|  | // Copyright (c) 2014, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  |  | 
|  | #include <setjmp.h>  // NOLINT | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include "vm/globals.h" | 
|  | #if defined(TARGET_ARCH_ARM64) | 
|  |  | 
|  | // Only build the simulator if not compiling for real ARM hardware. | 
|  | #if defined(DART_INCLUDE_SIMULATOR) | 
|  |  | 
|  | #include "vm/simulator.h" | 
|  |  | 
|  | #include "vm/compiler/assembler/disassembler.h" | 
|  | #include "vm/constants.h" | 
|  | #include "vm/image_snapshot.h" | 
|  | #include "vm/native_arguments.h" | 
|  | #include "vm/os_thread.h" | 
|  | #include "vm/runtime_entry.h" | 
|  | #include "vm/stack_frame.h" | 
|  |  | 
|  | namespace dart { | 
|  |  | 
|  | // constants_arm64.h does not define LR constant to prevent accidental direct | 
|  | // use of it during code generation. However using LR directly is okay in this | 
|  | // file because it is a simulator. | 
|  | constexpr Register LR = LR_DO_NOT_USE_DIRECTLY; | 
|  |  | 
|  | DEFINE_FLAG(uint64_t, | 
|  | trace_sim_after, | 
|  | ULLONG_MAX, | 
|  | "Trace simulator execution after instruction count reached."); | 
|  | DEFINE_FLAG(uint64_t, | 
|  | stop_sim_at, | 
|  | ULLONG_MAX, | 
|  | "Instruction address or instruction count to stop simulator at."); | 
|  |  | 
|  | DEFINE_FLAG(bool, | 
|  | sim_allow_unaligned_accesses, | 
|  | true, | 
|  | "Allow unaligned accesses to Normal memory."); | 
|  | DEFINE_FLAG(bool, sim_buffer_memory, false, "Simulate weak memory ordering."); | 
|  |  | 
|  | // This macro provides a platform independent use of sscanf. The reason for | 
|  | // SScanF not being implemented in a platform independent way through | 
|  | // OS in the same way as SNPrint is that the Windows C Run-Time | 
|  | // Library does not provide vsscanf. | 
|  | #define SScanF sscanf  // NOLINT | 
|  |  | 
|  | // SimulatorSetjmpBuffer are linked together, and the last created one | 
|  | // is referenced by the Simulator. When an exception is thrown, the exception | 
|  | // runtime looks at where to jump and finds the corresponding | 
|  | // SimulatorSetjmpBuffer based on the stack pointer of the exception handler. | 
|  | // The runtime then does a Longjmp on that buffer to return to the simulator. | 
|  | class SimulatorSetjmpBuffer { | 
|  | public: | 
|  | void Longjmp() { | 
|  | // "This" is now the last setjmp buffer. | 
|  | simulator_->set_last_setjmp_buffer(this); | 
|  | DART_LONGJMP(buffer_, 1); | 
|  | } | 
|  |  | 
|  | explicit SimulatorSetjmpBuffer(Simulator* sim) { | 
|  | simulator_ = sim; | 
|  | link_ = sim->last_setjmp_buffer(); | 
|  | sim->set_last_setjmp_buffer(this); | 
|  | sp_ = static_cast<uword>(sim->get_register(R31, R31IsSP)); | 
|  | } | 
|  |  | 
|  | ~SimulatorSetjmpBuffer() { | 
|  | ASSERT(simulator_->last_setjmp_buffer() == this); | 
|  | simulator_->set_last_setjmp_buffer(link_); | 
|  | } | 
|  |  | 
|  | SimulatorSetjmpBuffer* link() { return link_; } | 
|  |  | 
|  | uword sp() { return sp_; } | 
|  |  | 
|  | private: | 
|  | uword sp_; | 
|  | Simulator* simulator_; | 
|  | SimulatorSetjmpBuffer* link_; | 
|  | jmp_buf buffer_; | 
|  |  | 
|  | friend class Simulator; | 
|  | }; | 
|  |  | 
|  | // The SimulatorDebugger class is used by the simulator while debugging | 
|  | // simulated ARM64 code. | 
|  | class SimulatorDebugger { | 
|  | public: | 
|  | explicit SimulatorDebugger(Simulator* sim); | 
|  | ~SimulatorDebugger(); | 
|  |  | 
|  | void Stop(Instr* instr, const char* message); | 
|  | void Debug(); | 
|  | char* ReadLine(const char* prompt); | 
|  |  | 
|  | private: | 
|  | Simulator* sim_; | 
|  |  | 
|  | bool GetValue(char* desc, uint64_t* value); | 
|  | bool GetSValue(char* desc, uint32_t* value); | 
|  | bool GetDValue(char* desc, uint64_t* value); | 
|  | bool GetQValue(char* desc, simd_value_t* value); | 
|  |  | 
|  | static TokenPosition GetApproximateTokenIndex(const Code& code, uword pc); | 
|  |  | 
|  | static void PrintDartFrame(uword vm_instructions, | 
|  | uword isolate_instructions, | 
|  | uword pc, | 
|  | uword fp, | 
|  | uword sp, | 
|  | const Function& function, | 
|  | TokenPosition token_pos, | 
|  | bool is_optimized, | 
|  | bool is_inlined); | 
|  | void PrintBacktrace(); | 
|  |  | 
|  | // Set or delete a breakpoint. Returns true if successful. | 
|  | bool SetBreakpoint(Instr* breakpc); | 
|  | bool DeleteBreakpoint(Instr* breakpc); | 
|  |  | 
|  | // Undo and redo all breakpoints. This is needed to bracket disassembly and | 
|  | // execution to skip past breakpoints when run from the debugger. | 
|  | void UndoBreakpoints(); | 
|  | void RedoBreakpoints(); | 
|  | }; | 
|  |  | 
|  | SimulatorDebugger::SimulatorDebugger(Simulator* sim) { | 
|  | sim_ = sim; | 
|  | } | 
|  |  | 
|  | SimulatorDebugger::~SimulatorDebugger() {} | 
|  |  | 
|  | void SimulatorDebugger::Stop(Instr* instr, const char* message) { | 
|  | OS::PrintErr("Simulator hit %s\n", message); | 
|  | Debug(); | 
|  | } | 
|  |  | 
|  | static Register LookupCpuRegisterByName(const char* name) { | 
|  | static const char* const kNames[] = { | 
|  | "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7", | 
|  | "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "r24", "r25", "r26", "r27", "r28", "r29", "r30", | 
|  |  | 
|  | "ip0", "ip1", "pp",  "fp",  "lr",  "sp",  "zr", | 
|  | }; | 
|  | static const Register kRegisters[] = { | 
|  | R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, | 
|  | R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, | 
|  | R22, R23, R24, R25, R26, R27, R28, R29, R30, | 
|  |  | 
|  | IP0, IP1, PP,  FP,  LR,  R31, ZR, | 
|  | }; | 
|  | ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters)); | 
|  | for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) { | 
|  | if (strcmp(kNames[i], name) == 0) { | 
|  | return kRegisters[i]; | 
|  | } | 
|  | } | 
|  | return kNoRegister; | 
|  | } | 
|  |  | 
|  | static VRegister LookupVRegisterByName(const char* name) { | 
|  | int reg_nr = -1; | 
|  | bool ok = SScanF(name, "v%d", ®_nr); | 
|  | if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfVRegisters)) { | 
|  | return static_cast<VRegister>(reg_nr); | 
|  | } | 
|  | return kNoVRegister; | 
|  | } | 
|  |  | 
|  | bool SimulatorDebugger::GetValue(char* desc, uint64_t* value) { | 
|  | Register reg = LookupCpuRegisterByName(desc); | 
|  | if (reg != kNoRegister) { | 
|  | if (reg == ZR) { | 
|  | *value = 0; | 
|  | return true; | 
|  | } | 
|  | *value = sim_->get_register(reg); | 
|  | return true; | 
|  | } | 
|  | if (desc[0] == '*') { | 
|  | uint64_t addr; | 
|  | if (GetValue(desc + 1, &addr)) { | 
|  | if (Simulator::IsIllegalAddress(addr)) { | 
|  | return false; | 
|  | } | 
|  | *value = *(reinterpret_cast<int64_t*>(addr)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (strcmp("pc", desc) == 0) { | 
|  | *value = sim_->get_pc(); | 
|  | return true; | 
|  | } | 
|  | bool retval = SScanF(desc, "0x%" Px64, value) == 1; | 
|  | if (!retval) { | 
|  | retval = SScanF(desc, "%" Px64, value) == 1; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | bool SimulatorDebugger::GetSValue(char* desc, uint32_t* value) { | 
|  | VRegister vreg = LookupVRegisterByName(desc); | 
|  | if (vreg != kNoVRegister) { | 
|  | *value = sim_->get_vregisters(vreg, 0); | 
|  | return true; | 
|  | } | 
|  | if (desc[0] == '*') { | 
|  | uint64_t addr; | 
|  | if (GetValue(desc + 1, &addr)) { | 
|  | if (Simulator::IsIllegalAddress(addr)) { | 
|  | return false; | 
|  | } | 
|  | *value = *(reinterpret_cast<uint32_t*>(addr)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SimulatorDebugger::GetDValue(char* desc, uint64_t* value) { | 
|  | VRegister vreg = LookupVRegisterByName(desc); | 
|  | if (vreg != kNoVRegister) { | 
|  | *value = sim_->get_vregisterd(vreg, 0); | 
|  | return true; | 
|  | } | 
|  | if (desc[0] == '*') { | 
|  | uint64_t addr; | 
|  | if (GetValue(desc + 1, &addr)) { | 
|  | if (Simulator::IsIllegalAddress(addr)) { | 
|  | return false; | 
|  | } | 
|  | *value = *(reinterpret_cast<uint64_t*>(addr)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SimulatorDebugger::GetQValue(char* desc, simd_value_t* value) { | 
|  | VRegister vreg = LookupVRegisterByName(desc); | 
|  | if (vreg != kNoVRegister) { | 
|  | sim_->get_vregister(vreg, value); | 
|  | return true; | 
|  | } | 
|  | if (desc[0] == '*') { | 
|  | uint64_t addr; | 
|  | if (GetValue(desc + 1, &addr)) { | 
|  | if (Simulator::IsIllegalAddress(addr)) { | 
|  | return false; | 
|  | } | 
|  | *value = *(reinterpret_cast<simd_value_t*>(addr)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TokenPosition SimulatorDebugger::GetApproximateTokenIndex(const Code& code, | 
|  | uword pc) { | 
|  | TokenPosition token_pos = TokenPosition::kNoSource; | 
|  | uword pc_offset = pc - code.PayloadStart(); | 
|  | const PcDescriptors& descriptors = | 
|  | PcDescriptors::Handle(code.pc_descriptors()); | 
|  | PcDescriptors::Iterator iter(descriptors, UntaggedPcDescriptors::kAnyKind); | 
|  | while (iter.MoveNext()) { | 
|  | if (iter.PcOffset() == pc_offset) { | 
|  | return iter.TokenPos(); | 
|  | } else if (!token_pos.IsReal() && (iter.PcOffset() > pc_offset)) { | 
|  | token_pos = iter.TokenPos(); | 
|  | } | 
|  | } | 
|  | return token_pos; | 
|  | } | 
|  |  | 
|  | #if defined(DART_PRECOMPILED_RUNTIME) | 
|  | static const char* ImageName(uword vm_instructions, | 
|  | uword isolate_instructions, | 
|  | uword pc, | 
|  | intptr_t* offset) { | 
|  | const Image vm_image(vm_instructions); | 
|  | const Image isolate_image(isolate_instructions); | 
|  | if (vm_image.contains(pc)) { | 
|  | *offset = pc - vm_instructions; | 
|  | return kVmSnapshotInstructionsAsmSymbol; | 
|  | } else if (isolate_image.contains(pc)) { | 
|  | *offset = pc - isolate_instructions; | 
|  | return kIsolateSnapshotInstructionsAsmSymbol; | 
|  | } else { | 
|  | *offset = 0; | 
|  | return "<unknown>"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void SimulatorDebugger::PrintDartFrame(uword vm_instructions, | 
|  | uword isolate_instructions, | 
|  | uword pc, | 
|  | uword fp, | 
|  | uword sp, | 
|  | const Function& function, | 
|  | TokenPosition token_pos, | 
|  | bool is_optimized, | 
|  | bool is_inlined) { | 
|  | const Script& script = Script::Handle(function.script()); | 
|  | const String& func_name = String::Handle(function.QualifiedScrubbedName()); | 
|  | const String& url = String::Handle(script.url()); | 
|  | intptr_t line, column; | 
|  | if (script.GetTokenLocation(token_pos, &line, &column)) { | 
|  | OS::PrintErr( | 
|  | "pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s:%" Pd ":%" Pd ")", pc, | 
|  | fp, sp, is_optimized ? (is_inlined ? "inlined " : "optimized ") : "", | 
