blob: 61beaec88b8f23302c76f43bf5165985afab22a6 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// Declares a Simulator for ARM instructions if we are not generating a native
// ARM binary. This Simulator allows us to run and debug ARM code generation on
// regular desktop machines.
// Dart calls into generated code by "calling" the InvokeDartCode stub,
// which will start execution in the Simulator or forwards to the real entry
// on a ARM HW platform.
#ifndef RUNTIME_VM_SIMULATOR_ARM_H_
#define RUNTIME_VM_SIMULATOR_ARM_H_
#ifndef RUNTIME_VM_SIMULATOR_H_
#error Do not include simulator_arm.h directly; use simulator.h.
#endif
#include "vm/constants.h"
namespace dart {
class Isolate;
class Mutex;
class SimulatorSetjmpBuffer;
class Thread;
typedef struct {
union {
uint32_t u;
float f;
} data_[4];
} simd_value_t;
class Simulator {
public:
static const uword kSimulatorStackUnderflowSize = 64;
Simulator();
~Simulator();
// The currently executing Simulator instance, which is associated to the
// current isolate
static Simulator* Current();
// Accessors for register state. Reading the pc value adheres to the ARM
// architecture specification and is off by 8 from the currently executing
// instruction.
void set_register(Register reg, int32_t value);
DART_FORCE_INLINE int32_t get_register(Register reg) const {
ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters));
return registers_[reg] + ((reg == PC) ? Instr::kPCReadOffset : 0);
}
int32_t get_sp() const { return get_register(SPREG); }
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int32_t value);
DART_FORCE_INLINE int32_t get_pc() const { return registers_[PC]; }
// Accessors for VFP register state.
void set_sregister(SRegister reg, float value);
float get_sregister(SRegister reg) const;
void set_dregister(DRegister reg, double value);
double get_dregister(DRegister reg) const;
void set_qregister(QRegister reg, const simd_value_t& value);
void get_qregister(QRegister reg, simd_value_t* value) const;
// When moving integer (rather than floating point) values to/from
// the FPU registers, use the _bits calls to avoid gcc taking liberties with
// integers that map to such things as NaN floating point values.
void set_sregister_bits(SRegister reg, int32_t value);
int32_t get_sregister_bits(SRegister reg) const;
void set_dregister_bits(DRegister reg, int64_t value);
int64_t get_dregister_bits(DRegister reg) const;
// High address.
uword stack_base() const { return stack_base_; }
// Limit for StackOverflowError.
uword overflow_stack_limit() const { return overflow_stack_limit_; }
// Low address.
uword stack_limit() const { return stack_limit_; }
// Accessor to the instruction counter.
uint64_t get_icount() const { return icount_; }
// Call on program start.
static void Init();
// Dart generally calls into generated code with 4 parameters. This is a
// convenience function, which sets up the simulator state and grabs the
// result on return. When fp_return is true the return value is the D0
// floating point register. Otherwise, the return value is R1:R0.
// If fp_args is true, the parameters0-3 are placed in S0-3. Otherwise, they
// are placed in R0-3.
int64_t Call(int32_t entry,
int32_t parameter0,
int32_t parameter1,
int32_t parameter2,
int32_t parameter3,
bool fp_return = false,
bool fp_args = false);
// Runtime and native call support.
enum CallKind {
kRuntimeCall,
kLeafRuntimeCall,
kLeafFloatRuntimeCall,
kNativeCallWrapper
};
static uword RedirectExternalReference(uword function,
CallKind call_kind,
int argument_count);
static uword FunctionForRedirect(uword redirect);
void JumpToFrame(uword pc, uword sp, uword fp, Thread* thread);
private:
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
static const uword kBadLR = -1;
// A pc value used to signal the simulator to stop execution. Generally
// the lr is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
static const uword kEndSimulatingPC = -2;
// CPU state.
int32_t registers_[kNumberOfCpuRegisters];
bool n_flag_;
bool z_flag_;
bool c_flag_;
bool v_flag_;
// VFP state.
union { // S, D, and Q register banks are overlapping.
int32_t sregisters_[kNumberOfSRegisters];
int64_t dregisters_[kNumberOfDRegisters];
simd_value_t qregisters_[kNumberOfQRegisters];
};
bool fp_n_flag_;
bool fp_z_flag_;
bool fp_c_flag_;
bool fp_v_flag_;
// Simulator support.
char* stack_;
uword stack_limit_;
uword overflow_stack_limit_;
uword stack_base_;
bool pc_modified_;
uint64_t icount_;
static int32_t flag_stop_sim_at_;
SimulatorSetjmpBuffer* last_setjmp_buffer_;
// Registered breakpoints.
