, &call_target_function); |
| __ Bind(&call_target_function); |
| } |
| __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
| __ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset())); |
| __ jmp(RCX); |
| } |
| |
| // Called for inline allocation of arrays. |
| // Input parameters: |
| // R10 : Array length as Smi. |
| // RBX : array element type (either NULL or an instantiated type). |
| // NOTE: R10 cannot be clobbered here as the caller relies on it being saved. |
| // The newly allocated object is returned in RAX. |
| void StubCodeCompiler::GenerateAllocateArrayStub(Assembler* assembler) { |
| Label slow_case; |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize( |
| // (array_length * target::kwordSize) + target::Array::header_size()). |
| __ movq(RDI, R10); // Array Length. |
| // Check that length is a positive Smi. |
| __ testq(RDI, Immediate(kSmiTagMask)); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(NOT_ZERO, &slow_case); |
| } |
| __ cmpq(RDI, Immediate(0)); |
| __ j(LESS, &slow_case); |
| // Check for maximum allowed length. |
| const Immediate& max_len = |
| Immediate(target::ToRawSmi(target::Array::kMaxNewSpaceElements)); |
| __ cmpq(RDI, max_len); |
| __ j(GREATER, &slow_case); |
| |
| // Check for allocation tracing. |
| NOT_IN_PRODUCT( |
| __ MaybeTraceAllocation(kArrayCid, &slow_case, Assembler::kFarJump)); |
| |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::Array::header_size() + target::ObjectAlignment::kObjectAlignment - |
| 1; |
| // RDI is a Smi. |
| __ leaq(RDI, Address(RDI, TIMES_4, fixed_size_plus_alignment_padding)); |
| ASSERT(kSmiTagShift == 1); |
| __ andq(RDI, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| const intptr_t cid = kArrayCid; |
| __ movq(RAX, Address(THR, target::Thread::top_offset())); |
| |
| // RDI: allocation size. |
| __ movq(RCX, RAX); |
| __ addq(RCX, RDI); |
| __ j(CARRY, &slow_case); |
| |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object start. |
| // RCX: potential next object start. |
| // RDI: allocation size. |
| __ cmpq(RCX, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, &slow_case); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movq(Address(THR, target::Thread::top_offset()), RCX); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, RDI)); |
| // Initialize the tags. |
| // RAX: new object start as a tagged pointer. |
| // RDI: allocation size. |
| { |
| Label size_tag_overflow, done; |
| __ cmpq(RDI, Immediate(target::RawObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(RDI, Immediate(target::RawObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ LoadImmediate(RDI, Immediate(0)); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| uint32_t tags = target::MakeTagWordForNewSpaceObject(cid, 0); |
| __ orq(RDI, Immediate(tags)); |
| __ movq(FieldAddress(RAX, target::Array::tags_offset()), RDI); // Tags. |
| } |
| |
| // RAX: new object start as a tagged pointer. |
| // Store the type argument field. |
| // No generational barrier needed, since we store into a new object. |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, target::Array::type_arguments_offset()), RBX); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, target::Array::length_offset()), R10); |
| |
| // Initialize all array elements to raw_null. |
| // RAX: new object start as a tagged pointer. |
| // RCX: new object end address. |
| // RDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| __ LoadObject(R12, NullObject()); |
| __ leaq(RDI, FieldAddress(RAX, target::Array::header_size())); |
| Label done; |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ cmpq(RDI, RCX); |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(ABOVE_EQUAL, &done, kJumpLength); |
| // No generational barrier needed, since we are storing null. |
| __ StoreIntoObjectNoBarrier(RAX, Address(RDI, 0), R12); |
| __ addq(RDI, Immediate(target::kWordSize)); |
| __ jmp(&init_loop, kJumpLength); |
| __ Bind(&done); |
| __ ret(); // returns the newly allocated object in RAX. |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ pushq(Immediate(0)); |
| __ pushq(R10); // Array length as Smi. |
| __ pushq(RBX); // Element type. |
| __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
| __ popq(RAX); // Pop element type argument. |
| __ popq(R10); // Pop array length argument. |
| __ popq(RAX); // Pop return value from return slot. |
| |
| // Write-barrier elimination might be enabled for this array (depending on the |
| // array length). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler); |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // RSP : points to return address. |
| // RDI : target code |
| // RSI : arguments descriptor array. |
| // RDX : arguments array. |
| // RCX : current thread. |
| void StubCodeCompiler::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| __ pushq(Address(RSP, 0)); // Marker for the profiler. |
| __ EnterFrame(0); |
| |
| const Register kTargetCodeReg = CallingConventions::kArg1Reg; |
| const Register kArgDescReg = CallingConventions::kArg2Reg; |
| const Register kArgsReg = CallingConventions::kArg3Reg; |
| const Register kThreadReg = CallingConventions::kArg4Reg; |
| |
| // Push code object to PC marker slot. |
| __ pushq(Address(kThreadReg, target::Thread::invoke_dart_code_stub_offset())); |
| |
| // At this point, the stack looks like: |
| // | stub code object |
| // | saved RBP | <-- RBP |
| // | saved PC (return to DartEntry::InvokeFunction) | |
| |
| const intptr_t kInitialOffset = 2; |
| // Save arguments descriptor array, later replaced by Smi argument count. |
| const intptr_t kArgumentsDescOffset = -(kInitialOffset)*target::kWordSize; |
| __ pushq(kArgDescReg); |
| |
| // Save C++ ABI callee-saved registers. |
| __ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
| CallingConventions::kCalleeSaveXmmRegisters); |
| |
| // If any additional (or fewer) values are pushed, the offsets in |
| // target::frame_layout.exit_link_slot_from_entry_fp will need to be changed. |
| |
| // Set up THR, which caches the current thread in Dart code. |
| if (THR != kThreadReg) { |
| __ movq(THR, kThreadReg); |
| } |
| |
| // Save the current VMTag on the stack. |
| __ movq(RAX, Assembler::VMTagAddress()); |
| __ pushq(RAX); |
| |
| // Save top resource and top exit frame info. Use RAX as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ movq(RAX, Address(THR, target::Thread::top_resource_offset())); |
| __ pushq(RAX); |
| __ movq(Address(THR, target::Thread::top_resource_offset()), Immediate(0)); |
| __ movq(RAX, Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ pushq(RAX); |
| |
| // The constant target::frame_layout.exit_link_slot_from_entry_fp must be kept |
| // in sync with the code above. |
| __ EmitEntryFrameVerification(); |
| |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // Mark that the thread is executing Dart code. Do this after initializing the |
| // exit link for the profiler. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
| |
| // Load arguments descriptor array into R10, which is passed to Dart code. |
| __ movq(R10, Address(kArgDescReg, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Push arguments. At this point we only need to preserve kTargetCodeReg. |
| ASSERT(kTargetCodeReg != RDX); |
| |
| // Load number of arguments into RBX and adjust count for type arguments. |
| __ movq(RBX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ cmpq( |
| FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addq(RBX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| // Save number of arguments as Smi on stack, replacing saved ArgumentsDesc. |
| __ movq(Address(RBP, kArgumentsDescOffset), RBX); |
| __ SmiUntag(RBX); |
| |
| // Compute address of 'arguments array' data area into RDX. |
| __ movq(RDX, Address(kArgsReg, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ leaq(RDX, FieldAddress(RDX, target::Array::data_offset())); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
| __ LoadImmediate(RAX, Immediate(0)); |
| __ Bind(&push_arguments); |
| __ pushq(Address(RDX, RAX, TIMES_8, 0)); |
| __ incq(RAX); |
| __ cmpq(RAX, RBX); |
| __ j(LESS, &push_arguments, Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
| } else { |
| __ xorq(PP, PP); // GC-safe value into PP. |
| } |
| __ movq(CODE_REG, |
| Address(kTargetCodeReg, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ movq(kTargetCodeReg, |
| FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ call(kTargetCodeReg); // R10 is the arguments descriptor array. |
| |
| // Read the saved number of passed arguments as Smi. |
| __ movq(RDX, Address(RBP, kArgumentsDescOffset)); |
| |
| // Get rid of arguments pushed on the stack. |
| __ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi. |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. |
| __ popq(Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ popq(Address(THR, target::Thread::top_resource_offset())); |
| |
| // Restore the current VMTag from the stack. |
| __ popq(Assembler::VMTagAddress()); |
| |
| // Restore C++ ABI callee-saved registers. |
| __ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
| CallingConventions::kCalleeSaveXmmRegisters); |
| __ set_constant_pool_allowed(false); |
| |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ popq(RCX); |
| |
| __ ret(); |
| } |
| |
| // Called when invoking compiled Dart code from interpreted Dart code. |
| // Input parameters: |
| // RSP : points to return address. |
| // RDI : target raw code |
| // RSI : arguments raw descriptor array. |
| // RDX : address of first argument. |