|  | func_name.ToCString(), url.ToCString(), line, column); | 
|  | } else { | 
|  | OS::PrintErr("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s)", pc, fp, sp, | 
|  | is_optimized ? (is_inlined ? "inlined " : "optimized ") : "", | 
|  | func_name.ToCString(), url.ToCString()); | 
|  | } | 
|  | #if defined(DART_PRECOMPILED_RUNTIME) | 
|  | intptr_t offset; | 
|  | auto const symbol_name = | 
|  | ImageName(vm_instructions, isolate_instructions, pc, &offset); | 
|  | OS::PrintErr(" %s+0x%" Px "", symbol_name, offset); | 
|  | #endif | 
|  | OS::PrintErr("\n"); | 
|  | } | 
|  |  | 
|  | void SimulatorDebugger::PrintBacktrace() { | 
|  | auto const T = Thread::Current(); | 
|  | auto const Z = T->zone(); | 
|  | #if defined(DART_PRECOMPILED_RUNTIME) | 
|  | auto const vm_instructions = reinterpret_cast<uword>( | 
|  | Dart::vm_isolate_group()->source()->snapshot_instructions); | 
|  | auto const isolate_instructions = reinterpret_cast<uword>( | 
|  | T->isolate_group()->source()->snapshot_instructions); | 
|  | OS::PrintErr("vm_instructions=0x%" Px ", isolate_instructions=0x%" Px "\n", | 
|  | vm_instructions, isolate_instructions); | 
|  | #else | 
|  | const uword vm_instructions = 0; | 
|  | const uword isolate_instructions = 0; | 
|  | #endif | 
|  | StackFrameIterator frames(sim_->get_register(FP), sim_->get_register(SP), | 
|  | sim_->get_pc(), | 
|  | ValidationPolicy::kDontValidateFrames, T, | 
|  | StackFrameIterator::kNoCrossThreadIteration); | 
|  | StackFrame* frame = frames.NextFrame(); | 
|  | ASSERT(frame != nullptr); | 
|  | Function& function = Function::Handle(Z); | 
|  | Function& inlined_function = Function::Handle(Z); | 
|  | Code& code = Code::Handle(Z); | 
|  | Code& unoptimized_code = Code::Handle(Z); | 
|  | while (frame != nullptr) { | 
|  | if (frame->IsDartFrame()) { | 
|  | code = frame->LookupDartCode(); | 
|  | function = code.function(); | 
|  | if (code.is_optimized()) { | 
|  | // For optimized frames, extract all the inlined functions if any | 
|  | // into the stack trace. | 
|  | InlinedFunctionsIterator it(code, frame->pc()); | 
|  | while (!it.Done()) { | 
|  | // Print each inlined frame with its pc in the corresponding | 
|  | // unoptimized frame. | 
|  | inlined_function = it.function(); | 
|  | unoptimized_code = it.code(); | 
|  | uword unoptimized_pc = it.pc(); | 
|  | it.Advance(); | 
|  | if (!it.Done()) { | 
|  | PrintDartFrame( | 
|  | vm_instructions, isolate_instructions, unoptimized_pc, | 
|  | frame->fp(), frame->sp(), inlined_function, | 
|  | GetApproximateTokenIndex(unoptimized_code, unoptimized_pc), | 
|  | true, true); | 
|  | } | 
|  | } | 
|  | // Print the optimized inlining frame below. | 
|  | } | 
|  | PrintDartFrame(vm_instructions, isolate_instructions, frame->pc(), | 
|  | frame->fp(), frame->sp(), function, | 
|  | GetApproximateTokenIndex(code, frame->pc()), | 
|  | code.is_optimized(), false); | 
|  | } else { | 
|  | OS::PrintErr("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s frame", | 
|  | frame->pc(), frame->fp(), frame->sp(), | 
|  | frame->IsEntryFrame()  ? "entry" | 
|  | : frame->IsExitFrame() ? "exit" | 
|  | : frame->IsStubFrame() ? "stub" | 
|  | : "invalid"); | 
|  | #if defined(DART_PRECOMPILED_RUNTIME) | 
|  | intptr_t offset; | 
|  | auto const symbol_name = ImageName(vm_instructions, isolate_instructions, | 
|  | frame->pc(), &offset); | 
|  | OS::PrintErr(" %s+0x%" Px "", symbol_name, offset); | 
|  | #endif | 
|  | OS::PrintErr("\n"); | 
|  | } | 
|  | frame = frames.NextFrame(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) { | 
|  | // Check if a breakpoint can be set. If not return without any side-effects. | 
|  | if (sim_->break_pc_ != nullptr) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set the breakpoint. | 
|  | sim_->break_pc_ = breakpc; | 
|  | sim_->break_instr_ = breakpc->InstructionBits(); | 
|  | // Not setting the breakpoint instruction in the code itself. It will be set | 
|  | // when the debugger shell continues. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) { | 
|  | if (sim_->break_pc_ != nullptr) { | 
|  | sim_->break_pc_->SetInstructionBits(sim_->break_instr_); | 
|  | } | 
|  |  | 
|  | sim_->break_pc_ = nullptr; | 
|  | sim_->break_instr_ = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SimulatorDebugger::UndoBreakpoints() { | 
|  | if (sim_->break_pc_ != nullptr) { | 
|  | sim_->break_pc_->SetInstructionBits(sim_->break_instr_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SimulatorDebugger::RedoBreakpoints() { | 
|  | if (sim_->break_pc_ != nullptr) { | 
|  | sim_->break_pc_->SetInstructionBits(Instr::kSimulatorBreakpointInstruction); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SimulatorDebugger::Debug() { | 
|  | uintptr_t last_pc = -1; | 
|  | bool done = false; | 
|  |  | 
|  | #define COMMAND_SIZE 63 | 
|  | #define ARG_SIZE 255 | 
|  |  | 
|  | #define STR(a) #a | 
|  | #define XSTR(a) STR(a) | 
|  |  | 
|  | char cmd[COMMAND_SIZE + 1]; | 
|  | char arg1[ARG_SIZE + 1]; | 
|  | char arg2[ARG_SIZE + 1]; | 
|  |  | 
|  | // make sure to have a proper terminating character if reaching the limit | 
|  | cmd[COMMAND_SIZE] = 0; | 
|  | arg1[ARG_SIZE] = 0; | 
|  | arg2[ARG_SIZE] = 0; | 
|  |  | 
|  | // Undo all set breakpoints while running in the debugger shell. This will | 
|  | // make them invisible to all commands. | 
|  | UndoBreakpoints(); | 
|  |  | 
|  | while (!done) { | 
|  | if (last_pc != sim_->get_pc()) { | 
|  | last_pc = sim_->get_pc(); | 
|  | if (Simulator::IsIllegalAddress(last_pc)) { | 
|  | OS::PrintErr("pc is out of bounds: 0x%" Px "\n", last_pc); | 
|  | } else { | 
|  | if (FLAG_support_disassembler) { | 
|  | Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize); | 
|  | } else { | 
|  | OS::PrintErr("Disassembler not supported in this mode.\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | char* line = ReadLine("sim> "); | 
|  | if (line == nullptr) { | 
|  | FATAL("ReadLine failed"); | 
|  | } else { | 
|  | // Use sscanf to parse the individual parts of the command line. At the | 
|  | // moment no command expects more than two parameters. | 
|  | int args = SScanF(line, | 
|  | "%" XSTR(COMMAND_SIZE) "s " | 
|  | "%" XSTR(ARG_SIZE) "s " | 
|  | "%" XSTR(ARG_SIZE) "s", | 
|  | cmd, arg1, arg2); | 
|  | if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { | 
|  | OS::PrintErr( | 
|  | "c/cont -- continue execution\n" | 
|  | "disasm -- disassemble instrs at current pc location\n" | 
|  | "  other variants are:\n" | 
|  | "    disasm <address>\n" | 
|  | "    disasm <address> <number_of_instructions>\n" | 
|  | "  by default 10 instrs are disassembled\n" | 
|  | "del -- delete breakpoints\n" | 
|  | "flags -- print flag values\n" | 
|  | "gdb -- transfer control to gdb\n" | 
|  | "h/help -- print this help string\n" | 
|  | "break <address> -- set break point at specified address\n" | 
|  | "p/print <reg or icount or value or *addr> -- print integer\n" | 
|  | "pf/printfloat <vreg or *addr> --print float value\n" | 
|  | "pd/printdouble <vreg or *addr> -- print double value\n" | 
|  | "pq/printquad <vreg or *addr> -- print vector register\n" | 
|  | "po/printobject <*reg or *addr> -- print object\n" | 
|  | "si/stepi -- single step an instruction\n" | 
|  | "trace -- toggle execution tracing mode\n" | 
|  | "bt -- print backtrace\n" | 
|  | "unstop -- if current pc is a stop instr make it a nop\n" | 
|  | "q/quit -- Quit the debugger and exit the program\n"); | 
|  | } else if ((strcmp(cmd, "quit") == 0) || (strcmp(cmd, "q") == 0)) { | 
|  | OS::PrintErr("Quitting\n"); | 
|  | OS::Exit(0); | 
|  | } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { | 
|  | sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); | 
|  | } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { | 
|  | // Execute the one instruction we broke at with breakpoints disabled. | 
|  | sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); | 
|  | // Leave the debugger shell. | 
|  | done = true; | 
|  | } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { | 
|  | if (args == 2) { | 
|  | uint64_t value; | 
|  | if (strcmp(arg1, "icount") == 0) { | 
|  | value = sim_->get_icount(); | 
|  | OS::PrintErr("icount: %" Pu64 " 0x%" Px64 "\n", value, value); | 
|  | } else if (GetValue(arg1, &value)) { | 
|  | OS::PrintErr("%s: %" Pu64 " 0x%" Px64 "\n", arg1, value, value); | 
|  | } else { | 
|  | OS::PrintErr("%s unrecognized\n", arg1); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("print <reg or icount or value or *addr>\n"); | 
|  | } | 
|  | } else if ((strcmp(cmd, "pf") == 0) || (strcmp(cmd, "printfloat") == 0)) { | 
|  | if (args == 2) { | 
|  | uint32_t value; | 
|  | if (GetSValue(arg1, &value)) { | 
|  | float svalue = bit_cast<float, uint32_t>(value); | 
|  | OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, value, value, svalue); | 
|  | } else { | 
|  | OS::PrintErr("%s unrecognized\n", arg1); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("printfloat <vreg or *addr>\n"); | 
|  | } | 
|  | } else if ((strcmp(cmd, "pd") == 0) || | 
|  | (strcmp(cmd, "printdouble") == 0)) { | 
|  | if (args == 2) { | 
|  | uint64_t long_value; | 
|  | if (GetDValue(arg1, &long_value)) { | 
|  | double dvalue = bit_cast<double, uint64_t>(long_value); | 
|  | OS::PrintErr("%s: %" Pu64 " 0x%" Px64 " %.8g\n", arg1, long_value, | 
|  | long_value, dvalue); | 
|  | } else { | 
|  | OS::PrintErr("%s unrecognized\n", arg1); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("printdouble <vreg or *addr>\n"); | 
|  | } | 
|  | } else if ((strcmp(cmd, "pq") == 0) || (strcmp(cmd, "printquad") == 0)) { | 
|  | if (args == 2) { | 
|  | simd_value_t quad_value; | 
|  | if (GetQValue(arg1, &quad_value)) { | 
|  | const int64_t d0 = quad_value.bits.i64[0]; | 
|  | const int64_t d1 = quad_value.bits.i64[1]; | 
|  | const double dval0 = bit_cast<double, int64_t>(d0); | 
|  | const double dval1 = bit_cast<double, int64_t>(d1); | 
|  | const int32_t s0 = quad_value.bits.i32[0]; | 
|  | const int32_t s1 = quad_value.bits.i32[1]; | 
|  | const int32_t s2 = quad_value.bits.i32[2]; | 
|  | const int32_t s3 = quad_value.bits.i32[3]; | 
|  | const float sval0 = bit_cast<float, int32_t>(s0); | 
|  | const float sval1 = bit_cast<float, int32_t>(s1); | 
|  | const float sval2 = bit_cast<float, int32_t>(s2); | 
|  | const float sval3 = bit_cast<float, int32_t>(s3); | 
|  | OS::PrintErr("%s: %" Pu64 " 0x%" Px64 " %.8g\n", arg1, d0, d0, | 
|  | dval0); | 
|  | OS::PrintErr("%s: %" Pu64 " 0x%" Px64 " %.8g\n", arg1, d1, d1, | 
|  | dval1); | 
|  | OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, s0, s0, sval0); | 
|  | OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, s1, s1, sval1); | 