Instr* break_pc_;
int32_t break_instr_;
// Illegal memory access support.
static bool IsIllegalAddress(uword addr) { return addr < 64 * 1024; }
void HandleIllegalAccess(uword addr, Instr* instr);
// Handles a legal instruction that the simulator does not implement.
void UnimplementedInstruction(Instr* instr);
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instr* instr, const char* format);
// Checks if the current instruction should be executed based on its
// condition bits.
bool ConditionallyExecute(Instr* instr);
// Helper functions to set the conditional flags in the architecture state.
void SetNZFlags(int32_t val);
void SetCFlag(bool val);
void SetVFlag(bool val);
bool CarryFrom(int32_t left, int32_t right, int32_t carry);
bool OverflowFrom(int32_t left, int32_t right, int32_t carry);
// Helper functions to decode common "addressing" modes.
int32_t GetShiftRm(Instr* instr, bool* carry_out);
int32_t GetImm(Instr* instr, bool* carry_out);
void HandleRList(Instr* instr, bool load);
void SupervisorCall(Instr* instr);
// Read and write memory.
void UnalignedAccess(const char* msg, uword addr, Instr* instr);
// Perform a division.
void DoDivision(Instr* instr);
inline uint8_t ReadBU(uword addr);
inline int8_t ReadB(uword addr);
inline void WriteB(uword addr, uint8_t value);
inline uint16_t ReadHU(uword addr, Instr* instr);
inline int16_t ReadH(uword addr, Instr* instr);
inline void WriteH(uword addr, uint16_t value, Instr* instr);
inline intptr_t ReadW(uword addr, Instr* instr);
inline void WriteW(uword addr, intptr_t value, Instr* instr);
// Synchronization primitives support.
void ClearExclusive();
intptr_t ReadExclusiveW(uword addr, Instr* instr);
intptr_t WriteExclusiveW(uword addr, intptr_t value, Instr* instr);
// Exclusive access reservation: address and value observed during
// load-exclusive. Store-exclusive verifies that address is the same and
// performs atomic compare-and-swap with remembered value to observe value
// changes. This implementation of ldrex/strex instructions does not detect
// ABA situation and our uses of ldrex/strex don't need this detection.
uword exclusive_access_addr_;
uword exclusive_access_value_;
// Executing is handled based on the instruction type.
void DecodeType01(Instr* instr); // Both type 0 and type 1 rolled into one.
void DecodeType2(Instr* instr);
void DecodeType3(Instr* instr);
void DecodeType4(Instr* instr);
void DecodeType5(Instr* instr);
void DecodeType6(Instr* instr);
void DecodeType7(Instr* instr);
void DecodeSIMDDataProcessing(Instr* instr);
// Executes one instruction.
void InstructionDecode(Instr* instr);
void InstructionDecodeImpl(Instr* instr);
// Executes ARM instructions until the PC reaches kEndSimulatingPC.
void Execute();
// Returns true if tracing of executed instructions is enabled.
bool IsTracingExecution() const;
// Longjmp support for exceptions.
SimulatorSetjmpBuffer* last_setjmp_buffer() { return last_setjmp_buffer_; }
void set_last_setjmp_buffer(SimulatorSetjmpBuffer* buffer) {
last_setjmp_buffer_ = buffer;
}
friend class SimulatorDebugger;
friend class SimulatorSetjmpBuffer;
DISALLOW_COPY_AND_ASSIGN(Simulator);
};
} // namespace dart
#endif // RUNTIME_VM_SIMULATOR_ARM_H_