| // RCX : current thread. |
| void StubCodeCompiler::GenerateInvokeDartCodeFromBytecodeStub( |
| Assembler* assembler) { |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| __ Stop("Not using interpreter"); |
| #else |
| __ pushq(Address(RSP, 0)); // Marker for the profiler. |
| __ EnterFrame(0); |
| |
| const Register kTargetCodeReg = CallingConventions::kArg1Reg; |
| const Register kArgDescReg = CallingConventions::kArg2Reg; |
| const Register kArg0Reg = CallingConventions::kArg3Reg; |
| const Register kThreadReg = CallingConventions::kArg4Reg; |
| |
| // Push code object to PC marker slot. |
| __ pushq( |
| Address(kThreadReg, |
| target::Thread::invoke_dart_code_from_bytecode_stub_offset())); |
| |
| // At this point, the stack looks like: |
| // | stub code object |
| // | saved RBP | <-- RBP |
| // | saved PC (return to interpreter's InvokeCompiled) | |
| |
| const intptr_t kInitialOffset = 2; |
| // Save arguments descriptor array, later replaced by Smi argument count. |
| const intptr_t kArgumentsDescOffset = -(kInitialOffset)*target::kWordSize; |
| __ pushq(kArgDescReg); |
| |
| // Save C++ ABI callee-saved registers. |
| __ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
| CallingConventions::kCalleeSaveXmmRegisters); |
| |
| // If any additional (or fewer) values are pushed, the offsets in |
| // target::frame_layout.exit_link_slot_from_entry_fp will need to be changed. |
| |
| // Set up THR, which caches the current thread in Dart code. |
| if (THR != kThreadReg) { |
| __ movq(THR, kThreadReg); |
| } |
| |
| // Save the current VMTag on the stack. |
| __ movq(RAX, Assembler::VMTagAddress()); |
| __ pushq(RAX); |
| |
| // Save top resource and top exit frame info. Use RAX as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ movq(RAX, Address(THR, target::Thread::top_resource_offset())); |
| __ pushq(RAX); |
| __ movq(Address(THR, target::Thread::top_resource_offset()), Immediate(0)); |
| __ movq(RAX, Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ pushq(RAX); |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // The constant target::frame_layout.exit_link_slot_from_entry_fp must be kept |
| // in sync with the code below. |
| #if defined(DEBUG) |
| { |
| Label ok; |
| __ leaq(RAX, |
| Address(RBP, target::frame_layout.exit_link_slot_from_entry_fp * |
| target::kWordSize)); |
| __ cmpq(RAX, RSP); |
| __ j(EQUAL, &ok); |
| __ Stop("target::frame_layout.exit_link_slot_from_entry_fp mismatch"); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing Dart code. Do this after initializing the |
| // exit link for the profiler. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
| |
| // Load arguments descriptor array into R10, which is passed to Dart code. |
| __ movq(R10, kArgDescReg); |
| |
| // Push arguments. At this point we only need to preserve kTargetCodeReg. |
| ASSERT(kTargetCodeReg != RDX); |
| |
| // Load number of arguments into RBX and adjust count for type arguments. |
| __ movq(RBX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ cmpq( |
| FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addq(RBX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| // Save number of arguments as Smi on stack, replacing saved ArgumentsDesc. |
| __ movq(Address(RBP, kArgumentsDescOffset), RBX); |
| __ SmiUntag(RBX); |
| |
| // Compute address of first argument into RDX. |
| if (kArg0Reg != RDX) { // Different registers on WIN64. |
| __ movq(RDX, kArg0Reg); |
| } |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
| __ LoadImmediate(RAX, Immediate(0)); |
| __ Bind(&push_arguments); |
| __ pushq(Address(RDX, RAX, TIMES_8, 0)); |
| __ incq(RAX); |
| __ cmpq(RAX, RBX); |
| __ j(LESS, &push_arguments, Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| __ xorq(PP, PP); // GC-safe value into PP. |
| __ movq(CODE_REG, kTargetCodeReg); |
| __ movq(kTargetCodeReg, |
| FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ call(kTargetCodeReg); // R10 is the arguments descriptor array. |
| |
| // Read the saved number of passed arguments as Smi. |
| __ movq(RDX, Address(RBP, kArgumentsDescOffset)); |
| |
| // Get rid of arguments pushed on the stack. |
| __ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi. |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. |
| __ popq(Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ popq(Address(THR, target::Thread::top_resource_offset())); |
| |
| // Restore the current VMTag from the stack. |
| __ popq(Assembler::VMTagAddress()); |
| |
| // Restore C++ ABI callee-saved registers. |
| __ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
| CallingConventions::kCalleeSaveXmmRegisters); |
| __ set_constant_pool_allowed(false); |
| |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ popq(RCX); |
| |
| __ ret(); |
| #endif // defined(DART_PRECOMPILED_RUNTIME) |
| } |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // R10: number of context variables. |
| // Output: |
| // RAX: new allocated RawContext object. |
| void StubCodeCompiler::GenerateAllocateContextStub(Assembler* assembler) { |
| __ LoadObject(R9, NullObject()); |
| if (FLAG_inline_alloc) { |
| Label slow_case; |
| // First compute the rounded instance size. |
| // R10: number of context variables. |
| intptr_t fixed_size_plus_alignment_padding = |
| (target::Context::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1); |
| __ leaq(R13, Address(R10, TIMES_8, fixed_size_plus_alignment_padding)); |
| __ andq(R13, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| // Check for allocation tracing. |
| NOT_IN_PRODUCT( |
| __ MaybeTraceAllocation(kContextCid, &slow_case, Assembler::kFarJump)); |
| |
| // Now allocate the object. |
| // R10: number of context variables. |
| const intptr_t cid = kContextCid; |
| __ movq(RAX, Address(THR, target::Thread::top_offset())); |
| __ addq(R13, RAX); |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object. |
| // R13: potential next object start. |
| // R10: number of context variables. |
| __ cmpq(R13, Address(THR, target::Thread::end_offset())); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(ABOVE_EQUAL, &slow_case); |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // RAX: new object. |
| // R13: next object start. |
| // R10: number of context variables. |
| __ movq(Address(THR, target::Thread::top_offset()), R13); |
| // R13: Size of allocation in bytes. |
| __ subq(R13, RAX); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| // Generate isolate-independent code to allow sharing between isolates. |
| NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, R13)); |
| |
| // Calculate the size tag. |
| // RAX: new object. |
| // R10: number of context variables. |
| { |
| Label size_tag_overflow, done; |
| __ leaq(R13, Address(R10, TIMES_8, fixed_size_plus_alignment_padding)); |
| __ andq(R13, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| __ cmpq(R13, Immediate(target::RawObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(R13, Immediate(target::RawObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done); |
| |
| __ Bind(&size_tag_overflow); |
| // Set overflow size tag value. |
| __ LoadImmediate(R13, Immediate(0)); |
| |
| __ Bind(&done); |
| // RAX: new object. |
| // R10: number of context variables. |
| // R13: size and bit tags. |
| uint32_t tags = target::MakeTagWordForNewSpaceObject(cid, 0); |
| __ orq(R13, Immediate(tags)); |
| __ movq(FieldAddress(RAX, target::Object::tags_offset()), R13); // Tags. |
| } |
| |
| // Setup up number of context variables field. |
| // RAX: new object. |
| // R10: number of context variables as integer value (not object). |
| __ movq(FieldAddress(RAX, target::Context::num_variables_offset()), R10); |
| |
| // Setup the parent field. |
| // RAX: new object. |
| // R10: number of context variables. |
| // No generational barrier needed, since we are storing null. |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, target::Context::parent_offset()), R9); |
| |
| // Initialize the context variables. |
| // RAX: new object. |
| // R10: number of context variables. |
| { |
| Label loop, entry; |
| __ leaq(R13, FieldAddress(RAX, target::Context::variable_offset(0))); |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ jmp(&entry, kJumpLength); |
| __ Bind(&loop); |
| __ decq(R10); |
| // No generational barrier needed, since we are storing null. |
| __ StoreIntoObjectNoBarrier(RAX, Address(R13, R10, TIMES_8, 0), R9); |
| __ Bind(&entry); |
| __ cmpq(R10, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // RAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame. |
| __ EnterStubFrame(); |
| __ pushq(R9); // Setup space on stack for the return value. |
| __ SmiTag(R10); |
| __ pushq(R10); // Push number of context variables. |
| __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
| __ popq(RAX); // Pop number of context variables argument. |
| __ popq(RAX); // Pop the new context object. |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| // RAX: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierWrappersStub(Assembler* assembler) { |
| for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
| if ((kDartAvailableCpuRegs & (1 << i)) == 0) continue; |
| |
| Register reg = static_cast<Register>(i); |
| intptr_t start = __ CodeSize(); |
| __ pushq(kWriteBarrierObjectReg); |
| __ movq(kWriteBarrierObjectReg, reg); |
| __ call(Address(THR, target::Thread::write_barrier_entry_point_offset())); |
| __ popq(kWriteBarrierObjectReg); |
| __ ret(); |
| intptr_t end = __ CodeSize(); |
| |
| RELEASE_ASSERT(end - start == kStoreBufferWrapperSize); |