|  | OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, s2, s2, sval2); | 
|  | OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, s3, s3, sval3); | 
|  | } else { | 
|  | OS::PrintErr("%s unrecognized\n", arg1); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("printquad <vreg or *addr>\n"); | 
|  | } | 
|  | } else if ((strcmp(cmd, "po") == 0) || | 
|  | (strcmp(cmd, "printobject") == 0)) { | 
|  | if (args == 2) { | 
|  | uint64_t value; | 
|  | // Make the dereferencing '*' optional. | 
|  | if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) || | 
|  | GetValue(arg1, &value)) { | 
|  | if (IsolateGroup::Current()->heap()->Contains(value)) { | 
|  | OS::PrintErr("%s: \n", arg1); | 
|  | #if defined(DEBUG) | 
|  | const Object& obj = Object::Handle( | 
|  | static_cast<ObjectPtr>(static_cast<uword>(value))); | 
|  | obj.Print(); | 
|  | #endif  // defined(DEBUG) | 
|  | } else { | 
|  | OS::PrintErr("0x%" Px64 " is not an object reference\n", value); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("%s unrecognized\n", arg1); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("printobject <*reg or *addr>\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "disasm") == 0) { | 
|  | uint64_t start = 0; | 
|  | uint64_t end = 0; | 
|  | if (args == 1) { | 
|  | start = sim_->get_pc(); | 
|  | end = start + (10 * Instr::kInstrSize); | 
|  | } else if (args == 2) { | 
|  | if (GetValue(arg1, &start)) { | 
|  | // No length parameter passed, assume 10 instructions. | 
|  | if (Simulator::IsIllegalAddress(start)) { | 
|  | // If start isn't a valid address, warn and use PC instead. | 
|  | OS::PrintErr("First argument yields invalid address: 0x%" Px64 | 
|  | "\n", | 
|  | start); | 
|  | OS::PrintErr("Using PC instead\n"); | 
|  | start = sim_->get_pc(); | 
|  | } | 
|  | end = start + (10 * Instr::kInstrSize); | 
|  | } | 
|  | } else { | 
|  | uint64_t length; | 
|  | if (GetValue(arg1, &start) && GetValue(arg2, &length)) { | 
|  | if (Simulator::IsIllegalAddress(start)) { | 
|  | // If start isn't a valid address, warn and use PC instead. | 
|  | OS::PrintErr("First argument yields invalid address: 0x%" Px64 | 
|  | "\n", | 
|  | start); | 
|  | OS::PrintErr("Using PC instead\n"); | 
|  | start = sim_->get_pc(); | 
|  | } | 
|  | end = start + (length * Instr::kInstrSize); | 
|  | } | 
|  | } | 
|  | if ((start > 0) && (end > start)) { | 
|  | if (FLAG_support_disassembler) { | 
|  | Disassembler::Disassemble(start, end); | 
|  | } else { | 
|  | OS::PrintErr("Disassembler not supported in this mode.\n"); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("disasm [<address> [<number_of_instructions>]]\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "gdb") == 0) { | 
|  | OS::PrintErr("relinquishing control to gdb\n"); | 
|  | OS::DebugBreak(); | 
|  | OS::PrintErr("regaining control from gdb\n"); | 
|  | } else if (strcmp(cmd, "break") == 0) { | 
|  | if (args == 2) { | 
|  | uint64_t addr; | 
|  | if (GetValue(arg1, &addr)) { | 
|  | if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) { | 
|  | OS::PrintErr("setting breakpoint failed\n"); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("%s unrecognized\n", arg1); | 
|  | } | 
|  | } else { | 
|  | OS::PrintErr("break <addr>\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "del") == 0) { | 
|  | if (!DeleteBreakpoint(nullptr)) { | 
|  | OS::PrintErr("deleting breakpoint failed\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "flags") == 0) { | 
|  | OS::PrintErr("APSR: "); | 
|  | OS::PrintErr("N flag: %d; ", static_cast<int>(sim_->n_flag_)); | 
|  | OS::PrintErr("Z flag: %d; ", static_cast<int>(sim_->z_flag_)); | 
|  | OS::PrintErr("C flag: %d; ", static_cast<int>(sim_->c_flag_)); | 
|  | OS::PrintErr("V flag: %d\n", static_cast<int>(sim_->v_flag_)); | 
|  | } else if (strcmp(cmd, "unstop") == 0) { | 
|  | intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; | 
|  | Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); | 
|  | if (stop_instr->IsExceptionGenOp()) { | 
|  | stop_instr->SetInstructionBits(Instr::kNopInstruction); | 
|  | } else { | 
|  | OS::PrintErr("Not at debugger stop.\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "trace") == 0) { | 
|  | if (FLAG_trace_sim_after == ULLONG_MAX) { | 
|  | FLAG_trace_sim_after = sim_->get_icount(); | 
|  | OS::PrintErr("execution tracing on\n"); | 
|  | } else { | 
|  | FLAG_trace_sim_after = ULLONG_MAX; | 
|  | OS::PrintErr("execution tracing off\n"); | 
|  | } | 
|  | } else if (strcmp(cmd, "bt") == 0) { | 
|  | Thread* thread = reinterpret_cast<Thread*>(sim_->get_register(THR)); | 
|  | thread->set_execution_state(Thread::kThreadInVM); | 
|  | PrintBacktrace(); | 
|  | thread->set_execution_state(Thread::kThreadInGenerated); | 
|  | } else { | 
|  | OS::PrintErr("Unknown command: %s\n", cmd); | 
|  | } | 
|  | } | 
|  | delete[] line; | 
|  | } | 
|  |  | 
|  | // Add all the breakpoints back to stop execution and enter the debugger | 
|  | // shell when hit. | 
|  | RedoBreakpoints(); | 
|  |  | 
|  | #undef COMMAND_SIZE | 
|  | #undef ARG_SIZE | 
|  |  | 
|  | #undef STR | 
|  | #undef XSTR | 
|  | } | 
|  |  | 
|  | char* SimulatorDebugger::ReadLine(const char* prompt) { | 
|  | char* result = nullptr; | 
|  | char line_buf[256]; | 
|  | intptr_t offset = 0; | 
|  | bool keep_going = true; | 
|  | OS::PrintErr("%s", prompt); | 
|  | while (keep_going) { | 
|  | if (fgets(line_buf, sizeof(line_buf), stdin) == nullptr) { | 
|  | // fgets got an error. Just give up. | 
|  | if (result != nullptr) { | 
|  | delete[] result; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | intptr_t len = strlen(line_buf); | 
|  | if (len > 1 && line_buf[len - 2] == '\\' && line_buf[len - 1] == '\n') { | 
|  | // When we read a line that ends with a "\" we remove the escape and | 
|  | // append the remainder. | 
|  | line_buf[len - 2] = '\n'; | 
|  | line_buf[len - 1] = 0; | 
|  | len -= 1; | 
|  | } else if ((len > 0) && (line_buf[len - 1] == '\n')) { | 
|  | // Since we read a new line we are done reading the line. This | 
|  | // will exit the loop after copying this buffer into the result. | 
|  | keep_going = false; | 
|  | } | 
|  | if (result == nullptr) { | 
|  | // Allocate the initial result and make room for the terminating '\0' | 
|  | result = new char[len + 1]; | 
|  | if (result == nullptr) { | 
|  | // OOM, so cannot readline anymore. | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | // Allocate a new result with enough room for the new addition. | 
|  | intptr_t new_len = offset + len + 1; | 
|  | char* new_result = new char[new_len]; | 
|  | if (new_result == nullptr) { | 
|  | // OOM, free the buffer allocated so far and return nullptr. | 
|  | delete[] result; | 
|  | return nullptr; | 
|  | } else { | 
|  | // Copy the existing input into the new array and set the new | 
|  | // array as the result. | 
|  | memmove(new_result, result, offset); | 
|  | delete[] result; | 
|  | result = new_result; | 
|  | } | 
|  | } | 
|  | // Copy the newly read line into the result. | 
|  | memmove(result + offset, line_buf, len); | 
|  | offset += len; | 
|  | } | 
|  | ASSERT(result != nullptr); | 
|  | result[offset] = '\0'; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void Simulator::Init() {} | 
|  |  | 
|  | Simulator::Simulator() : memory_(FLAG_sim_buffer_memory) { | 
|  | // Setup simulator support first. Some of this information is needed to | 
|  | // setup the architecture state. | 
|  | // We allocate the stack here, the size is computed as the sum of | 
|  | // the size specified by the user and the buffer space needed for | 
|  | // handling stack overflow exceptions. To be safe in potential | 
|  | // stack underflows we also add some underflow buffer space. | 
|  | stack_ = | 
|  | new char[(OSThread::GetSpecifiedStackSize() + | 
|  | OSThread::kStackSizeBufferMax + kSimulatorStackUnderflowSize)]; | 
|  | // Low address. | 
|  | stack_limit_ = reinterpret_cast<uword>(stack_); | 
|  | // Limit for StackOverflowError. | 
|  | overflow_stack_limit_ = stack_limit_ + OSThread::kStackSizeBufferMax; | 
|  | // High address. | 
|  | stack_base_ = overflow_stack_limit_ + OSThread::GetSpecifiedStackSize(); | 
|  |  | 
|  | pc_modified_ = false; | 
|  | icount_ = 0; | 
|  | break_pc_ = nullptr; | 
|  | break_instr_ = 0; | 
|  | last_setjmp_buffer_ = nullptr; | 
|  |  | 
|  | // Setup architecture state. | 
|  | // All registers are initialized to zero to start with. | 
|  | for (int i = 0; i < kNumberOfCpuRegisters; i++) { | 
|  | registers_[i] = 0; | 
|  | } | 
|  | n_flag_ = false; | 
|  | z_flag_ = false; | 
|  | c_flag_ = false; | 
|  | v_flag_ = false; | 
|  |  | 
|  | for (int i = 0; i < kNumberOfVRegisters; i++) { | 
|  | vregisters_[i].bits.i64[0] = 0; | 
|  | vregisters_[i].bits.i64[1] = 0; | 
|  | } | 
|  |  | 
|  | // The sp is initialized to point to the bottom (high address) of the | 
|  | // allocated stack area. | 
|  | registers_[R31] = stack_base(); | 
|  | // The lr and pc are initialized to a known bad value that will cause an | 
|  | // access violation if the simulator ever tries to execute it. | 
|  | registers_[LR] = kBadLR; | 
|  | pc_ = kBadLR; | 
|  | } | 
|  |  | 
|  | Simulator::~Simulator() { | 
|  | delete[] stack_; | 
|  | Isolate* isolate = Isolate::Current(); | 
|  | if (isolate != nullptr) { | 
|  | isolate->set_simulator(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // When the generated code calls an external reference we need to catch that in | 
|  | // the simulator.  The external reference will be a function compiled for the | 
|  | // host architecture.  We need to call that function instead of trying to | 
|  | // execute it with the simulator.  We do that by redirecting the external | 
|  | // reference to a svc (supervisor call) instruction that is handled by | 
|  | // the simulator.  We write the original destination of the jump just at a known | 
|  | // offset from the svc instruction so the simulator knows what to call. | 
|  | class Redirection { | 
|  | public: | 
|  | uword address_of_hlt_instruction() { | 
|  | return reinterpret_cast<uword>(&hlt_instruction_); | 
|  | } | 
|  |  | 
|  | uword external_function() const { return external_function_; } | 
|  |  | 
|  | Simulator::CallKind call_kind() const { return call_kind_; } | 
|  |  | 
|  | int argument_count() const { return argument_count_; } | 
|  |  | 
|  | static Redirection* Get(uword external_function, | 
|  | Simulator::CallKind call_kind, | 
|  | int argument_count) { | 
|  | MutexLocker ml(mutex_); | 
|  |  | 
|  | Redirection* old_head = list_.load(std::memory_order_relaxed); | 
|  | for (Redirection* current = old_head; current != nullptr; | 
|  | current = current->next_) { | 
|  | if (current->external_function_ == external_function) return current; | 
|  | } | 
|  |  | 
|  | Redirection* redirection = | 
|  | new Redirection(external_function, call_kind, argument_count); | 
|  | redirection->next_ = old_head; | 
|  |  | 
|  | // Use a memory fence to ensure all pending writes are written at the time | 
|  | // of updating the list head, so the profiling thread always has a valid | 
|  | // list to look at. | 
|  | list_.store(redirection, std::memory_order_release); | 
|  |  | 
|  | return redirection; | 
|  | } | 
|  |  | 
|  | static Redirection* FromHltInstruction(Instr* hlt_instruction) { | 
|  | char* addr_of_hlt = reinterpret_cast<char*>(hlt_instruction); | 
|  | char* addr_of_redirection = | 
|  | addr_of_hlt - OFFSET_OF(Redirection, hlt_instruction_); | 
|  | return reinterpret_cast<Redirection*>(addr_of_redirection); | 
|  | } | 
|  |  | 
|  | // Please note that this function is called by the signal handler of the | 
|  | // profiling thread.  It can therefore run at any point in time and is not | 
|  | // allowed to hold any locks - which is precisely the reason why the list is | 
|  | // prepend-only and a memory fence is used when writing the list head [list_]! | 
|  | static uword FunctionForRedirect(uword address_of_hlt) { | 
|  | for (Redirection* current = list_.load(std::memory_order_acquire); | 
|  | current != nullptr; current = current->next_) { | 
|  | if (current->address_of_hlt_instruction() == address_of_hlt) { | 
|  | return current->external_function_; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | private: | 
|  | Redirection(uword external_function, | 
|  | Simulator::CallKind call_kind, | 
|  | int argument_count) | 
|  | : external_function_(external_function), | 
|  | call_kind_(call_kind), | 
|  | argument_count_(argument_count), | 
|  | hlt_instruction_(Instr::kSimulatorRedirectInstruction), | 
|  | next_(nullptr) {} | 
|  |  | 
|  | uword external_function_; | 
|  | Simulator::CallKind call_kind_; | 
|  | int argument_count_; | 
|  | uint32_t hlt_instruction_; | 
|  | Redirection* next_; | 
|  | static std::atomic<Redirection*> list_; | 
|  | static Mutex* mutex_; | 
|  | }; | 
|  |  | 
|  | std::atomic<Redirection*> Redirection::list_ = {nullptr}; | 
|  | Mutex* Redirection::mutex_ = new Mutex(); | 
|  |  | 
|  | uword Simulator::RedirectExternalReference(uword function, | 
|  | CallKind call_kind, | 
|  | int argument_count) { | 
|  | Redirection* redirection = | 
|  | Redirection::Get(function, call_kind, argument_count); | 
|  | return redirection->address_of_hlt_instruction(); | 
|  | } | 
|  |  | 
|  | uword Simulator::FunctionForRedirect(uword redirect) { | 
|  | return Redirection::FunctionForRedirect(redirect); | 
|  | } | 
|  |  | 
|  | // Get the active Simulator for the current isolate. | 
|  | Simulator* Simulator::Current() { | 
|  | Isolate* isolate = Isolate::Current(); | 
|  | Simulator* simulator = isolate->simulator(); | 
|  | if (simulator == nullptr) { | 
|  | NoSafepointScope no_safepoint; | 
|  | simulator = new Simulator(); | 
|  | isolate->set_simulator(simulator); | 
|  | } | 
|  | return simulator; | 
|  | } | 
|  |  | 
|  | // Sets the register in the architecture state. | 
|  | void Simulator::set_register(Instr* instr, | 
|  | Register reg, | 
|  | int64_t value, | 
|  | R31Type r31t) { | 
|  | // Register is in range. | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); | 
|  | #if defined(DART_TARGET_OS_MACOS) || defined(DART_TARGET_OS_WINDOWS) | 
|  | // R18 is globally reserved on macOS/iOS, the TEB pointer on Windows. | 
|  | ASSERT(instr == nullptr || reg != R18); | 
|  | #endif | 
|  |  | 
|  | if ((reg != R31) || (r31t != R31IsZR)) { | 
|  | registers_[reg] = value; | 
|  | // If we're setting CSP, make sure it is 16-byte aligned. In truth, CSP | 
|  | // can store addresses that are not 16-byte aligned, but loads and stores | 
|  | // are not allowed through CSP when it is not aligned. Thus, this check is | 
|  | // more conservative that necessary. However, it will likely be more | 
|  | // useful to find the program locations where CSP is set to a bad value, | 
|  | // than to find only the resulting loads/stores that would cause a fault on | 
|  | // hardware. | 
|  | if ((instr != nullptr) && (reg == R31) && !Utils::IsAligned(value, 16)) { | 
|  | UnalignedAccess("CSP set", value, instr); | 
|  | } | 
|  |  | 
|  | #if defined(DEBUG) | 
|  | if (reg == SP) { | 
|  | // Memory below CSP can be written to at any instruction boundary by a | 
|  | // signal handler. Simulate this to ensure we're keeping CSP far enough | 
|  | // ahead of SP to prevent Dart frames from being trashed. | 
|  | uword csp = registers_[R31]; | 
|  | WriteX(csp - 1 * kWordSize, icount_, nullptr); | 
|  | WriteX(csp - 2 * kWordSize, icount_, nullptr); | 
|  | WriteX(csp - 3 * kWordSize, icount_, nullptr); | 
|  | WriteX(csp - 4 * kWordSize, icount_, nullptr); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the register from the architecture state. | 
|  | int64_t Simulator::get_register(Register reg, R31Type r31t) const { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); | 
|  | if ((reg == R31) && (r31t == R31IsZR)) { | 
|  | return 0; | 
|  | } else { | 
|  | return registers_[reg]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::set_wregister(Register reg, int32_t value, R31Type r31t) { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); | 
|  | // When setting in W mode, clear the high bits. | 
|  | if ((reg != R31) || (r31t != R31IsZR)) { | 
|  | registers_[reg] = Utils::LowHighTo64Bits(static_cast<uint32_t>(value), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the register from the architecture state. | 
|  | int32_t Simulator::get_wregister(Register reg, R31Type r31t) const { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); | 
|  | if ((reg == R31) && (r31t == R31IsZR)) { | 
|  | return 0; | 
|  | } else { | 
|  | return static_cast<int32_t>(registers_[reg]); | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t Simulator::get_vregisters(VRegister reg, int idx) const { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
|  | ASSERT((idx >= 0) && (idx <= 3)); | 
|  | return vregisters_[reg].bits.i32[idx]; | 
|  | } | 
|  |  | 
|  | void Simulator::set_vregisters(VRegister reg, int idx, int32_t value) { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
|  | ASSERT((idx >= 0) && (idx <= 3)); | 
|  | vregisters_[reg].bits.i32[idx] = value; | 
|  | } | 
|  |  | 
|  | int64_t Simulator::get_vregisterd(VRegister reg, int idx) const { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
|  | ASSERT((idx == 0) || (idx == 1)); | 
|  | return vregisters_[reg].bits.i64[idx]; | 
|  | } | 
|  |  | 
|  | void Simulator::set_vregisterd(VRegister reg, int idx, int64_t value) { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
|  | ASSERT((idx == 0) || (idx == 1)); | 
|  | vregisters_[reg].bits.i64[idx] = value; | 
|  | } | 
|  |  | 
|  | void Simulator::get_vregister(VRegister reg, simd_value_t* value) const { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
|  | value->bits.i64[0] = vregisters_[reg].bits.i64[0]; | 
|  | value->bits.i64[1] = vregisters_[reg].bits.i64[1]; | 
|  | } | 
|  |  | 
|  | void Simulator::set_vregister(VRegister reg, const simd_value_t& value) { | 
|  | ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
|  | vregisters_[reg].bits.i64[0] = value.bits.i64[0]; | 
|  | vregisters_[reg].bits.i64[1] = value.bits.i64[1]; | 
|  | } | 
|  |  | 
|  | // Raw access to the PC register. | 
|  | void Simulator::set_pc(uint64_t value) { | 
|  | pc_modified_ = true; | 
|  | last_pc_ = pc_; | 
|  | pc_ = value; | 
|  | } | 
|  |  | 
|  | // Raw access to the pc. | 
|  | uint64_t Simulator::get_pc() const { | 
|  | return pc_; | 
|  | } | 
|  |  | 
|  | uint64_t Simulator::get_last_pc() const { | 
|  | return last_pc_; | 
|  | } | 
|  |  | 
|  | void Simulator::HandleIllegalAccess(uword addr, Instr* instr) { | 
|  | uword fault_pc = get_pc(); | 
|  | uword last_pc = get_last_pc(); | 
|  | char buffer[128]; | 
|  | snprintf(buffer, sizeof(buffer), | 
|  | "illegal memory access at 0x%" Px ", pc=0x%" Px ", last_pc=0x%" Px | 
|  | "\n", | 
|  | addr, fault_pc, last_pc); | 
|  | SimulatorDebugger dbg(this); | 
|  | dbg.Stop(instr, buffer); | 
|  | // The debugger will return control in non-interactive mode. | 
|  | FATAL("Cannot continue execution after illegal memory access."); | 
|  | } | 
|  |  | 
|  | // ARMv8 supports unaligned memory accesses to normal memory without trapping | 
|  | // for all instructions except Load-Exclusive/Store-Exclusive and | 
|  | // Load-Acquire/Store-Release. | 
|  | // See B2.4.2 "Alignment of data accesses" for more information. | 
|  | void Simulator::UnalignedAccess(const char* msg, uword addr, Instr* instr) { | 
|  | char buffer[128]; | 
|  | snprintf(buffer, sizeof(buffer), "unaligned %s at 0x%" Px ", pc=%p\n", msg, | 
|  | addr, instr); | 
|  | SimulatorDebugger dbg(this); | 
|  | dbg.Stop(instr, buffer); | 
|  | // The debugger will not be able to single step past this instruction, but | 
|  | // it will be possible to disassemble the code and inspect registers. | 
|  | FATAL("Cannot continue execution after unaligned access."); | 
|  | } | 
|  |  | 
|  | void Simulator::UnimplementedInstruction(Instr* instr) { | 
|  | char buffer[128]; | 
|  | snprintf(buffer, sizeof(buffer), | 
|  | "Unimplemented instruction: at %p, last_pc=0x%" Px64 "\n", instr, | 
|  | get_last_pc()); | 
|  | SimulatorDebugger dbg(this); | 
|  | dbg.Stop(instr, buffer); | 
|  | FATAL("Cannot continue execution after unimplemented instruction."); | 
|  | } | 
|  |  | 
|  | bool Simulator::IsTracingExecution() const { | 
|  | return icount_ > FLAG_trace_sim_after; | 
|  | } | 
|  |  | 
|  | intptr_t Simulator::ReadX(uword addr, | 
|  | Instr* instr, | 
|  | bool must_be_aligned /* = false */) { | 
|  | const bool allow_unaligned_access = | 
|  | FLAG_sim_allow_unaligned_accesses && !must_be_aligned; | 
|  | if (allow_unaligned_access || (addr & 7) == 0) { | 
|  | return memory_.Load<intptr_t>(addr); | 
|  | } | 
|  | UnalignedAccess("read", addr, instr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void Simulator::WriteX(uword addr, intptr_t value, Instr* instr) { | 
|  | if (FLAG_sim_allow_unaligned_accesses || (addr & 7) == 0) { | 
|  | memory_.Store(addr, value); | 
|  | return; | 
|  | } | 
|  | UnalignedAccess("write", addr, instr); | 
|  | } | 
|  |  | 
|  | uint32_t Simulator::ReadWU(uword addr, | 
|  | Instr* instr, | 
|  | bool must_be_aligned /* = false */) { | 
|  | const bool allow_unaligned_access = | 
|  | FLAG_sim_allow_unaligned_accesses && !must_be_aligned; | 
|  | if (allow_unaligned_access || (addr & 3) == 0) { | 