| } |
| } |
| |
| // Helper stub to implement Assembler::StoreIntoObject/Array. |
| // Input parameters: |
| // RDX: Object (old) |
| // RAX: Value (old or new) |
| // R13: Slot |
| // If RAX is new, add RDX to the store buffer. Otherwise RAX is old, mark RAX |
| // and add it to the mark list. |
| COMPILE_ASSERT(kWriteBarrierObjectReg == RDX); |
| COMPILE_ASSERT(kWriteBarrierValueReg == RAX); |
| COMPILE_ASSERT(kWriteBarrierSlotReg == R13); |
| static void GenerateWriteBarrierStubHelper(Assembler* assembler, |
| Address stub_code, |
| bool cards) { |
| Label add_to_mark_stack, remember_card; |
| __ testq(RAX, Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
| __ j(ZERO, &add_to_mark_stack); |
| |
| if (cards) { |
| __ movl(TMP, FieldAddress(RDX, target::Object::tags_offset())); |
| __ testl(TMP, Immediate(1 << target::RawObject::kCardRememberedBit)); |
| __ j(NOT_ZERO, &remember_card, Assembler::kFarJump); |
| } else { |
| #if defined(DEBUG) |
| Label ok; |
| __ movl(TMP, FieldAddress(RDX, target::Object::tags_offset())); |
| __ testl(TMP, Immediate(1 << target::RawObject::kCardRememberedBit)); |
| __ j(ZERO, &ok, Assembler::kFarJump); |
| __ Stop("Wrong barrier"); |
| __ Bind(&ok); |
| #endif |
| } |
| |
| // Update the tags that this object has been remembered. |
| // Note that we use 32 bit operations here to match the size of the |
| // background sweeper which is also manipulating this 32 bit word. |
| // RDX: Address being stored |
| // RAX: Current tag value |
| // lock+andl is an atomic read-modify-write. |
| __ lock(); |
| __ andl(FieldAddress(RDX, target::Object::tags_offset()), |
| Immediate(~(1 << target::RawObject::kOldAndNotRememberedBit))); |
| |
| // Save registers being destroyed. |
| __ pushq(RAX); |
| __ pushq(RCX); |
| |
| // Load the StoreBuffer block out of the thread. Then load top_ out of the |
| // StoreBufferBlock and add the address to the pointers_. |
| // RDX: Address being stored |
| __ movq(RAX, Address(THR, target::Thread::store_buffer_block_offset())); |
| __ movl(RCX, Address(RAX, target::StoreBufferBlock::top_offset())); |
| __ movq( |
| Address(RAX, RCX, TIMES_8, target::StoreBufferBlock::pointers_offset()), |
| RDX); |
| |
| // Increment top_ and check for overflow. |
| // RCX: top_ |
| // RAX: StoreBufferBlock |
| Label overflow; |
| __ incq(RCX); |
| __ movl(Address(RAX, target::StoreBufferBlock::top_offset()), RCX); |
| __ cmpl(RCX, Immediate(target::StoreBufferBlock::kSize)); |
| // Restore values. |
| __ popq(RCX); |
| __ popq(RAX); |
| __ j(EQUAL, &overflow, Assembler::kNearJump); |
| __ ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&overflow); |
| // Setup frame, push callee-saved registers. |
| __ pushq(CODE_REG); |
| __ movq(CODE_REG, stub_code); |
| __ EnterCallRuntimeFrame(0); |
| __ movq(CallingConventions::kArg1Reg, THR); |
| __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1); |
| __ LeaveCallRuntimeFrame(); |
| __ popq(CODE_REG); |
| __ ret(); |
| |
| __ Bind(&add_to_mark_stack); |
| __ pushq(RAX); // Spill. |
| __ pushq(RCX); // Spill. |
| __ movq(TMP, RAX); // RAX is fixed implicit operand of CAS. |
| |
| // Atomically clear kOldAndNotMarkedBit. |
| // Note that we use 32 bit operations here to match the size of the |
| // background marker which is also manipulating this 32 bit word. |
| Label retry, lost_race, marking_overflow; |
| __ movl(RAX, FieldAddress(TMP, target::Object::tags_offset())); |
| __ Bind(&retry); |
| __ movl(RCX, RAX); |
| __ testl(RCX, Immediate(1 << target::RawObject::kOldAndNotMarkedBit)); |
| __ j(ZERO, &lost_race); // Marked by another thread. |
| __ andl(RCX, Immediate(~(1 << target::RawObject::kOldAndNotMarkedBit))); |
| __ LockCmpxchgl(FieldAddress(TMP, target::Object::tags_offset()), RCX); |
| __ j(NOT_EQUAL, &retry, Assembler::kNearJump); |
| |
| __ movq(RAX, Address(THR, target::Thread::marking_stack_block_offset())); |
| __ movl(RCX, Address(RAX, target::MarkingStackBlock::top_offset())); |
| __ movq( |
| Address(RAX, RCX, TIMES_8, target::MarkingStackBlock::pointers_offset()), |
| TMP); |
| __ incq(RCX); |
| __ movl(Address(RAX, target::MarkingStackBlock::top_offset()), RCX); |
| __ cmpl(RCX, Immediate(target::MarkingStackBlock::kSize)); |
| __ popq(RCX); // Unspill. |
| __ popq(RAX); // Unspill. |
| __ j(EQUAL, &marking_overflow, Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(&marking_overflow); |
| __ pushq(CODE_REG); |
| __ movq(CODE_REG, stub_code); |
| __ EnterCallRuntimeFrame(0); |
| __ movq(CallingConventions::kArg1Reg, THR); |
| __ CallRuntime(kMarkingStackBlockProcessRuntimeEntry, 1); |
| __ LeaveCallRuntimeFrame(); |
| __ popq(CODE_REG); |
| __ ret(); |
| |
| __ Bind(&lost_race); |
| __ popq(RCX); // Unspill. |
| __ popq(RAX); // Unspill. |
| __ ret(); |
| |
| if (cards) { |
| Label remember_card_slow; |
| |
| // Get card table. |
| __ Bind(&remember_card); |
| __ movq(TMP, RDX); // Object. |
| __ andq(TMP, Immediate(target::kPageMask)); // HeapPage. |
| __ cmpq(Address(TMP, target::HeapPage::card_table_offset()), Immediate(0)); |
| __ j(EQUAL, &remember_card_slow, Assembler::kNearJump); |
| |
| // Dirty the card. |
| __ subq(R13, TMP); // Offset in page. |
| __ movq( |
| TMP, |
| Address(TMP, target::HeapPage::card_table_offset())); // Card table. |
| __ shrq(R13, |
| Immediate( |
| target::HeapPage::kBytesPerCardLog2)); // Index in card table. |
| __ movb(Address(TMP, R13, TIMES_1, 0), Immediate(1)); |
| __ ret(); |
| |
| // Card table not yet allocated. |
| __ Bind(&remember_card_slow); |
| __ pushq(CODE_REG); |
| __ movq(CODE_REG, stub_code); |
| __ EnterCallRuntimeFrame(0); |
| __ movq(CallingConventions::kArg1Reg, RDX); |
| __ movq(CallingConventions::kArg2Reg, R13); |
| __ CallRuntime(kRememberCardRuntimeEntry, 2); |
| __ LeaveCallRuntimeFrame(); |
| __ popq(CODE_REG); |
| __ ret(); |
| } |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierStub(Assembler* assembler) { |
| GenerateWriteBarrierStubHelper( |
| assembler, Address(THR, target::Thread::write_barrier_code_offset()), |
| false); |
| } |
| |
| void StubCodeCompiler::GenerateArrayWriteBarrierStub(Assembler* assembler) { |
| GenerateWriteBarrierStubHelper( |
| assembler, |
| Address(THR, target::Thread::array_write_barrier_code_offset()), true); |
| } |
| |
| // Called for inline allocation of objects. |
| // Input parameters: |
| // RSP + 8 : type arguments object (only if class is parameterized). |
| // RSP : points to return address. |
| void StubCodeCompiler::GenerateAllocationStubForClass(Assembler* assembler, |
| const Class& cls) { |
| const intptr_t kObjectTypeArgumentsOffset = 1 * target::kWordSize; |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0; |
| ASSERT(!is_cls_parameterized || target::Class::TypeArgumentsFieldOffset( |
| cls) != target::Class::kNoTypeArguments); |
| // kInlineInstanceSize is a constant used as a threshold for determining |
| // when the object initialization should be done as a loop or as |
| // straight line code. |
| const int kInlineInstanceSize = 12; // In words. |
| const intptr_t instance_size = target::Class::GetInstanceSize(cls); |
| ASSERT(instance_size > 0); |
| __ LoadObject(R9, NullObject()); |
| if (is_cls_parameterized) { |
| __ movq(RDX, Address(RSP, kObjectTypeArgumentsOffset)); |
| // RDX: instantiated type arguments. |
| } |
| if (FLAG_inline_alloc && |
| target::Heap::IsAllocatableInNewSpace(instance_size) && |
| !target::Class::TraceAllocation(cls)) { |
| Label slow_case; |
| // Allocate the object and update top to point to |
| // next object start and initialize the allocated object. |
| // RDX: instantiated type arguments (if is_cls_parameterized). |
| __ movq(RAX, Address(THR, target::Thread::top_offset())); |
| __ leaq(RBX, Address(RAX, instance_size)); |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object start. |
| // RBX: potential next object start. |
| __ cmpq(RBX, Address(THR, target::Thread::end_offset())); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(ABOVE_EQUAL, &slow_case); |
| } |
| __ movq(Address(THR, target::Thread::top_offset()), RBX); |
| NOT_IN_PRODUCT(__ UpdateAllocationStats(target::Class::GetId(cls))); |
| |
| // RAX: new object start (untagged). |
| // RBX: next object start. |
| // RDX: new object type arguments (if is_cls_parameterized). |
| // Set the tags. |
| ASSERT(target::Class::GetId(cls) != kIllegalCid); |
| const uint32_t tags = target::MakeTagWordForNewSpaceObject( |
| target::Class::GetId(cls), instance_size); |
| // 64 bit store also zeros the identity hash field. |
| __ movq(Address(RAX, target::Object::tags_offset()), Immediate(tags)); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| |
| // Initialize the remaining words of the object. |
| // RAX: new object (tagged). |
| // RBX: next object start. |
| // RDX: new object type arguments (if is_cls_parameterized). |
| // R9: raw null. |
| // First try inlining the initialization without a loop. |
| if (instance_size < (kInlineInstanceSize * target::kWordSize)) { |
| // Check if the object contains any non-header fields. |
| // Small objects are initialized using a consecutive set of writes. |
| for (intptr_t current_offset = target::Instance::first_field_offset(); |
| current_offset < instance_size; |
| current_offset += target::kWordSize) { |
| __ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, current_offset), R9); |
| } |
| } else { |
| __ leaq(RCX, FieldAddress(RAX, target::Instance::first_field_offset())); |
| // Loop until the whole object is initialized. |
| // RAX: new object (tagged). |