|  | return memory_.Load<uint32_t>(addr); | 
|  | } | 
|  | UnalignedAccess("read unsigned single word", addr, instr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t Simulator::ReadW(uword addr, Instr* instr) { | 
|  | if (FLAG_sim_allow_unaligned_accesses || (addr & 3) == 0) { | 
|  | return memory_.Load<int32_t>(addr); | 
|  | } | 
|  | UnalignedAccess("read single word", addr, instr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void Simulator::WriteW(uword addr, uint32_t value, Instr* instr) { | 
|  | if (FLAG_sim_allow_unaligned_accesses || (addr & 3) == 0) { | 
|  | memory_.Store(addr, value); | 
|  | return; | 
|  | } | 
|  | UnalignedAccess("write single word", addr, instr); | 
|  | } | 
|  |  | 
|  | uint16_t Simulator::ReadHU(uword addr, Instr* instr) { | 
|  | if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { | 
|  | return memory_.Load<uint16_t>(addr); | 
|  | } | 
|  | UnalignedAccess("unsigned halfword read", addr, instr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int16_t Simulator::ReadH(uword addr, Instr* instr) { | 
|  | if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { | 
|  | return memory_.Load<int16_t>(addr); | 
|  | } | 
|  | UnalignedAccess("signed halfword read", addr, instr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void Simulator::WriteH(uword addr, uint16_t value, Instr* instr) { | 
|  | if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { | 
|  | memory_.Store(addr, value); | 
|  | return; | 
|  | } | 
|  | UnalignedAccess("halfword write", addr, instr); | 
|  | } | 
|  |  | 
|  | uint8_t Simulator::ReadBU(uword addr) { | 
|  | return memory_.Load<uint8_t>(addr); | 
|  | } | 
|  |  | 
|  | int8_t Simulator::ReadB(uword addr) { | 
|  | return memory_.Load<int8_t>(addr); | 
|  | } | 
|  |  | 
|  | void Simulator::WriteB(uword addr, uint8_t value) { | 
|  | memory_.Store(addr, value); | 
|  | } | 
|  |  | 
|  | void Simulator::ClearExclusive() { | 
|  | exclusive_access_addr_ = 0; | 
|  | exclusive_access_value_ = 0; | 
|  | } | 
|  |  | 
|  | intptr_t Simulator::ReadExclusiveX(uword addr, Instr* instr) { | 
|  | exclusive_access_addr_ = addr; | 
|  | exclusive_access_value_ = ReadX(addr, instr, /*must_be_aligned=*/true); | 
|  | return exclusive_access_value_; | 
|  | } | 
|  |  | 
|  | uint32_t Simulator::ReadExclusiveW(uword addr, Instr* instr) { | 
|  | exclusive_access_addr_ = addr; | 
|  | exclusive_access_value_ = ReadWU(addr, instr, /*must_be_aligned=*/true); | 
|  | return exclusive_access_value_; | 
|  | } | 
|  |  | 
|  | intptr_t Simulator::WriteExclusiveX(uword addr, intptr_t value, Instr* instr) { | 
|  | // In a well-formed code store-exclusive instruction should always follow | 
|  | // a corresponding load-exclusive instruction with the same address. | 
|  | ASSERT((exclusive_access_addr_ == 0) || (exclusive_access_addr_ == addr)); | 
|  | if (exclusive_access_addr_ != addr) { | 
|  | return 1;  // Failure. | 
|  | } | 
|  |  | 
|  | intptr_t old_value = exclusive_access_value_; | 
|  | ClearExclusive(); | 
|  |  | 
|  | if ((random_.NextUInt32() % 16) == 0) { | 
|  | return 1;  // Suprious failure. | 
|  | } | 
|  |  | 
|  | if (memory_.CompareExchange(addr, old_value, value, | 
|  | std::memory_order_relaxed)) { | 
|  | return 0;  // Success. | 
|  | } | 
|  | return 1;  // Failure. | 
|  | } | 
|  |  | 
|  | intptr_t Simulator::WriteExclusiveW(uword addr, uint32_t value, Instr* instr) { | 
|  | // In a well-formed code store-exclusive instruction should always follow | 
|  | // a corresponding load-exclusive instruction with the same address. | 
|  | ASSERT((exclusive_access_addr_ == 0) || (exclusive_access_addr_ == addr)); | 
|  | if (exclusive_access_addr_ != addr) { | 
|  | return 1;  // Failure. | 
|  | } | 
|  |  | 
|  | uint32_t old_value = static_cast<uint32_t>(exclusive_access_value_); | 
|  | ClearExclusive(); | 
|  |  | 
|  | if ((random_.NextUInt32() % 16) == 0) { | 
|  | return 1;  // Spurious failure. | 
|  | } | 
|  |  | 
|  | if (memory_.CompareExchange(addr, old_value, value, | 
|  | std::memory_order_relaxed)) { | 
|  | return 0;  // Success. | 
|  | } | 
|  | return 1;  // Failure. | 
|  | } | 
|  |  | 
|  | intptr_t Simulator::ReadAcquire(uword addr, Instr* instr) { | 
|  | return memory_.Load<uint64_t>(addr, std::memory_order_acquire); | 
|  | } | 
|  |  | 
|  | uint32_t Simulator::ReadAcquireW(uword addr, Instr* instr) { | 
|  | return memory_.Load<uint32_t>(addr, std::memory_order_acquire); | 
|  | } | 
|  |  | 
|  | void Simulator::WriteRelease(uword addr, intptr_t value, Instr* instr) { | 
|  | memory_.Store(addr, value, std::memory_order_release); | 
|  | } | 
|  |  | 
|  | void Simulator::WriteReleaseW(uword addr, uint32_t value, Instr* instr) { | 
|  | memory_.Store(addr, value, std::memory_order_release); | 
|  | } | 
|  |  | 
|  | // Unsupported instructions use Format to print an error and stop execution. | 
|  | void Simulator::Format(Instr* instr, const char* format) { | 
|  | OS::PrintErr("Simulator found unsupported instruction:\n 0x%p: %s\n", instr, | 
|  | format); | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  |  | 
|  | // Calculate and set the Negative and Zero flags. | 
|  | void Simulator::SetNZFlagsW(int32_t val) { | 
|  | n_flag_ = (val < 0); | 
|  | z_flag_ = (val == 0); | 
|  | } | 
|  |  | 
|  | // Calculate C flag value for additions (and subtractions with adjusted args). | 
|  | bool Simulator::CarryFromW(int32_t left, int32_t right, int32_t carry) { | 
|  | uint64_t uleft = static_cast<uint32_t>(left); | 
|  | uint64_t uright = static_cast<uint32_t>(right); | 
|  | uint64_t ucarry = static_cast<uint32_t>(carry); | 
|  | return ((uleft + uright + ucarry) >> 32) != 0; | 
|  | } | 
|  |  | 
|  | // Calculate V flag value for additions (and subtractions with adjusted args). | 
|  | bool Simulator::OverflowFromW(int32_t left, int32_t right, int32_t carry) { | 
|  | int64_t result = static_cast<int64_t>(left) + right + carry; | 
|  | return (result >> 31) != (result >> 32); | 
|  | } | 
|  |  | 
|  | // Calculate and set the Negative and Zero flags. | 
|  | void Simulator::SetNZFlagsX(int64_t val) { | 
|  | n_flag_ = (val < 0); | 
|  | z_flag_ = (val == 0); | 
|  | } | 
|  |  | 
|  | // Calculate C flag value for additions and subtractions. | 
|  | bool Simulator::CarryFromX(int64_t alu_out, | 
|  | int64_t left, | 
|  | int64_t right, | 
|  | bool addition) { | 
|  | if (addition) { | 
|  | return (((left & right) | ((left | right) & ~alu_out)) >> 63) != 0; | 
|  | } else { | 
|  | return (((~left & right) | ((~left | right) & alu_out)) >> 63) == 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate V flag value for additions and subtractions. | 
|  | bool Simulator::OverflowFromX(int64_t alu_out, | 
|  | int64_t left, | 
|  | int64_t right, | 
|  | bool addition) { | 
|  | if (addition) { | 
|  | return (((alu_out ^ left) & (alu_out ^ right)) >> 63) != 0; | 
|  | } else { | 
|  | return (((left ^ right) & (alu_out ^ left)) >> 63) != 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set the Carry flag. | 
|  | void Simulator::SetCFlag(bool val) { | 
|  | c_flag_ = val; | 
|  | } | 
|  |  | 
|  | // Set the oVerflow flag. | 
|  | void Simulator::SetVFlag(bool val) { | 
|  | v_flag_ = val; | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeMoveWide(Instr* instr) { | 
|  | const Register rd = instr->RdField(); | 
|  | const int hw = instr->HWField(); | 
|  | const int64_t shift = hw << 4; | 
|  | const int64_t shifted_imm = static_cast<int64_t>(instr->Imm16Field()) | 
|  | << shift; | 
|  |  | 
|  | if (instr->SFField() != 0) { | 
|  | if (instr->Bits(29, 2) == 0) { | 
|  | // Format(instr, "movn'sf 'rd, 'imm16 'hw"); | 
|  | set_register(instr, rd, ~shifted_imm, instr->RdMode()); | 
|  | } else if (instr->Bits(29, 2) == 2) { | 
|  | // Format(instr, "movz'sf 'rd, 'imm16 'hw"); | 
|  | set_register(instr, rd, shifted_imm, instr->RdMode()); | 
|  | } else if (instr->Bits(29, 2) == 3) { | 
|  | // Format(instr, "movk'sf 'rd, 'imm16 'hw"); | 
|  | const int64_t rd_val = get_register(rd, instr->RdMode()); | 
|  | const int64_t result = (rd_val & ~(0xffffL << shift)) | shifted_imm; | 
|  | set_register(instr, rd, result, instr->RdMode()); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else if ((hw & 0x2) == 0) { | 
|  | if (instr->Bits(29, 2) == 0) { | 
|  | // Format(instr, "movn'sf 'rd, 'imm16 'hw"); | 
|  | set_wregister(rd, ~shifted_imm & kWRegMask, instr->RdMode()); | 
|  | } else if (instr->Bits(29, 2) == 2) { | 
|  | // Format(instr, "movz'sf 'rd, 'imm16 'hw"); | 
|  | set_wregister(rd, shifted_imm & kWRegMask, instr->RdMode()); | 
|  | } else if (instr->Bits(29, 2) == 3) { | 
|  | // Format(instr, "movk'sf 'rd, 'imm16 'hw"); | 
|  | const int32_t rd_val = get_wregister(rd, instr->RdMode()); | 
|  | const int32_t result = (rd_val & ~(0xffffL << shift)) | shifted_imm; | 
|  | set_wregister(rd, result, instr->RdMode()); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else { | 
|  | // Dest is 32 bits, but shift is more than 32. | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeAddSubImm(Instr* instr) { | 
|  | const bool addition = (instr->Bit(30) == 0); | 
|  | // Format(instr, "addi'sf's 'rd, 'rn, 'imm12s"); | 
|  | // Format(instr, "subi'sf's 'rd, 'rn, 'imm12s"); | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  | uint32_t imm = (instr->Bit(22) == 1) ? (instr->Imm12Field() << 12) | 
|  | : (instr->Imm12Field()); | 
|  | if (instr->SFField() != 0) { | 
|  | // 64-bit add. | 
|  | const uint64_t rn_val = get_register(rn, instr->RnMode()); | 
|  | const uint64_t alu_out = addition ? (rn_val + imm) : (rn_val - imm); | 
|  | set_register(instr, rd, alu_out, instr->RdMode()); | 
|  | if (instr->HasS()) { | 
|  | SetNZFlagsX(alu_out); | 
|  | SetCFlag(CarryFromX(alu_out, rn_val, imm, addition)); | 
|  | SetVFlag(OverflowFromX(alu_out, rn_val, imm, addition)); | 
|  | } | 
|  | } else { | 
|  | // 32-bit add. | 
|  | const uint32_t rn_val = get_wregister(rn, instr->RnMode()); | 
|  | uint32_t carry_in = 0; | 
|  | if (!addition) { | 
|  | carry_in = 1; | 
|  | imm = ~imm; | 
|  | } | 
|  | const uint32_t alu_out = rn_val + imm + carry_in; | 
|  | set_wregister(rd, alu_out, instr->RdMode()); | 
|  | if (instr->HasS()) { | 
|  | SetNZFlagsW(alu_out); | 
|  | SetCFlag(CarryFromW(rn_val, imm, carry_in)); | 
|  | SetVFlag(OverflowFromW(rn_val, imm, carry_in)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeBitfield(Instr* instr) { | 
|  | int bitwidth = instr->SFField() == 0 ? 32 : 64; | 
|  | unsigned op = instr->Bits(29, 2); | 
|  | ASSERT(op <= 2); | 
|  | bool sign_extend = op == 0; | 
|  | bool zero_extend = op == 2; | 
|  | ASSERT(instr->NField() == instr->SFField()); | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rd = instr->RdField(); | 