| // RBX: next object start. |
| // RCX: next word to be initialized. |
| // RDX: new object type arguments (if is_cls_parameterized). |
| Label init_loop; |
| Label done; |
| __ Bind(&init_loop); |
| __ cmpq(RCX, RBX); |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(ABOVE_EQUAL, &done, kJumpLength); |
| __ StoreIntoObjectNoBarrier(RAX, Address(RCX, 0), R9); |
| __ addq(RCX, Immediate(target::kWordSize)); |
| __ jmp(&init_loop, Assembler::kNearJump); |
| __ Bind(&done); |
| } |
| if (is_cls_parameterized) { |
| // RAX: new object (tagged). |
| // RDX: new object type arguments. |
| // Set the type arguments in the new object. |
| const intptr_t offset = target::Class::TypeArgumentsFieldOffset(cls); |
| __ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, offset), RDX); |
| } |
| // Done allocating and initializing the instance. |
| // RAX: new object (tagged). |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // If is_cls_parameterized: |
| // RDX: new object type arguments. |
| // Create a stub frame. |
| __ EnterStubFrame(); // Uses PP to access class object. |
| |
| __ pushq(R9); // Setup space on stack for return value. |
| __ PushObject( |
| CastHandle<Object>(cls)); // Push class of object to be allocated. |
| if (is_cls_parameterized) { |
| __ pushq(RDX); // Push type arguments of object to be allocated. |
| } else { |
| __ pushq(R9); // Push null type arguments. |
| } |
| __ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object. |
| __ popq(RAX); // Pop argument (type arguments of object). |
| __ popq(RAX); // Pop argument (class of object). |
| __ popq(RAX); // Pop result (newly allocated object). |
| |
| if (AllocateObjectInstr::WillAllocateNewOrRemembered(cls)) { |
| // Write-barrier elimination is enabled for [cls] and we therefore need to |
| // ensure that the object is in new-space or has remembered bit set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| } |
| |
| // RAX: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
| // from the entry code of a dart function after an error in passed argument |
| // name or number is detected. |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of last argument. |
| // R10 : arguments descriptor array. |
| void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub( |
| Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ movq(R13, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ movq(RAX, |
| Address(RBP, R13, TIMES_4, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| |
| // Load the function. |
| __ movq(RBX, FieldAddress(RAX, target::Closure::function_offset())); |
| |
| __ pushq(Immediate(0)); // Result slot. |
| __ pushq(RAX); // Receiver. |
| __ pushq(RBX); // Function. |
| __ pushq(R10); // Arguments descriptor array. |
| |
| // Adjust arguments count. |
| __ cmpq( |
| FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| __ movq(R10, R13); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addq(R10, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| |
| // R10: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs); |
| // noSuchMethod on closures always throws an error, so it will never return. |
| __ int3(); |
| } |
| |
| // Cannot use function object from ICData as it may be the inlined |
| // function and not the top-scope function. |
| void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement( |
| Assembler* assembler) { |
| Register ic_reg = RBX; |
| Register func_reg = RDI; |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ pushq(func_reg); // Preserve |
| __ pushq(ic_reg); // Preserve. |
| __ pushq(ic_reg); // Argument. |
| __ pushq(func_reg); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry, 2); |
| __ popq(RAX); // Discard argument; |
| __ popq(RAX); // Discard argument; |
| __ popq(ic_reg); // Restore. |
| __ popq(func_reg); // Restore. |
| __ LeaveStubFrame(); |
| } |
| __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| |
| // Loads function into 'temp_reg', preserves 'ic_reg'. |
| void StubCodeCompiler::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register temp_reg) { |
| if (FLAG_optimization_counter_threshold >= 0) { |
| Register ic_reg = RBX; |
| Register func_reg = temp_reg; |
| ASSERT(ic_reg != func_reg); |
| __ Comment("Increment function counter"); |
| __ movq(func_reg, FieldAddress(ic_reg, target::ICData::owner_offset())); |
| __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| } |
| |
| // Note: RBX must be preserved. |
| // Attempt a quick Smi operation for known operations ('kind'). The ICData |
| // must have been primed with a Smi/Smi check that will be used for counting |
| // the invocations. |
| static void EmitFastSmiOp(Assembler* assembler, |
| Token::Kind kind, |
| intptr_t num_args, |
| Label* not_smi_or_overflow) { |
| __ Comment("Fast Smi op"); |
| ASSERT(num_args == 2); |
| __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Left. |
| __ movq(RCX, Address(RSP, +1 * target::kWordSize)); // Right |
| __ movq(R13, RCX); |
| __ orq(R13, RAX); |
| __ testq(R13, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi_or_overflow); |
| switch (kind) { |
| case Token::kADD: { |
| __ addq(RAX, RCX); |
| __ j(OVERFLOW, not_smi_or_overflow); |
| break; |
| } |
| case Token::kLT: { |
| __ cmpq(RAX, RCX); |
| __ setcc(GREATER_EQUAL, ByteRegisterOf(RAX)); |
| __ movzxb(RAX, RAX); // RAX := RAX < RCX ? 0 : 1 |
| __ movq(RAX, |
| Address(THR, RAX, TIMES_8, target::Thread::bool_true_offset())); |
| ASSERT(target::Thread::bool_true_offset() + 8 == |
| target::Thread::bool_false_offset()); |
| break; |
| } |
| case Token::kEQ: { |
| __ cmpq(RAX, RCX); |
| __ setcc(NOT_EQUAL, ByteRegisterOf(RAX)); |
| __ movzxb(RAX, RAX); // RAX := RAX == RCX ? 0 : 1 |
| __ movq(RAX, |
| Address(THR, RAX, TIMES_8, target::Thread::bool_true_offset())); |
| ASSERT(target::Thread::bool_true_offset() + 8 == |
| target::Thread::bool_false_offset()); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| |
| // RBX: IC data object (preserved). |
| __ movq(R13, FieldAddress(RBX, target::ICData::entries_offset())); |
| // R13: ic_data_array with check entries: classes and target functions. |
| __ leaq(R13, FieldAddress(R13, target::Array::data_offset())); |
| // R13: points directly to the first ic data array element. |
| #if defined(DEBUG) |
| // Check that first entry is for Smi/Smi. |
| Label error, ok; |
| const Immediate& imm_smi_cid = Immediate(target::ToRawSmi(kSmiCid)); |
| __ cmpq(Address(R13, 0 * target::kWordSize), imm_smi_cid); |
| __ j(NOT_EQUAL, &error, Assembler::kNearJump); |
| __ cmpq(Address(R13, 1 * target::kWordSize), imm_smi_cid); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Bind(&error); |
| __ Stop("Incorrect IC data"); |
| __ Bind(&ok); |
| #endif |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kWordSize; |
| // Update counter, ignore overflow. |
| __ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| __ ret(); |
| } |
| |
| // Generate inline cache check for 'num_args'. |
| // RDX: receiver (if instance call) |
| // RBX: ICData |
| // RSP[0]: return address |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub( |
| Assembler* assembler, |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| Optimized optimized, |
| CallType type, |
| Exactness exactness) { |
| ASSERT(num_args == 1 || num_args == 2); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(RCX, FieldAddress(RBX, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andq(RCX, Immediate(target::ICData::NumArgsTestedMask())); |
| __ cmpq(RCX, Immediate(num_args)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| Label stepping, done_stepping; |
| if (optimized == kUnoptimized) { |
| __ Comment("Check single stepping"); |
| __ LoadIsolate(RAX); |
| __ cmpb(Address(RAX, target::Isolate::single_step_offset()), Immediate(0)); |
| __ j(NOT_EQUAL, &stepping); |
| __ Bind(&done_stepping); |
| } |
| #endif |
| |
| Label not_smi_or_overflow; |
| if (kind != Token::kILLEGAL) { |
| EmitFastSmiOp(assembler, kind, num_args, ¬_smi_or_overflow); |
| } |
| __ Bind(¬_smi_or_overflow); |
| |
| __ Comment("Extract ICData initial values and receiver cid"); |
| // RBX: IC data object (preserved). |
| __ movq(R13, FieldAddress(RBX, target::ICData::entries_offset())); |
| // R13: ic_data_array with check entries: classes and target functions. |
| __ leaq(R13, FieldAddress(R13, target::Array::data_offset())); |
| // R13: points directly to the first ic data array element. |
| |
| if (type == kInstanceCall) { |
| __ LoadTaggedClassIdMayBeSmi(RAX, RDX); |
| __ movq(R10, |
| FieldAddress(RBX, target::ICData::arguments_descriptor_offset())); |
| if (num_args == 2) { |
| __ movq(RCX, |
| FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ movq(R9, Address(RSP, RCX, TIMES_4, -target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(RCX, R9); |
| } |
| } else { |
| __ movq(R10, |
| FieldAddress(RBX, target::ICData::arguments_descriptor_offset())); |
| __ movq(RCX, |
| FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ movq(RDX, Address(RSP, RCX, TIMES_4, 0)); |
| __ LoadTaggedClassIdMayBeSmi(RAX, RDX); |
| if (num_args == 2) { |
| __ movq(R9, Address(RSP, RCX, TIMES_4, -target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(RCX, R9); |
| } |
| } |
| // RAX: first argument class ID as Smi. |
| // RCX: second argument class ID as Smi. |
| // R10: args descriptor |
| |
| // Loop that checks if there is an IC data match. |
| Label loop, found, miss; |
| __ Comment("ICData loop"); |
| |
| // We unroll the generic one that is generated once more than the others. |
| const bool optimize = kind == Token::kILLEGAL; |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(num_args) * target::kWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kWordSize; |
| const intptr_t exactness_offset = |
| target::ICData::ExactnessIndexFor(num_args) * target::kWordSize; |
| |
| __ Bind(&loop); |
| for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) { |
| Label update; |
| __ movq(R9, Address(R13, 0)); |
| __ cmpq(RAX, R9); // Class id match? |
| if (num_args == 2) { |
| __ j(NOT_EQUAL, &update); // Continue. |
| __ movq(R9, Address(R13, target::kWordSize)); |
| // R9: next class ID to check (smi). |
| __ cmpq(RCX, R9); // Class id match? |
| } |
| __ j(EQUAL, &found); // Break. |
| |
| __ Bind(&update); |
| |
| const intptr_t entry_size = target::ICData::TestEntryLengthFor( |
| num_args, exactness == kCheckExactness) * |
| target::kWordSize; |
| __ addq(R13, Immediate(entry_size)); // Next entry. |
| |
| __ cmpq(R9, Immediate(target::ToRawSmi(kIllegalCid))); // Done? |
| if (unroll == 0) { |
| __ j(NOT_EQUAL, &loop); |
| } else { |
| __ j(EQUAL, &miss); |
| } |
| } |
| |
| __ Bind(&miss); |
| __ Comment("IC miss"); |
| // Compute address of arguments (first read number of arguments from |
| // arguments descriptor array and then compute address on the stack). |
| __ movq(RAX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ leaq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX is Smi. |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| __ pushq(RBX); // Preserve IC data object. |
| __ pushq(Immediate(0)); // Result slot. |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ movq(RCX, Address(RAX, -target::kWordSize * i)); |
| __ pushq(RCX); |
| } |
| __ pushq(RBX); // Pass IC data object. |
| __ CallRuntime(handle_ic_miss, num_args + 1); |
| // Remove the call arguments pushed earlier, including the IC data object. |
| for (intptr_t i = 0; i < num_args + 1; i++) { |
| __ popq(RAX); |
| } |
| __ popq(RAX); // Pop returned function object into RAX. |
| __ popq(RBX); // Restore IC data array. |
| __ popq(R10); // Restore arguments descriptor array. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| Label call_target_function; |
| if (!FLAG_lazy_dispatchers) { |
| GenerateDispatcherCode(assembler, &call_target_function); |
| } else { |
| __ jmp(&call_target_function); |
| } |
| |
| __ Bind(&found); |
| // R13: Pointer to an IC data check group. |
| Label call_target_function_through_unchecked_entry; |
| if (exactness == kCheckExactness) { |
| Label exactness_ok; |
| ASSERT(num_args == 1); |
| __ movq(RAX, Address(R13, exactness_offset)); |
| __ cmpq(RAX, Immediate(target::ToRawSmi( |
| StaticTypeExactnessState::HasExactSuperType().Encode()))); |
| __ j(LESS, &exactness_ok); |
| __ j(EQUAL, &call_target_function_through_unchecked_entry); |
| |
| // Check trivial exactness. |
| // Note: RawICData::receivers_static_type_ is guaranteed to be not null |
| // because we only emit calls to this stub when it is not null. |
| __ movq(RCX, |
| FieldAddress(RBX, target::ICData::receivers_static_type_offset())); |
| __ movq(RCX, FieldAddress(RCX, target::Type::arguments_offset())); |
| // RAX contains an offset to type arguments in words as a smi, |
| // hence TIMES_4. RDX is guaranteed to be non-smi because it is expected to |
| // have type arguments. |
| __ cmpq(RCX, FieldAddress(RDX, RAX, TIMES_4, 0)); |
| __ j(EQUAL, &call_target_function_through_unchecked_entry); |
| |
| // Update exactness state (not-exact anymore). |
| __ movq(Address(R13, exactness_offset), |
| Immediate(target::ToRawSmi( |
| StaticTypeExactnessState::NotExact().Encode()))); |
| __ Bind(&exactness_ok); |
| } |
| __ movq(RAX, Address(R13, target_offset)); |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Update ICData counter"); |
| // Ignore overflow. |
| __ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| __ Comment("Call target (via checked entry point)"); |
| __ Bind(&call_target_function); |
| // RAX: Target function. |
| __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
| __ jmp(FieldAddress(RAX, target::Function::entry_point_offset())); |
| |
| if (exactness == kCheckExactness) { |
| __ Bind(&call_target_function_through_unchecked_entry); |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Update ICData counter"); |
| // Ignore overflow. |
| __ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| __ Comment("Call target (via unchecked entry point)"); |
| __ movq(RAX, Address(R13, target_offset)); |
| __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
| __ jmp(FieldAddress(RAX, target::Function::unchecked_entry_point_offset())); |
| } |
| |
| #if !defined(PRODUCT) |
| if (optimized == kUnoptimized) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| if (type == kInstanceCall) { |
| __ pushq(RDX); // Preserve receiver. |
| } |
| __ pushq(RBX); // Preserve ICData. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popq(RBX); // Restore ICData. |
| if (type == kInstanceCall) { |
| __ popq(RDX); // Restore receiver. |
| } |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping); |
| } |
| #endif |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kCheckExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateSmiAddInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateSmiLessInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateSmiEqualInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RDI: Function |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RDI: Function |
| // RSP[0]: return address |
| void StubCodeCompiler:: |
| GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kCheckExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RDI: Function |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == 0. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(RCX, FieldAddress(RBX, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andq(RCX, Immediate(target::ICData::NumArgsTestedMask())); |
| __ cmpq(RCX, Immediate(0)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect IC data for unoptimized static call"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(RAX); |
| __ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(NOT_EQUAL, &stepping, kJumpLength); |
| __ Bind(&done_stepping); |
| #endif |
| |
| // RBX: IC data object (preserved). |
| __ movq(R12, FieldAddress(RBX, target::ICData::entries_offset())); |
| // R12: ic_data_array with entries: target functions and count. |
| __ leaq(R12, FieldAddress(R12, target::Array::data_offset())); |
| // R12: points directly to the first ic data array element. |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(0) * target::kWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(0) * target::kWordSize; |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Increment count for this call, ignore overflow. |
| __ addq(Address(R12, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| // Load arguments descriptor into R10. |
| __ movq(R10, |
| FieldAddress(RBX, target::ICData::arguments_descriptor_offset())); |
| |
| // Get function and call it, if possible. |
| __ movq(RAX, Address(R12, target_offset)); |
| __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
| __ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset())); |
| __ jmp(RCX); |
| |
| #if !defined(PRODUCT) |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ pushq(RBX); // Preserve IC data object. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popq(RBX); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| #endif |
| } |
| |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kStaticCallMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // Stub for compiling a function and jumping to the compiled code. |
| // R10: Arguments descriptor. |
| // RAX: Function. |
| void StubCodeCompiler::GenerateLazyCompileStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| __ pushq(RAX); // Pass function. |
| __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
| __ popq(RAX); // Restore function. |
| __ popq(R10); // Restore arguments descriptor array. |
| __ LeaveStubFrame(); |
| |
| // When using the interpreter, the function's code may now point to the |
| // InterpretCall stub. Make sure RAX, R10, and RBX are preserved. |
| __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
| __ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset())); |
| __ jmp(RCX); |
| } |
| |
| // Stub for interpreting a function call. |
| // R10: Arguments descriptor. |
| // RAX: Function. |
| void StubCodeCompiler::GenerateInterpretCallStub(Assembler* assembler) { |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| __ Stop("Not using interpreter"); |
| #else |
| __ EnterStubFrame(); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(R8, Immediate(VMTag::kDartCompiledTagId)); |
| __ cmpq(R8, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Adjust arguments count for type arguments vector. |
| __ movq(R11, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ SmiUntag(R11); |
| __ cmpq( |
| FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ incq(R11); |
| __ Bind(&args_count_ok); |
| |
| // Compute argv. |
| __ leaq(R12, |
| Address(RBP, R11, TIMES_8, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| |
| // Indicate decreasing memory addresses of arguments with negative argc. |
| __ negq(R11); |
| |
| // Reserve shadow space for args and align frame before entering C++ world. |
| __ subq(RSP, Immediate(5 * target::kWordSize)); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| __ movq(CallingConventions::kArg1Reg, RAX); // Function. |