|  | int64_t result = get_register(rn, instr->RnMode()); | 
|  | int r_bit = instr->ImmRField(); | 
|  | int s_bit = instr->ImmSField(); | 
|  | result &= Utils::NBitMask(bitwidth); | 
|  | ASSERT(s_bit < bitwidth && r_bit < bitwidth); | 
|  | // See ARM v8 Instruction set overview 5.4.5. | 
|  | // If s >= r then Rd[s-r:0] := Rn[s:r], else Rd[bitwidth+s-r:bitwidth-r] := | 
|  | // Rn[s:0]. | 
|  | uword mask = Utils::NBitMask(s_bit + 1); | 
|  | if (s_bit >= r_bit) { | 
|  | mask >>= r_bit; | 
|  | result >>= r_bit; | 
|  | } else { | 
|  | result = static_cast<uint64_t>(result) << (bitwidth - r_bit); | 
|  | mask <<= bitwidth - r_bit; | 
|  | } | 
|  | result &= mask; | 
|  | if (sign_extend) { | 
|  | int highest_bit = (s_bit - r_bit) & (bitwidth - 1); | 
|  | int shift = 64 - highest_bit - 1; | 
|  | result <<= shift; | 
|  | result = static_cast<word>(result) >> shift; | 
|  | } else if (!zero_extend) { | 
|  | const int64_t rd_val = get_register(rd, instr->RnMode()); | 
|  | result |= rd_val & ~mask; | 
|  | } | 
|  | if (bitwidth == 64) { | 
|  | set_register(instr, rd, result, instr->RdMode()); | 
|  | } else { | 
|  | set_wregister(rd, result, instr->RdMode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeLogicalImm(Instr* instr) { | 
|  | const int op = instr->Bits(29, 2); | 
|  | const bool set_flags = op == 3; | 
|  | const int out_size = ((instr->SFField() == 0) && (instr->NField() == 0)) | 
|  | ? kWRegSizeInBits | 
|  | : kXRegSizeInBits; | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rd = instr->RdField(); | 
|  | const int64_t rn_val = get_register(rn, instr->RnMode()); | 
|  | const uint64_t imm = instr->ImmLogical(); | 
|  | if (imm == 0) { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  |  | 
|  | int64_t alu_out = 0; | 
|  | switch (op) { | 
|  | case 0: | 
|  | alu_out = rn_val & imm; | 
|  | break; | 
|  | case 1: | 
|  | alu_out = rn_val | imm; | 
|  | break; | 
|  | case 2: | 
|  | alu_out = rn_val ^ imm; | 
|  | break; | 
|  | case 3: | 
|  | alu_out = rn_val & imm; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (set_flags) { | 
|  | if (out_size == kXRegSizeInBits) { | 
|  | SetNZFlagsX(alu_out); | 
|  | } else { | 
|  | SetNZFlagsW(alu_out); | 
|  | } | 
|  | SetCFlag(false); | 
|  | SetVFlag(false); | 
|  | } | 
|  |  | 
|  | if (out_size == kXRegSizeInBits) { | 
|  | set_register(instr, rd, alu_out, instr->RdMode()); | 
|  | } else { | 
|  | set_wregister(rd, alu_out, instr->RdMode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodePCRel(Instr* instr) { | 
|  | const int op = instr->Bit(31); | 
|  | if (op == 0) { | 
|  | // Format(instr, "adr 'rd, 'pcrel") | 
|  | const Register rd = instr->RdField(); | 
|  | const uint64_t immhi = instr->SImm19Field(); | 
|  | const uint64_t immlo = instr->Bits(29, 2); | 
|  | const uint64_t off = (immhi << 2) | immlo; | 
|  | const uint64_t dest = get_pc() + off; | 
|  | set_register(instr, rd, dest, instr->RdMode()); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeDPImmediate(Instr* instr) { | 
|  | if (instr->IsMoveWideOp()) { | 
|  | DecodeMoveWide(instr); | 
|  | } else if (instr->IsAddSubImmOp()) { | 
|  | DecodeAddSubImm(instr); | 
|  | } else if (instr->IsBitfieldOp()) { | 
|  | DecodeBitfield(instr); | 
|  | } else if (instr->IsLogicalImmOp()) { | 
|  | DecodeLogicalImm(instr); | 
|  | } else if (instr->IsPCRelOp()) { | 
|  | DecodePCRel(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeCompareAndBranch(Instr* instr) { | 
|  | const int op = instr->Bit(24); | 
|  | const Register rt = instr->RtField(); | 
|  | const uint64_t imm19 = instr->SImm19Field(); | 
|  | const uint64_t dest = get_pc() + (imm19 << 2); | 
|  | const uint64_t mask = instr->SFField() == 1 ? kXRegMask : kWRegMask; | 
|  | const uint64_t rt_val = get_register(rt, R31IsZR) & mask; | 
|  | if (op == 0) { | 
|  | // Format(instr, "cbz'sf 'rt, 'dest19"); | 
|  | if (rt_val == 0) { | 
|  | set_pc(dest); | 
|  | } | 
|  | } else { | 
|  | // Format(instr, "cbnz'sf 'rt, 'dest19"); | 
|  | if (rt_val != 0) { | 
|  | set_pc(dest); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Simulator::ConditionallyExecute(Instr* instr) { | 
|  | Condition cond; | 
|  | if (instr->IsConditionalSelectOp()) { | 
|  | cond = instr->SelectConditionField(); | 
|  | } else { | 
|  | cond = instr->ConditionField(); | 
|  | } | 
|  | switch (cond) { | 
|  | case EQ: | 
|  | return z_flag_; | 
|  | case NE: | 
|  | return !z_flag_; | 
|  | case CS: | 
|  | return c_flag_; | 
|  | case CC: | 
|  | return !c_flag_; | 
|  | case MI: | 
|  | return n_flag_; | 
|  | case PL: | 
|  | return !n_flag_; | 
|  | case VS: | 
|  | return v_flag_; | 
|  | case VC: | 
|  | return !v_flag_; | 
|  | case HI: | 
|  | return c_flag_ && !z_flag_; | 
|  | case LS: | 
|  | return !c_flag_ || z_flag_; | 
|  | case GE: | 
|  | return n_flag_ == v_flag_; | 
|  | case LT: | 
|  | return n_flag_ != v_flag_; | 
|  | case GT: | 
|  | return !z_flag_ && (n_flag_ == v_flag_); | 
|  | case LE: | 
|  | return z_flag_ || (n_flag_ != v_flag_); | 
|  | case AL: | 
|  | return true; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeConditionalBranch(Instr* instr) { | 
|  | // Format(instr, "b'cond 'dest19"); | 
|  | if ((instr->Bit(24) != 0) || (instr->Bit(4) != 0)) { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | const uint64_t imm19 = instr->SImm19Field(); | 
|  | const uint64_t dest = get_pc() + (imm19 << 2); | 
|  | if (ConditionallyExecute(instr)) { | 
|  | set_pc(dest); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calls into the Dart runtime are based on this interface. | 
|  | typedef void (*SimulatorRuntimeCall)(NativeArguments arguments); | 
|  |  | 
|  | // Calls to leaf Dart runtime functions are based on this interface. | 
|  | typedef int64_t (*SimulatorLeafRuntimeCall)(int64_t r0, | 
|  | int64_t r1, | 
|  | int64_t r2, | 
|  | int64_t r3, | 
|  | int64_t r4, | 
|  | int64_t r5, | 
|  | int64_t r6, | 
|  | int64_t r7); | 
|  |  | 
|  | // [target] has several different signatures that differ from | 
|  | // SimulatorLeafRuntimeCall. We can call them all from here only because in | 
|  | // X64's calling conventions a function can be called with extra arguments | 
|  | // and the callee will see the first arguments and won't unbalance the stack. | 
|  | NO_SANITIZE_UNDEFINED("function") | 
|  | static int64_t InvokeLeafRuntime(SimulatorLeafRuntimeCall target, | 
|  | int64_t r0, | 
|  | int64_t r1, | 
|  | int64_t r2, | 
|  | int64_t r3, | 
|  | int64_t r4, | 
|  | int64_t r5, | 
|  | int64_t r6, | 
|  | int64_t r7) { | 
|  | return target(r0, r1, r2, r3, r4, r5, r6, r7); | 
|  | } | 
|  |  | 
|  | // Calls to leaf float Dart runtime functions are based on this interface. | 
|  | typedef double (*SimulatorLeafFloatRuntimeCall)(double d0, | 
|  | double d1, | 
|  | double d2, | 
|  | double d3, | 
|  | double d4, | 
|  | double d5, | 
|  | double d6, | 
|  | double d7); | 
|  |  | 
|  | // [target] has several different signatures that differ from | 
|  | // SimulatorFloatLeafRuntimeCall. We can call them all from here only because in | 
|  | // X64's calling conventions a function can be called with extra arguments | 
|  | // and the callee will see the first arguments and won't unbalance the stack. | 
|  | NO_SANITIZE_UNDEFINED("function") | 
|  | static double InvokeFloatLeafRuntime(SimulatorLeafFloatRuntimeCall target, | 
|  | double d0, | 
|  | double d1, | 
|  | double d2, | 
|  | double d3, | 
|  | double d4, | 
|  | double d5, | 
|  | double d6, | 
|  | double d7) { | 
|  | return target(d0, d1, d2, d3, d4, d5, d6, d7); | 
|  | } | 
|  |  | 
|  | // Calls to native Dart functions are based on this interface. | 
|  | typedef void (*SimulatorNativeCallWrapper)(Dart_NativeArguments arguments, | 
|  | Dart_NativeFunction target); | 
|  |  | 
|  | void Simulator::DoRedirectedCall(Instr* instr) { | 
|  | // We can't instrument the runtime. | 
|  | memory_.FlushAll(); | 
|  |  | 
|  | ASSERT(Utils::IsAligned(get_register(SPREG), OS::ActivationFrameAlignment())); | 
|  |  | 
|  | SimulatorSetjmpBuffer buffer(this); | 
|  | if (!DART_SETJMP(buffer.buffer_)) { | 
|  | int64_t saved_lr = get_register(LR); | 
|  | Redirection* redirection = Redirection::FromHltInstruction(instr); | 
|  | uword external = redirection->external_function(); | 
|  | if (IsTracingExecution()) { | 
|  | THR_Print("Call to host function at 0x%" Px "\n", external); | 
|  | } | 
|  |  | 
|  | if (redirection->call_kind() == kRuntimeCall) { | 
|  | NativeArguments* arguments = | 
|  | reinterpret_cast<NativeArguments*>(get_register(R0)); | 
|  | SimulatorRuntimeCall target = | 
|  | reinterpret_cast<SimulatorRuntimeCall>(external); | 
|  | target(*arguments); | 
|  | ClobberVolatileRegisters(); | 
|  | } else if (redirection->call_kind() == kLeafRuntimeCall) { | 
|  | ASSERT((0 <= redirection->argument_count()) && | 
|  | (redirection->argument_count() <= 8)); | 
|  | SimulatorLeafRuntimeCall target = | 
|  | reinterpret_cast<SimulatorLeafRuntimeCall>(external); | 
|  | const int64_t r0 = get_register(R0); | 
|  | const int64_t r1 = get_register(R1); | 
|  | const int64_t r2 = get_register(R2); | 
|  | const int64_t r3 = get_register(R3); | 
|  | const int64_t r4 = get_register(R4); | 
|  | const int64_t r5 = get_register(R5); | 
|  | const int64_t r6 = get_register(R6); | 
|  | const int64_t r7 = get_register(R7); | 
|  | const int64_t res = | 
|  | InvokeLeafRuntime(target, r0, r1, r2, r3, r4, r5, r6, r7); | 
|  | ClobberVolatileRegisters(); | 
|  | set_register(instr, R0, res);  // Set returned result from function. | 
|  | } else if (redirection->call_kind() == kLeafFloatRuntimeCall) { | 
|  | ASSERT((0 <= redirection->argument_count()) && | 
|  | (redirection->argument_count() <= 8)); | 
|  | SimulatorLeafFloatRuntimeCall target = | 
|  | reinterpret_cast<SimulatorLeafFloatRuntimeCall>(external); | 
|  | const double d0 = bit_cast<double, int64_t>(get_vregisterd(V0, 0)); | 
|  | const double d1 = bit_cast<double, int64_t>(get_vregisterd(V1, 0)); | 
|  | const double d2 = bit_cast<double, int64_t>(get_vregisterd(V2, 0)); | 
|  | const double d3 = bit_cast<double, int64_t>(get_vregisterd(V3, 0)); | 
|  | const double d4 = bit_cast<double, int64_t>(get_vregisterd(V4, 0)); | 
|  | const double d5 = bit_cast<double, int64_t>(get_vregisterd(V5, 0)); | 
|  | const double d6 = bit_cast<double, int64_t>(get_vregisterd(V6, 0)); | 
|  | const double d7 = bit_cast<double, int64_t>(get_vregisterd(V7, 0)); | 
|  | const double res = | 
|  | InvokeFloatLeafRuntime(target, d0, d1, d2, d3, d4, d5, d6, d7); | 
|  | ClobberVolatileRegisters(); | 
|  | set_vregisterd(V0, 0, bit_cast<int64_t, double>(res)); | 
|  | set_vregisterd(V0, 1, 0); | 
|  | } else { | 