| __ movq(CallingConventions::kArg2Reg, R10); // Arguments descriptor. |
| __ movq(CallingConventions::kArg3Reg, R11); // Negative argc. |
| __ movq(CallingConventions::kArg4Reg, R12); // Argv. |
| |
| #if defined(_WIN64) |
| __ movq(Address(RSP, 0 * target::kWordSize), THR); // Thread. |
| #else |
| __ movq(CallingConventions::kArg5Reg, THR); // Thread. |
| #endif |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
| |
| // Mark that the thread is executing VM code. |
| __ movq(RAX, |
| Address(THR, target::Thread::interpret_call_entry_point_offset())); |
| __ movq(Assembler::VMTagAddress(), RAX); |
| |
| __ call(RAX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| #endif // defined(DART_PRECOMPILED_RUNTIME) |
| } |
| |
| // RBX: Contains an ICData. |
| // TOS(0): return address (Dart code). |
| void StubCodeCompiler::GenerateICCallBreakpointStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushq(RDX); // Preserve receiver. |
| __ pushq(RBX); // Preserve IC data. |
| __ pushq(Immediate(0)); // Result slot. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popq(CODE_REG); // Original stub. |
| __ popq(RBX); // Restore IC data. |
| __ popq(RDX); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RAX); // Jump to original stub. |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateUnoptStaticCallBreakpointStub( |
| Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushq(RDX); // Preserve receiver. |
| __ pushq(RBX); // Preserve IC data. |
| __ pushq(Immediate(0)); // Result slot. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popq(CODE_REG); // Original stub. |
| __ popq(RBX); // Restore IC data. |
| __ popq(RDX); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RAX); // Jump to original stub. |
| #endif // defined(PRODUCT) |
| } |
| |
| // TOS(0): return address (Dart code). |
| void StubCodeCompiler::GenerateRuntimeCallBreakpointStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushq(Immediate(0)); // Result slot. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popq(CODE_REG); // Original stub. |
| __ LeaveStubFrame(); |
| |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RAX); // Jump to original stub. |
| #endif // defined(PRODUCT) |
| } |
| |
| // Called only from unoptimized code. |
| void StubCodeCompiler::GenerateDebugStepCheckStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(RAX); |
| __ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| __ j(NOT_EQUAL, &stepping, Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| __ ret(); |
| |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // |
| // Inputs: |
| // - R9 : RawSubtypeTestCache |
| // - RAX : instance to test against. |
| // - RDX : instantiator type arguments (for n=4). |
| // - RCX : function type arguments (for n=4). |
| // |
| // - TOS + 0: return address. |
| // |
| // Preserves R9/RAX/RCX/RDX, RBX. |
| // |
| // Result in R8: null -> not found, otherwise result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| ASSERT(n == 1 || n == 2 || n == 4 || n == 6); |
| |
| const Register kCacheReg = R9; |
| const Register kInstanceReg = RAX; |
| const Register kInstantiatorTypeArgumentsReg = RDX; |
| const Register kFunctionTypeArgumentsReg = RCX; |
| |
| const Register kInstanceCidOrFunction = R10; |
| const Register kInstanceInstantiatorTypeArgumentsReg = R13; |
| const Register kInstanceParentFunctionTypeArgumentsReg = PP; |
| const Register kInstanceDelayedFunctionTypeArgumentsReg = CODE_REG; |
| |
| const Register kNullReg = R8; |
| |
| __ LoadObject(kNullReg, NullObject()); |
| |
| // Free up these 2 registers to be used for 6-value test. |
| if (n >= 6) { |
| __ pushq(kInstanceParentFunctionTypeArgumentsReg); |
| __ pushq(kInstanceDelayedFunctionTypeArgumentsReg); |
| } |
| |
| // Loop initialization (moved up here to avoid having all dependent loads |
| // after each other). |
| __ movq(RSI, |
| FieldAddress(kCacheReg, target::SubtypeTestCache::cache_offset())); |
| __ addq(RSI, Immediate(target::Array::data_offset() - kHeapObjectTag)); |
| |
| Label loop, not_closure; |
| if (n >= 4) { |
| __ LoadClassIdMayBeSmi(kInstanceCidOrFunction, kInstanceReg); |
| } else { |
| __ LoadClassId(kInstanceCidOrFunction, kInstanceReg); |
| } |
| __ cmpq(kInstanceCidOrFunction, Immediate(kClosureCid)); |
| __ j(NOT_EQUAL, ¬_closure, Assembler::kNearJump); |
| |
| // Closure handling. |
| { |
| __ movq(kInstanceCidOrFunction, |
| FieldAddress(kInstanceReg, target::Closure::function_offset())); |
| if (n >= 2) { |
| __ movq( |
| kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(kInstanceReg, |
| target::Closure::instantiator_type_arguments_offset())); |
| if (n >= 6) { |
| ASSERT(n == 6); |
| __ movq( |
| kInstanceParentFunctionTypeArgumentsReg, |
| FieldAddress(kInstanceReg, |
| target::Closure::function_type_arguments_offset())); |
| __ movq(kInstanceDelayedFunctionTypeArgumentsReg, |
| FieldAddress(kInstanceReg, |
| target::Closure::delayed_type_arguments_offset())); |
| } |
| } |
| __ jmp(&loop, Assembler::kNearJump); |
| } |
| |
| // Non-Closure handling. |
| { |
| __ Bind(¬_closure); |
| if (n >= 2) { |
| Label has_no_type_arguments; |
| __ LoadClassById(RDI, kInstanceCidOrFunction); |
| __ movq(kInstanceInstantiatorTypeArgumentsReg, kNullReg); |
| __ movl( |
| RDI, |
| FieldAddress( |
| RDI, |
| target::Class::type_arguments_field_offset_in_words_offset())); |
| __ cmpl(RDI, Immediate(target::Class::kNoTypeArguments)); |
| __ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump); |
| __ movq(kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(kInstanceReg, RDI, TIMES_8, 0)); |
| __ Bind(&has_no_type_arguments); |
| |
| if (n >= 6) { |
| __ movq(kInstanceParentFunctionTypeArgumentsReg, kNullReg); |
| __ movq(kInstanceDelayedFunctionTypeArgumentsReg, kNullReg); |
| } |
| } |
| __ SmiTag(kInstanceCidOrFunction); |
| } |
| |
| Label found, not_found, next_iteration; |
| |
| // Loop header. |
| __ Bind(&loop); |
| __ movq( |
| RDI, |
| Address(RSI, target::kWordSize * |
| target::SubtypeTestCache::kInstanceClassIdOrFunction)); |
| __ cmpq(RDI, kNullReg); |
| __ j(EQUAL, ¬_found, Assembler::kNearJump); |
| __ cmpq(RDI, kInstanceCidOrFunction); |
| if (n == 1) { |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } else { |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ cmpq(kInstanceInstantiatorTypeArgumentsReg, |
| Address(RSI, target::kWordSize * |
| target::SubtypeTestCache::kInstanceTypeArguments)); |
| if (n == 2) { |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } else { |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ cmpq( |
| kInstantiatorTypeArgumentsReg, |
| Address(RSI, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstantiatorTypeArguments)); |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ cmpq( |
| kFunctionTypeArgumentsReg, |
| Address(RSI, target::kWordSize * |
| target::SubtypeTestCache::kFunctionTypeArguments)); |
| |
| if (n == 4) { |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } else { |
| ASSERT(n == 6); |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| |
| __ cmpq(kInstanceParentFunctionTypeArgumentsReg, |
| Address(RSI, target::kWordSize * |
| target::SubtypeTestCache:: |
| kInstanceParentFunctionTypeArguments)); |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ cmpq(kInstanceDelayedFunctionTypeArgumentsReg, |
| Address(RSI, target::kWordSize * |
| target::SubtypeTestCache:: |
| kInstanceDelayedFunctionTypeArguments)); |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } |
| } |
| } |
| |
| __ Bind(&next_iteration); |
| __ addq(RSI, Immediate(target::kWordSize * |
| target::SubtypeTestCache::kTestEntryLength)); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&found); |
| __ movq(R8, Address(RSI, target::kWordSize * |
| target::SubtypeTestCache::kTestResult)); |
| if (n >= 6) { |
| __ popq(kInstanceDelayedFunctionTypeArgumentsReg); |
| __ popq(kInstanceParentFunctionTypeArgumentsReg); |
| } |
| __ ret(); |
| |
| __ Bind(¬_found); |
| if (n >= 6) { |
| __ popq(kInstanceDelayedFunctionTypeArgumentsReg); |
| __ popq(kInstanceParentFunctionTypeArgumentsReg); |
| } |
| __ ret(); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype2TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 2); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype4TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 4); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype6TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 6); |
| } |
| |
| // Used to test whether a given value is of a given type (different variants, |
| // all have the same calling convention). |
| // |
| // Inputs: |
| // - R9 : RawSubtypeTestCache |
| // - RAX : instance to test against. |
| // - RDX : instantiator type arguments (if needed). |
| // - RCX : function type arguments (if needed). |
| // |
| // - RBX : type to test against. |
| // - R10 : name of destination variable. |
| // |
| // Preserves R9/RAX/RCX/RDX, RBX, R10. |
| // |
| // Note of warning: The caller will not populate CODE_REG and we have therefore |
| // no access to the pool. |
| void StubCodeCompiler::GenerateDefaultTypeTestStub(Assembler* assembler) { |
| Label done; |
| |
| const Register kInstanceReg = RAX; |
| |
| // Fast case for 'null'. |
| __ CompareObject(kInstanceReg, NullObject()); |
| __ BranchIf(EQUAL, &done); |
| |
| __ movq(CODE_REG, Address(THR, target::Thread::slow_type_test_stub_offset())); |
| __ jmp(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| |
| __ Bind(&done); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateTopTypeTypeTestStub(Assembler* assembler) { |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateTypeRefTypeTestStub(Assembler* assembler) { |