|  | ASSERT(redirection->call_kind() == kNativeCallWrapper); | 
|  | SimulatorNativeCallWrapper wrapper = | 
|  | reinterpret_cast<SimulatorNativeCallWrapper>(external); | 
|  | Dart_NativeArguments arguments = | 
|  | reinterpret_cast<Dart_NativeArguments>(get_register(R0)); | 
|  | Dart_NativeFunction target = | 
|  | reinterpret_cast<Dart_NativeFunction>(get_register(R1)); | 
|  | wrapper(arguments, target); | 
|  | ClobberVolatileRegisters(); | 
|  | } | 
|  |  | 
|  | // Return. | 
|  | set_pc(saved_lr); | 
|  | } else { | 
|  | // Coming via long jump from a throw. Continue to exception handler. | 
|  | } | 
|  | } | 
|  |  | 
|  | struct CalloutContext { | 
|  | uword saved_stack_pointer; | 
|  | uword saved_frame_pointer; | 
|  | uword simulator_stack_pointer; | 
|  | uword simulator_frame_pointer; | 
|  | uword integer_arguments[8]; | 
|  | uword double_arguments[8]; | 
|  | uword r8; | 
|  | uword target; | 
|  | }; | 
|  |  | 
|  | extern "C" void SimulatorFfiCalloutTrampoline(CalloutContext*); | 
|  |  | 
|  | void Simulator::DoRedirectedFfiCall(Instr* instr) { | 
|  | #if !defined(HOST_ARCH_ARM64) | 
|  | FATAL("Unsupported FFI call"); | 
|  | #else | 
|  | // We can't instrument the runtime. | 
|  | memory_.FlushAll(); | 
|  |  | 
|  | SimulatorSetjmpBuffer buffer(this); | 
|  | if (!setjmp(buffer.buffer_)) { | 
|  | int64_t saved_pc = get_pc(); | 
|  | uword external = get_register(R9); | 
|  | if (IsTracingExecution()) { | 
|  | THR_Print("Call to FFI function at 0x%" Px "\n", external); | 
|  | } | 
|  |  | 
|  | CalloutContext ctxt; | 
|  | ctxt.simulator_stack_pointer = get_register(R31); | 
|  | ctxt.simulator_frame_pointer = get_register(FP); | 
|  | ctxt.integer_arguments[0] = get_register(R0); | 
|  | ctxt.integer_arguments[1] = get_register(R1); | 
|  | ctxt.integer_arguments[2] = get_register(R2); | 
|  | ctxt.integer_arguments[3] = get_register(R3); | 
|  | ctxt.integer_arguments[4] = get_register(R4); | 
|  | ctxt.integer_arguments[5] = get_register(R5); | 
|  | ctxt.integer_arguments[6] = get_register(R6); | 
|  | ctxt.integer_arguments[7] = get_register(R7); | 
|  | ctxt.double_arguments[0] = get_vregisterd(V0, 0); | 
|  | ctxt.double_arguments[1] = get_vregisterd(V1, 0); | 
|  | ctxt.double_arguments[2] = get_vregisterd(V2, 0); | 
|  | ctxt.double_arguments[3] = get_vregisterd(V3, 0); | 
|  | ctxt.double_arguments[4] = get_vregisterd(V4, 0); | 
|  | ctxt.double_arguments[5] = get_vregisterd(V5, 0); | 
|  | ctxt.double_arguments[6] = get_vregisterd(V6, 0); | 
|  | ctxt.double_arguments[7] = get_vregisterd(V7, 0); | 
|  | ctxt.r8 = get_register(R8); | 
|  | ctxt.target = external; | 
|  |  | 
|  | SimulatorFfiCalloutTrampoline(&ctxt); | 
|  |  | 
|  | if (IsTracingExecution()) { | 
|  | THR_Print("Return from FFI function at 0x%" Px "\n", external); | 
|  | } | 
|  |  | 
|  | ClobberVolatileRegisters(); | 
|  | set_register(instr, R0, ctxt.integer_arguments[0]); | 
|  | set_register(instr, R1, ctxt.integer_arguments[1]); | 
|  | set_vregisterd(V0, 0, ctxt.double_arguments[0]); | 
|  | set_vregisterd(V1, 0, ctxt.double_arguments[1]); | 
|  | set_vregisterd(V2, 0, ctxt.double_arguments[2]); | 
|  | set_vregisterd(V3, 0, ctxt.double_arguments[3]); | 
|  |  | 
|  | // Skip over hlt and blr. | 
|  | set_pc(saved_pc + 2 * Instr::kInstrSize); | 
|  | } else { | 
|  | // Coming via long jump from a throw. Continue to exception handler. | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct CallbackContext { | 
|  | uword integer_arguments[8]; | 
|  | uword double_arguments[8]; | 
|  | uword r8; | 
|  | uword sp; | 
|  | }; | 
|  |  | 
|  | extern "C" void DoRedirectedFfiCallback(CallbackContext* ctxt, | 
|  | uword trampoline) { | 
|  | uword entry_point; | 
|  | uword trampoline_type; | 
|  | Thread* thread = | 
|  | DLRT_GetFfiCallbackMetadata(trampoline, &entry_point, &trampoline_type); | 
|  | if (thread == nullptr) { | 
|  | // If GetFfiCallbackMetadata returned a null thread, it means that the async | 
|  | // callback was invoked after it was deleted. In this case, do nothing. | 
|  | return; | 
|  | } | 
|  |  | 
|  | Simulator* sim = Simulator::Current(); | 
|  | ASSERT(sim != nullptr); | 
|  | sim->DoRedirectedFfiCallback(thread, ctxt, entry_point, trampoline_type); | 
|  | } | 
|  |  | 
|  | // Compare FfiCallbackTrampolineStub. | 
|  | void Simulator::DoRedirectedFfiCallback(Thread* thread, | 
|  | CallbackContext* ctxt, | 
|  | uword entry_point, | 
|  | uword trampoline_type) { | 
|  | // The C caller might not be using frame pointers, so we just hard-code a | 
|  | // maximum frame size instead of using FP-SP like we do for callouts. | 
|  | constexpr intptr_t kStackSlotsCopied = 128; | 
|  |  | 
|  | { | 
|  | // <copy stack arguments> | 
|  | // stp lr, thr, [sp, -16]! | 
|  | uword* sp = reinterpret_cast<uword*>(get_register(R31, R31IsSP)); | 
|  | uword* sp_in = reinterpret_cast<uword*>(ctxt->sp); | 
|  | for (intptr_t i = kStackSlotsCopied - 1; i >= 0; i--) { | 
|  | *--sp = sp_in[i]; | 
|  | } | 
|  | *--sp = get_register(LR); | 
|  | *--sp = get_register(THR); | 
|  | set_register(nullptr, R31, reinterpret_cast<uword>(sp)); | 
|  | COMPILE_ASSERT(FfiCallbackMetadata::kNativeCallbackTrampolineStackDelta == | 
|  | 2); | 
|  | } | 
|  |  | 
|  | set_register(nullptr, R0, ctxt->integer_arguments[0]); | 
|  | set_register(nullptr, R1, ctxt->integer_arguments[1]); | 
|  | set_register(nullptr, R2, ctxt->integer_arguments[2]); | 
|  | set_register(nullptr, R3, ctxt->integer_arguments[3]); | 
|  | set_register(nullptr, R4, ctxt->integer_arguments[4]); | 
|  | set_register(nullptr, R5, ctxt->integer_arguments[5]); | 
|  | set_register(nullptr, R6, ctxt->integer_arguments[6]); | 
|  | set_register(nullptr, R7, ctxt->integer_arguments[7]); | 
|  | set_vregisterd(V0, 0, ctxt->double_arguments[0]); | 
|  | set_vregisterd(V1, 0, ctxt->double_arguments[1]); | 
|  | set_vregisterd(V2, 0, ctxt->double_arguments[2]); | 
|  | set_vregisterd(V3, 0, ctxt->double_arguments[3]); | 
|  | set_vregisterd(V4, 0, ctxt->double_arguments[4]); | 
|  | set_vregisterd(V5, 0, ctxt->double_arguments[5]); | 
|  | set_vregisterd(V6, 0, ctxt->double_arguments[6]); | 
|  | set_vregisterd(V7, 0, ctxt->double_arguments[7]); | 
|  | set_register(nullptr, R8, ctxt->r8); | 
|  | set_register(nullptr, THR, reinterpret_cast<uword>(thread)); | 
|  |  | 
|  | set_register(nullptr, LR, kEndSimulatingPC); | 
|  | set_pc(entry_point); | 
|  | Execute(); | 
|  |  | 
|  | ctxt->integer_arguments[0] = get_register(R0); | 
|  | ctxt->integer_arguments[1] = get_register(R1); | 
|  | ctxt->double_arguments[0] = get_vregisterd(V0, 0); | 
|  | ctxt->double_arguments[1] = get_vregisterd(V1, 0); | 
|  | ctxt->double_arguments[2] = get_vregisterd(V2, 0); | 
|  | ctxt->double_arguments[3] = get_vregisterd(V3, 0); | 
|  |  | 
|  | { | 
|  | // ldp lr, thr, [sp], 16! | 
|  | // <drop arguments> | 
|  | uword* sp = reinterpret_cast<uword*>(get_register(R31, R31IsSP)); | 
|  | set_register(nullptr, THR, *sp++); | 
|  | set_register(nullptr, LR, *sp++); | 
|  | sp += kStackSlotsCopied; | 
|  | set_register(nullptr, R31, reinterpret_cast<uword>(sp)); | 
|  | COMPILE_ASSERT(FfiCallbackMetadata::kNativeCallbackTrampolineStackDelta == | 
|  | 2); | 
|  | } | 
|  |  | 
|  | if (trampoline_type == | 
|  | static_cast<uword>(FfiCallbackMetadata::TrampolineType::kAsync)) { | 
|  | DLRT_ExitTemporaryIsolate(); | 
|  | } else { | 
|  | thread->EnterSafepointToNative(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::ClobberVolatileRegisters() { | 
|  | // Clear atomic reservation. | 
|  | exclusive_access_addr_ = exclusive_access_value_ = 0; | 
|  |  | 
|  | for (intptr_t i = 0; i < kNumberOfCpuRegisters; i++) { | 
|  | if ((kAbiVolatileCpuRegs & (1 << i)) != 0) { | 
|  | registers_[i] = random_.NextUInt64(); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) { | 
|  | if ((kAbiVolatileFpuRegs & (1 << i)) != 0) { | 
|  | vregisters_[i].bits.i64[0] = icount_; | 
|  | vregisters_[i].bits.i64[1] = icount_; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeExceptionGen(Instr* instr) { | 
|  | if ((instr->Bits(0, 2) == 1) && (instr->Bits(2, 3) == 0) && | 
|  | (instr->Bits(21, 3) == 0)) { | 
|  | // Format(instr, "svc 'imm16"); | 
|  | UnimplementedInstruction(instr); | 
|  | } else if ((instr->Bits(0, 2) == 0) && (instr->Bits(2, 3) == 0) && | 
|  | (instr->Bits(21, 3) == 1)) { | 
|  | // Format(instr, "brk 'imm16"); | 
|  | SimulatorDebugger dbg(this); | 
|  | int32_t imm = instr->Imm16Field(); | 
|  | char buffer[32]; | 
|  | snprintf(buffer, sizeof(buffer), "brk #0x%x", imm); | 
|  | set_pc(get_pc() + Instr::kInstrSize); | 
|  | dbg.Stop(instr, buffer); | 
|  | } else if ((instr->Bits(0, 2) == 0) && (instr->Bits(2, 3) == 0) && | 
|  | (instr->Bits(21, 3) == 2)) { | 
|  | // Format(instr, "hlt 'imm16"); | 
|  | uint16_t imm = static_cast<uint16_t>(instr->Imm16Field()); | 
|  | if (imm == Instr::kSimulatorBreakCode) { | 
|  | SimulatorDebugger dbg(this); | 
|  | dbg.Stop(instr, "breakpoint"); | 
|  | } else if (imm == Instr::kSimulatorRedirectCode) { | 
|  | DoRedirectedCall(instr); | 
|  | } else if (imm == Instr::kSimulatorFfiRedirectCode) { | 
|  | DoRedirectedFfiCall(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeSystem(Instr* instr) { | 
|  | if (instr->InstructionBits() == CLREX) { | 
|  | // Format(instr, "clrex"); | 
|  | ClearExclusive(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (instr->InstructionBits() == kDataMemoryBarrier) { | 
|  | // Format(instr, "dmb ish"); | 
|  | memory_.FlushAll(); | 
|  | std::atomic_thread_fence(std::memory_order_seq_cst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((instr->Bits(0, 8) == 0x1f) && (instr->Bits(12, 4) == 2) && | 
|  | (instr->Bits(16, 3) == 3) && (instr->Bits(19, 2) == 0) && | 
|  | (instr->Bit(21) == 0)) { | 
|  | if (instr->Bits(8, 4) == 0) { | 
|  | // Format(instr, "nop"); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeTestAndBranch(Instr* instr) { | 
|  | const int op = instr->Bit(24); | 
|  | const int bitpos = instr->Bits(19, 5) | (instr->Bit(31) << 5); | 
|  | const uint64_t imm14 = instr->SImm14Field(); | 
|  | const uint64_t dest = get_pc() + (imm14 << 2); | 
|  | const Register rt = instr->RtField(); | 
|  | const uint64_t rt_val = get_register(rt, R31IsZR); | 
|  | if (op == 0) { | 
|  | // Format(instr, "tbz'sf 'rt, 'bitpos, 'dest14"); | 
|  | if ((rt_val & (1ull << bitpos)) == 0) { | 
|  | set_pc(dest); | 
|  | } | 
|  | } else { | 
|  | // Format(instr, "tbnz'sf 'rt, 'bitpos, 'dest14"); | 
|  | if ((rt_val & (1ull << bitpos)) != 0) { | 
|  | set_pc(dest); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeUnconditionalBranch(Instr* instr) { | 
|  | const bool link = instr->Bit(31) == 1; | 