| const Register kTypeRefReg = RBX; |
| |
| // We dereference the TypeRef and tail-call to it's type testing stub. |
| __ movq(kTypeRefReg, |
| FieldAddress(kTypeRefReg, target::TypeRef::type_offset())); |
| __ jmp(FieldAddress( |
| kTypeRefReg, target::AbstractType::type_test_stub_entry_point_offset())); |
| } |
| |
| void StubCodeCompiler::GenerateUnreachableTypeTestStub(Assembler* assembler) { |
| __ Breakpoint(); |
| } |
| |
| static void InvokeTypeCheckFromTypeTestStub(Assembler* assembler, |
| TypeCheckMode mode) { |
| const Register kInstanceReg = RAX; |
| const Register kInstantiatorTypeArgumentsReg = RDX; |
| const Register kFunctionTypeArgumentsReg = RCX; |
| const Register kDstTypeReg = RBX; |
| const Register kSubtypeTestCacheReg = R9; |
| |
| __ PushObject(NullObject()); // Make room for result. |
| __ pushq(kInstanceReg); |
| __ pushq(kDstTypeReg); |
| __ pushq(kInstantiatorTypeArgumentsReg); |
| __ pushq(kFunctionTypeArgumentsReg); |
| __ PushObject(NullObject()); |
| __ pushq(kSubtypeTestCacheReg); |
| __ PushImmediate(Immediate(target::ToRawSmi(mode))); |
| __ CallRuntime(kTypeCheckRuntimeEntry, 7); |
| __ Drop(1); |
| __ popq(kSubtypeTestCacheReg); |
| __ Drop(1); |
| __ popq(kFunctionTypeArgumentsReg); |
| __ popq(kInstantiatorTypeArgumentsReg); |
| __ popq(kDstTypeReg); |
| __ popq(kInstanceReg); |
| __ Drop(1); // Discard return value. |
| } |
| |
| void StubCodeCompiler::GenerateLazySpecializeTypeTestStub( |
| Assembler* assembler) { |
| const Register kInstanceReg = RAX; |
| |
| Label done; |
| |
| // Fast case for 'null'. |
| __ CompareObject(kInstanceReg, NullObject()); |
| __ BranchIf(EQUAL, &done); |
| |
| __ movq( |
| CODE_REG, |
| Address(THR, target::Thread::lazy_specialize_type_test_stub_offset())); |
| __ EnterStubFrame(); |
| InvokeTypeCheckFromTypeTestStub(assembler, kTypeCheckFromLazySpecializeStub); |
| __ LeaveStubFrame(); |
| |
| __ Bind(&done); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateSlowTypeTestStub(Assembler* assembler) { |
| Label done, call_runtime; |
| |
| const Register kInstanceReg = RAX; |
| const Register kDstTypeReg = RBX; |
| const Register kSubtypeTestCacheReg = R9; |
| |
| __ EnterStubFrame(); |
| |
| #ifdef DEBUG |
| // Guaranteed by caller. |
| Label no_error; |
| __ CompareObject(kInstanceReg, NullObject()); |
| __ BranchIf(NOT_EQUAL, &no_error); |
| __ Breakpoint(); |
| __ Bind(&no_error); |
| #endif |
| |
| // If the subtype-cache is null, it needs to be lazily-created by the runtime. |
| __ CompareObject(kSubtypeTestCacheReg, NullObject()); |
| __ BranchIf(EQUAL, &call_runtime); |
| |
| const Register kTmp = RDI; |
| |
| // If this is not a [Type] object, we'll go to the runtime. |
| Label is_simple_case, is_complex_case; |
| __ LoadClassId(kTmp, kDstTypeReg); |
| __ cmpq(kTmp, Immediate(kTypeCid)); |
| __ BranchIf(NOT_EQUAL, &is_complex_case); |
| |
| // Check whether this [Type] is instantiated/uninstantiated. |
| __ cmpb(FieldAddress(kDstTypeReg, target::Type::type_state_offset()), |
| Immediate(target::RawAbstractType::kTypeStateFinalizedInstantiated)); |
| __ BranchIf(NOT_EQUAL, &is_complex_case); |
| |
| // Check whether this [Type] is a function type. |
| __ movq(kTmp, FieldAddress(kDstTypeReg, target::Type::signature_offset())); |
| __ CompareObject(kTmp, NullObject()); |
| __ BranchIf(NOT_EQUAL, &is_complex_case); |
| |
| // This [Type] could be a FutureOr. Subtype2TestCache does not support Smi. |
| __ BranchIfSmi(kInstanceReg, &is_complex_case); |
| |
| // Fall through to &is_simple_case |
| |
| __ Bind(&is_simple_case); |
| { |
| __ Call(StubCodeSubtype2TestCache()); |
| __ CompareObject(R8, CastHandle<Object>(TrueObject())); |
| __ BranchIf(EQUAL, &done); // Cache said: yes. |
| __ Jump(&call_runtime); |
| } |
| |
| __ Bind(&is_complex_case); |
| { |
| __ Call(StubCodeSubtype6TestCache()); |
| __ CompareObject(R8, CastHandle<Object>(TrueObject())); |
| __ BranchIf(EQUAL, &done); // Cache said: yes. |
| // Fall through to runtime_call |
| } |
| |
| __ Bind(&call_runtime); |
| |
| // We cannot really ensure here that dynamic/Object/void never occur here |
| // (though it is guaranteed at dart_precompiled_runtime time). This is |
| // because we do constant evaluation with default stubs and only install |
| // optimized versions before writing out the AOT snapshot. |
| // So dynamic/Object/void will run with default stub in constant evaluation. |
| __ CompareObject(kDstTypeReg, CastHandle<Object>(DynamicType())); |
| __ BranchIf(EQUAL, &done); |
| __ CompareObject(kDstTypeReg, CastHandle<Object>(ObjectType())); |
| __ BranchIf(EQUAL, &done); |
| __ CompareObject(kDstTypeReg, CastHandle<Object>(VoidType())); |
| __ BranchIf(EQUAL, &done); |
| |
| InvokeTypeCheckFromTypeTestStub(assembler, kTypeCheckFromSlowStub); |
| |
| __ Bind(&done); |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| // Return the current stack pointer address, used to stack alignment |
| // checks. |
| // TOS + 0: return address |
| // Result in RAX. |
| void StubCodeCompiler::GenerateGetCStackPointerStub(Assembler* assembler) { |
| __ leaq(RAX, Address(RSP, target::kWordSize)); |
| __ ret(); |
| } |
| |
| // Jump to a frame on the call stack. |
| // TOS + 0: return address |
| // Arg1: program counter |
| // Arg2: stack pointer |
| // Arg3: frame_pointer |
| // Arg4: thread |
| // No Result. |
| void StubCodeCompiler::GenerateJumpToFrameStub(Assembler* assembler) { |
| __ movq(THR, CallingConventions::kArg4Reg); |
| __ movq(RBP, CallingConventions::kArg3Reg); |
| __ movq(RSP, CallingConventions::kArg2Reg); |
| // Set the tag. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
| // Clear top exit frame. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| // Restore the pool pointer. |
| __ RestoreCodePointer(); |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
| } else { |
| __ LoadPoolPointer(PP); |
| } |
| __ jmp(CallingConventions::kArg1Reg); // Jump to program counter. |
| } |
| |
| // Run an exception handler. Execution comes from JumpToFrame stub. |
| // |
| // The arguments are stored in the Thread object. |
| // No result. |
| void StubCodeCompiler::GenerateRunExceptionHandlerStub(Assembler* assembler) { |
| ASSERT(kExceptionObjectReg == RAX); |
| ASSERT(kStackTraceObjectReg == RDX); |
| __ movq(CallingConventions::kArg1Reg, |
| Address(THR, target::Thread::resume_pc_offset())); |
| |
| word offset_from_thread = 0; |
| bool ok = target::CanLoadFromThread(NullObject(), &offset_from_thread); |
| ASSERT(ok); |
| __ movq(TMP, Address(THR, offset_from_thread)); |
| |
| // Load the exception from the current thread. |
| Address exception_addr(THR, target::Thread::active_exception_offset()); |
| __ movq(kExceptionObjectReg, exception_addr); |
| __ movq(exception_addr, TMP); |
| |
| // Load the stacktrace from the current thread. |
| Address stacktrace_addr(THR, target::Thread::active_stacktrace_offset()); |
| __ movq(kStackTraceObjectReg, stacktrace_addr); |
| __ movq(stacktrace_addr, TMP); |
| |
| __ jmp(CallingConventions::kArg1Reg); // Jump to continuation point. |
| } |
| |
| // Deoptimize a frame on the call stack before rewinding. |
| // The arguments are stored in the Thread object. |
| // No result. |
| void StubCodeCompiler::GenerateDeoptForRewindStub(Assembler* assembler) { |
| // Push zap value instead of CODE_REG. |
| __ pushq(Immediate(kZapCodeReg)); |
| |
| // Push the deopt pc. |
| __ pushq(Address(THR, target::Thread::resume_pc_offset())); |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| |
| // After we have deoptimized, jump to the correct frame. |
| __ EnterStubFrame(); |
| __ CallRuntime(kRewindPostDeoptRuntimeEntry, 0); |
| __ LeaveStubFrame(); |
| __ int3(); |
| } |
| |
| // Calls to the runtime to optimize the given function. |
| // RDI: function to be reoptimized. |
| // R10: argument descriptor (preserved). |
| void StubCodeCompiler::GenerateOptimizeFunctionStub(Assembler* assembler) { |
| __ movq(CODE_REG, Address(THR, target::Thread::optimize_stub_offset())); |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve args descriptor. |
| __ pushq(Immediate(0)); // Result slot. |
| __ pushq(RDI); // Arg0: function to optimize |
| __ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry, 1); |
| __ popq(RAX); // Discard argument. |
| __ popq(RAX); // Get Code object. |
| __ popq(R10); // Restore argument descriptor. |
| __ LeaveStubFrame(); |
| __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
| __ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset())); |
| __ jmp(RCX); |
| __ int3(); |
| } |
| |
| // Does identical check (object references are equal or not equal) with special |
| // checks for boxed numbers. |
| // Left and right are pushed on stack. |
| // Return ZF set. |
| // Note: A Mint cannot contain a value that would fit in Smi. |
| static void GenerateIdenticalWithNumberCheckStub(Assembler* assembler, |
| const Register left, |
| const Register right) { |
| Label reference_compare, done, check_mint; |
| // If any of the arguments is Smi do reference compare. |
| __ testq(left, Immediate(kSmiTagMask)); |
| __ j(ZERO, &reference_compare); |
| __ testq(right, Immediate(kSmiTagMask)); |
| __ j(ZERO, &reference_compare); |
| |
| // Value compare for two doubles. |
| __ CompareClassId(left, kDoubleCid); |
| __ j(NOT_EQUAL, &check_mint, Assembler::kNearJump); |
| __ CompareClassId(right, kDoubleCid); |
| __ j(NOT_EQUAL, &done, Assembler::kFarJump); |
| |
| // Double values bitwise compare. |
| __ movq(left, FieldAddress(left, target::Double::value_offset())); |
| __ cmpq(left, FieldAddress(right, target::Double::value_offset())); |
| __ jmp(&done, Assembler::kFarJump); |
| |
| __ Bind(&check_mint); |
| __ CompareClassId(left, kMintCid); |
| __ j(NOT_EQUAL, &reference_compare, Assembler::kNearJump); |
| __ CompareClassId(right, kMintCid); |
| __ j(NOT_EQUAL, &done, Assembler::kFarJump); |
| __ movq(left, FieldAddress(left, target::Mint::value_offset())); |
| __ cmpq(left, FieldAddress(right, target::Mint::value_offset())); |
| __ jmp(&done, Assembler::kFarJump); |
| |
| __ Bind(&reference_compare); |
| __ cmpq(left, right); |
| __ Bind(&done); |
| } |
| |
| // Called only from unoptimized code. All relevant registers have been saved. |
| // TOS + 0: return address |
| // TOS + 1: right argument. |
| // TOS + 2: left argument. |
| // Returns ZF set. |
| void StubCodeCompiler::GenerateUnoptimizedIdenticalWithNumberCheckStub( |
| Assembler* assembler) { |
| #if !defined(PRODUCT) |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(RAX); |
| __ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| __ j(NOT_EQUAL, &stepping); |
| __ Bind(&done_stepping); |
| #endif |
| |
| const Register left = RAX; |
| const Register right = RDX; |
| |
| __ movq(left, Address(RSP, 2 * target::kWordSize)); |
| __ movq(right, Address(RSP, 1 * target::kWordSize)); |
| GenerateIdenticalWithNumberCheckStub(assembler, left, right); |
| __ ret(); |
| |
| #if !defined(PRODUCT) |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping); |
| #endif |
| } |
| |
| // Called from optimized code only. |
| // TOS + 0: return address |
| // TOS + 1: right argument. |
| // TOS + 2: left argument. |
| // Returns ZF set. |
| void StubCodeCompiler::GenerateOptimizedIdenticalWithNumberCheckStub( |
| Assembler* assembler) { |
| const Register left = RAX; |
| const Register right = RDX; |
| |
| __ movq(left, Address(RSP, 2 * target::kWordSize)); |
| __ movq(right, Address(RSP, 1 * target::kWordSize)); |
| GenerateIdenticalWithNumberCheckStub(assembler, left, right); |
| __ ret(); |
| } |
| |
| // Called from megamorphic calls. |
| // RDX: receiver |
| // RBX: target::MegamorphicCache (preserved) |
| // Passed to target: |
| // CODE_REG: target Code |
| // R10: arguments descriptor |
| void StubCodeCompiler::GenerateMegamorphicCallStub(Assembler* assembler) { |
| // Jump if receiver is a smi. |
| Label smi_case; |
| __ testq(RDX, Immediate(kSmiTagMask)); |
| // Jump out of line for smi case. |
| __ j(ZERO, &smi_case, Assembler::kNearJump); |
| |
| // Loads the cid of the object. |
| __ LoadClassId(RAX, RDX); |
| |
| Label cid_loaded; |
| __ Bind(&cid_loaded); |
| __ movq(R9, FieldAddress(RBX, target::MegamorphicCache::mask_offset())); |
| __ movq(RDI, FieldAddress(RBX, target::MegamorphicCache::buckets_offset())); |
| // R9: mask as a smi. |
| // RDI: cache buckets array. |
| |
| // Tag cid as a smi. |
| __ addq(RAX, RAX); |
| |
| // Compute the table index. |
| ASSERT(target::MegamorphicCache::kSpreadFactor == 7); |
| // Use leaq and subq multiply with 7 == 8 - 1. |
| __ leaq(RCX, Address(RAX, TIMES_8, 0)); |
| __ subq(RCX, RAX); |
| |
| Label loop; |
| __ Bind(&loop); |
| __ andq(RCX, R9); |
| |
| const intptr_t base = target::Array::data_offset(); |
| // RCX is smi tagged, but table entries are two words, so TIMES_8. |
| Label probe_failed; |
| __ cmpq(RAX, FieldAddress(RDI, RCX, TIMES_8, base)); |
| __ j(NOT_EQUAL, &probe_failed, Assembler::kNearJump); |
| |
| Label load_target; |
| __ Bind(&load_target); |
| // Call the target found in the cache. For a class id match, this is a |
| // proper target for the given name and arguments descriptor. If the |
| // illegal class id was found, the target is a cache miss handler that can |
| // be invoked as a normal Dart function. |
| const auto target_address = |
| FieldAddress(RDI, RCX, TIMES_8, base + target::kWordSize); |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ movq(R10, |
| FieldAddress( |
| RBX, target::MegamorphicCache::arguments_descriptor_offset())); |
| __ jmp(target_address); |
| } else { |
| __ movq(RAX, target_address); |
| __ movq(R10, |
| FieldAddress( |
| RBX, target::MegamorphicCache::arguments_descriptor_offset())); |
| __ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset())); |
| __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
| __ jmp(RCX); |
| } |
| |
| // Probe failed, check if it is a miss. |
| __ Bind(&probe_failed); |
| __ cmpq(FieldAddress(RDI, RCX, TIMES_8, base), |
| Immediate(target::ToRawSmi(kIllegalCid))); |
| __ j(ZERO, &load_target, Assembler::kNearJump); |
| |
| // Try next entry in the table. |
| __ AddImmediate(RCX, Immediate(target::ToRawSmi(1))); |
| __ jmp(&loop); |
| |
| // Load cid for the Smi case. |
| __ Bind(&smi_case); |
| __ movq(RAX, Immediate(kSmiCid)); |
| __ jmp(&cid_loaded); |
| } |
| |
| void StubCodeCompiler::GenerateICCallThroughCodeStub(Assembler* assembler) { |
| Label loop, found, miss; |
| __ movq(R13, FieldAddress(RBX, target::ICData::entries_offset())); |
| __ movq(R10, |
| FieldAddress(RBX, target::ICData::arguments_descriptor_offset())); |
| __ leaq(R13, FieldAddress(R13, target::Array::data_offset())); |
| // R13: first IC entry |
| __ LoadTaggedClassIdMayBeSmi(RAX, RDX); |
| // RAX: receiver cid as Smi |
| |
| __ Bind(&loop); |
| __ movq(R9, Address(R13, 0)); |
| __ cmpq(RAX, R9); |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| |
| ASSERT(target::ToRawSmi(kIllegalCid) == 0); |
| __ testq(R9, R9); |
| __ j(ZERO, &miss, Assembler::kNearJump); |
| |
| const intptr_t entry_length = |
| target::ICData::TestEntryLengthFor(1, /*tracking_exactness=*/false) * |
| target::kWordSize; |
| __ addq(R13, Immediate(entry_length)); // Next entry. |
| __ jmp(&loop); |
| |
| __ Bind(&found); |
| const intptr_t code_offset = |
| target::ICData::CodeIndexFor(1) * target::kWordSize; |
| const intptr_t entry_offset = |
| target::ICData::EntryPointIndexFor(1) * target::kWordSize; |
| if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) { |
| __ movq(CODE_REG, Address(R13, code_offset)); |
| } |
| __ jmp(Address(R13, entry_offset)); |
| |
| __ Bind(&miss); |
| __ LoadIsolate(RAX); |
| __ movq(CODE_REG, Address(RAX, target::Isolate::ic_miss_code_offset())); |
| __ movq(RCX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RCX); |
| } |
| |
| // RDX: receiver |
| // RBX: UnlinkedCall |
| void StubCodeCompiler::GenerateUnlinkedCallStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushq(RDX); // Preserve receiver. |
| |
| __ pushq(Immediate(0)); // Result slot. |
| __ pushq(Immediate(0)); // Arg0: stub out. |
| __ pushq(RDX); // Arg1: Receiver |
| __ pushq(RBX); // Arg2: UnlinkedCall |
| __ CallRuntime(kUnlinkedCallRuntimeEntry, 3); |
| __ popq(RBX); |
| __ popq(RBX); |
| __ popq(CODE_REG); // result = stub |
| __ popq(RBX); // result = IC |
| |
| __ popq(RDX); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ movq(RCX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
| CodeEntryKind::kMonomorphic))); |
| __ jmp(RCX); |
| } |
| |
| // Called from switchable IC calls. |
| // RDX: receiver |
| // RBX: SingleTargetCache |
| // Passed to target:: |
| // CODE_REG: target Code object |
| void StubCodeCompiler::GenerateSingleTargetCallStub(Assembler* assembler) { |
| Label miss; |
| __ LoadClassIdMayBeSmi(RAX, RDX); |
| __ movzxw(R9, |
| FieldAddress(RBX, target::SingleTargetCache::lower_limit_offset())); |
| __ movzxw(R10, |
| FieldAddress(RBX, target::SingleTargetCache::upper_limit_offset())); |
| __ cmpq(RAX, R9); |
| __ j(LESS, &miss, Assembler::kNearJump); |
| __ cmpq(RAX, R10); |
| __ j(GREATER, &miss, Assembler::kNearJump); |
| __ movq(RCX, |
| FieldAddress(RBX, target::SingleTargetCache::entry_point_offset())); |
| __ movq(CODE_REG, |
| FieldAddress(RBX, target::SingleTargetCache::target_offset())); |
| __ jmp(RCX); |
| |
| __ Bind(&miss); |
| __ EnterStubFrame(); |
| __ pushq(RDX); // Preserve receiver. |
| |
| __ pushq(Immediate(0)); // Result slot. |
| __ pushq(Immediate(0)); // Arg0: stub out |
| __ pushq(RDX); // Arg1: Receiver |
| __ CallRuntime(kSingleTargetMissRuntimeEntry, 2); |
| __ popq(RBX); |
| __ popq(CODE_REG); // result = stub |
| __ popq(RBX); // result = IC |
| |
| __ popq(RDX); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ movq(RCX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
| CodeEntryKind::kMonomorphic))); |
| __ jmp(RCX); |
| } |
| |
| // Called from the monomorphic checked entry. |
| // RDX: receiver |
| void StubCodeCompiler::GenerateMonomorphicMissStub(Assembler* assembler) { |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::monomorphic_miss_stub_offset())); |
| __ EnterStubFrame(); |
| __ pushq(RDX); // Preserve receiver. |
| |
| __ pushq(Immediate(0)); // Result slot. |
| __ pushq(Immediate(0)); // Arg0: stub out. |
| __ pushq(RDX); // Arg1: Receiver |
| __ CallRuntime(kMonomorphicMissRuntimeEntry, 2); |
| __ popq(RBX); |
| __ popq(CODE_REG); // result = stub |
| __ popq(RBX); // result = IC |
| |
| __ popq(RDX); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ movq(RCX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
| CodeEntryKind::kMonomorphic))); |
| __ jmp(RCX); |
| } |
| |
| void StubCodeCompiler::GenerateFrameAwaitingMaterializationStub( |
| Assembler* assembler) { |
| __ int3(); |
| } |
| |
| void StubCodeCompiler::GenerateAsynchronousGapMarkerStub(Assembler* assembler) { |
| __ int3(); |
| } |
| |
| } // namespace compiler |
| |
| } // namespace dart |
| |
| #endif // defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME) |