|  | const uint64_t imm26 = instr->SImm26Field(); | 
|  | const uint64_t dest = get_pc() + (imm26 << 2); | 
|  | const uint64_t ret = get_pc() + Instr::kInstrSize; | 
|  | set_pc(dest); | 
|  | if (link) { | 
|  | set_register(instr, LR, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeUnconditionalBranchReg(Instr* instr) { | 
|  | if ((instr->Bits(0, 5) == 0) && (instr->Bits(10, 6) == 0) && | 
|  | (instr->Bits(16, 5) == 0x1f)) { | 
|  | switch (instr->Bits(21, 4)) { | 
|  | case 0: { | 
|  | // Format(instr, "br 'rn"); | 
|  | const Register rn = instr->RnField(); | 
|  | const int64_t dest = get_register(rn, instr->RnMode()); | 
|  | set_pc(dest); | 
|  | break; | 
|  | } | 
|  | case 1: { | 
|  | // Format(instr, "blr 'rn"); | 
|  | const Register rn = instr->RnField(); | 
|  | const int64_t dest = get_register(rn, instr->RnMode()); | 
|  | const int64_t ret = get_pc() + Instr::kInstrSize; | 
|  | set_pc(dest); | 
|  | set_register(instr, LR, ret); | 
|  | break; | 
|  | } | 
|  | case 2: { | 
|  | // Format(instr, "ret 'rn"); | 
|  | const Register rn = instr->RnField(); | 
|  | const int64_t rn_val = get_register(rn, instr->RnMode()); | 
|  | set_pc(rn_val); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | DART_FORCE_INLINE | 
|  | void Simulator::DecodeCompareBranch(Instr* instr) { | 
|  | if (instr->IsCompareAndBranchOp()) { | 
|  | DecodeCompareAndBranch(instr); | 
|  | } else if (instr->IsConditionalBranchOp()) { | 
|  | DecodeConditionalBranch(instr); | 
|  | } else if (instr->IsExceptionGenOp()) { | 
|  | DecodeExceptionGen(instr); | 
|  | } else if (instr->IsSystemOp()) { | 
|  | DecodeSystem(instr); | 
|  | } else if (instr->IsTestAndBranchOp()) { | 
|  | DecodeTestAndBranch(instr); | 
|  | } else if (instr->IsUnconditionalBranchOp()) { | 
|  | DecodeUnconditionalBranch(instr); | 
|  | } else if (instr->IsUnconditionalBranchRegOp()) { | 
|  | DecodeUnconditionalBranchReg(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeLoadStoreReg(Instr* instr) { | 
|  | // Calculate the address. | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rt = instr->RtField(); | 
|  | const VRegister vt = instr->VtField(); | 
|  | const int64_t rn_val = get_register(rn, R31IsSP); | 
|  | const uint32_t size = (instr->Bit(26) == 1) | 
|  | ? ((instr->Bit(23) << 2) | instr->SzField()) | 
|  | : instr->SzField(); | 
|  | uword address = 0; | 
|  | uword wb_address = 0; | 
|  | bool wb = false; | 
|  | if (instr->Bit(24) == 1) { | 
|  | // addr = rn + scaled unsigned 12-bit immediate offset. | 
|  | const uint32_t imm12 = static_cast<uint32_t>(instr->Imm12Field()); | 
|  | const uint32_t offset = imm12 << size; | 
|  | address = rn_val + offset; | 
|  | } else if (instr->Bits(10, 2) == 0) { | 
|  | // addr = rn + signed 9-bit immediate offset. | 
|  | wb = false; | 
|  | const int64_t offset = static_cast<int64_t>(instr->SImm9Field()); | 
|  | address = rn_val + offset; | 
|  | wb_address = rn_val; | 
|  | } else if (instr->Bit(10) == 1) { | 
|  | // addr = rn + signed 9-bit immediate offset. | 
|  | wb = true; | 
|  | const int64_t offset = static_cast<int64_t>(instr->SImm9Field()); | 
|  | if (instr->Bit(11) == 1) { | 
|  | // Pre-index. | 
|  | address = rn_val + offset; | 
|  | wb_address = address; | 
|  | } else { | 
|  | // Post-index. | 
|  | address = rn_val; | 
|  | wb_address = rn_val + offset; | 
|  | } | 
|  | } else if (instr->Bits(10, 2) == 2) { | 
|  | // addr = rn + (rm EXT optionally scaled by operand instruction size). | 
|  | const Register rm = instr->RmField(); | 
|  | const Extend ext = instr->ExtendTypeField(); | 
|  | const uint8_t scale = (ext == UXTX) && (instr->Bit(12) == 1) ? size : 0; | 
|  | const int64_t rm_val = get_register(rm, R31IsZR); | 
|  | const int64_t offset = ExtendOperand(kXRegSizeInBits, rm_val, ext, scale); | 
|  | address = rn_val + offset; | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check the address. | 
|  | if (IsIllegalAddress(address)) { | 
|  | HandleIllegalAccess(address, instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do access. | 
|  | if (instr->Bit(26) == 1) { | 
|  | if (instr->Bit(22) == 0) { | 
|  | // Format(instr, "fstr'fsz 'vt, 'memop"); | 
|  | const int64_t vt_val = get_vregisterd(vt, 0); | 
|  | switch (size) { | 
|  | case 2: | 
|  | WriteW(address, vt_val & kWRegMask, instr); | 
|  | break; | 
|  | case 3: | 
|  | WriteX(address, vt_val, instr); | 
|  | break; | 
|  | case 4: { | 
|  | simd_value_t val; | 
|  | get_vregister(vt, &val); | 
|  | WriteX(address, val.bits.i64[0], instr); | 
|  | WriteX(address + kWordSize, val.bits.i64[1], instr); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // Format(instr, "fldr'fsz 'vt, 'memop"); | 
|  | switch (size) { | 
|  | case 2: | 
|  | set_vregisterd(vt, 0, static_cast<int64_t>(ReadWU(address, instr))); | 
|  | set_vregisterd(vt, 1, 0); | 
|  | break; | 
|  | case 3: | 
|  | set_vregisterd(vt, 0, ReadX(address, instr)); | 
|  | set_vregisterd(vt, 1, 0); | 
|  | break; | 
|  | case 4: { | 
|  | simd_value_t val; | 
|  | val.bits.i64[0] = ReadX(address, instr); | 
|  | val.bits.i64[1] = ReadX(address + kWordSize, instr); | 
|  | set_vregister(vt, val); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (instr->Bits(22, 2) == 0) { | 
|  | // Format(instr, "str'sz 'rt, 'memop"); | 
|  | const int32_t rt_val32 = get_wregister(rt, R31IsZR); | 
|  | switch (size) { | 
|  | case 0: { | 
|  | const uint8_t val = static_cast<uint8_t>(rt_val32); | 
|  | WriteB(address, val); | 
|  | break; | 
|  | } | 
|  | case 1: { | 
|  | const uint16_t val = static_cast<uint16_t>(rt_val32); | 
|  | WriteH(address, val, instr); | 
|  | break; | 
|  | } | 
|  | case 2: { | 
|  | const uint32_t val = static_cast<uint32_t>(rt_val32); | 
|  | WriteW(address, val, instr); | 
|  | break; | 
|  | } | 
|  | case 3: { | 
|  | const int64_t val = get_register(rt, R31IsZR); | 
|  | WriteX(address, val, instr); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // Format(instr, "ldr'sz 'rt, 'memop"); | 
|  | // Undefined case. | 
|  | if ((size == 3) && (instr->Bits(22, 2) == 3)) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Read the value. | 
|  | const bool is_signed = instr->Bit(23) == 1; | 
|  | // Write the W register for signed values when size < 2. | 
|  | // Write the W register for unsigned values when size == 2. | 
|  | const bool use_w = | 
|  | (is_signed && (instr->Bit(22) == 1)) || (!is_signed && (size == 2)); | 
|  | int64_t val = 0;  // Sign extend into an int64_t. | 
|  | switch (size) { | 
|  | case 0: { | 
|  | if (is_signed) { | 
|  | val = static_cast<int64_t>(ReadB(address)); | 
|  | } else { | 
|  | val = static_cast<int64_t>(ReadBU(address)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 1: { | 
|  | if (is_signed) { | 
|  | val = static_cast<int64_t>(ReadH(address, instr)); | 
|  | } else { | 
|  | val = static_cast<int64_t>(ReadHU(address, instr)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 2: { | 
|  | if (is_signed) { | 
|  | val = static_cast<int64_t>(ReadW(address, instr)); | 
|  | } else { | 
|  | val = static_cast<int64_t>(ReadWU(address, instr)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 3: | 
|  | val = ReadX(address, instr); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Write to register. | 
|  | if (use_w) { | 
|  | set_wregister(rt, static_cast<int32_t>(val), R31IsZR); | 
|  | } else { | 
|  | set_register(instr, rt, val, R31IsZR); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do writeback. | 
|  | if (wb) { | 
|  | set_register(instr, rn, wb_address, R31IsSP); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeLoadStoreRegPair(Instr* instr) { | 
|  | const int32_t opc = instr->Bits(23, 3); | 
|  | const Register rn = instr->RnField(); | 
|  | const int64_t rn_val = get_register(rn, R31IsSP); | 
|  | const intptr_t shift = | 
|  | (instr->Bit(26) == 1) ? 2 + instr->SzField() : 2 + instr->SFField(); | 
|  | const intptr_t size = 1 << shift; | 
|  | const int32_t offset = (static_cast<uint32_t>(instr->SImm7Field()) << shift); | 
|  | uword address = 0; | 
|  | uword wb_address = 0; | 
|  | bool wb = false; | 
|  |  | 
|  | if ((instr->Bits(30, 2) == 3)) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Calculate address. | 
|  | switch (opc) { | 
|  | case 1: | 
|  | address = rn_val; | 
|  | wb_address = rn_val + offset; | 
|  | wb = true; | 
|  | break; | 
|  | case 2: | 
|  | address = rn_val + offset; | 
|  | break; | 
|  | case 3: | 
|  | address = rn_val + offset; | 
|  | wb_address = address; | 
|  | wb = true; | 
|  | break; | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check the address. | 
|  | if (IsIllegalAddress(address)) { | 
|  | HandleIllegalAccess(address, instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do access. | 
|  | if (instr->Bit(26) == 1) { | 
|  | // SIMD/FP. | 
|  | const VRegister vt = instr->VtField(); | 
|  | const VRegister vt2 = instr->Vt2Field(); | 
|  | if (instr->Bit(22) != 0) { | 
|  | // Format(instr, "ldp 'vt, 'vt2, 'memop"); | 
|  | switch (size) { | 
|  | case 4: | 
|  | set_vregisterd(vt, 0, static_cast<int64_t>(ReadWU(address, instr))); | 
|  | set_vregisterd(vt, 1, 0); | 
|  | set_vregisterd(vt2, 0, | 
|  | static_cast<int64_t>(ReadWU(address + 4, instr))); | 
|  | set_vregisterd(vt2, 1, 0); | 
|  | break; | 
|  | case 8: | 
|  | set_vregisterd(vt, 0, ReadX(address, instr)); | 
|  | set_vregisterd(vt, 1, 0); | 
|  | set_vregisterd(vt2, 0, ReadX(address + 8, instr)); | 
|  | set_vregisterd(vt2, 1, 0); | 
|  | break; | 
|  | case 16: { | 
|  | simd_value_t val; | 
|  | val.bits.i64[0] = ReadX(address, instr); | 
|  | val.bits.i64[1] = ReadX(address + 8, instr); | 
|  | set_vregister(vt, val); | 
|  | val.bits.i64[0] = ReadX(address + 16, instr); | 
|  | val.bits.i64[1] = ReadX(address + 24, instr); | 
|  | set_vregister(vt2, val); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // Format(instr, "stp 'vt, 'vt2, 'memop"); | 
|  | switch (size) { | 
|  | case 4: | 
|  | WriteW(address, get_vregisterd(vt, 0) & kWRegMask, instr); | 
|  | WriteW(address + 4, get_vregisterd(vt2, 0) & kWRegMask, instr); | 
|  | break; | 
|  | case 8: | 
|  | WriteX(address, get_vregisterd(vt, 0), instr); | 
|  | WriteX(address + 8, get_vregisterd(vt2, 0), instr); | 
|  | break; | 
|  | case 16: { | 
|  | simd_value_t val; | 
|  | get_vregister(vt, &val); | 
|  | WriteX(address, val.bits.i64[0], instr); | 
|  | WriteX(address + 8, val.bits.i64[1], instr); | 
|  | get_vregister(vt2, &val); | 
|  | WriteX(address + 16, val.bits.i64[0], instr); | 
|  | WriteX(address + 24, val.bits.i64[1], instr); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Integer. | 
|  | const Register rt = instr->RtField(); | 
|  | const Register rt2 = instr->Rt2Field(); | 
|  | if (instr->Bit(22) != 0) { | 
|  | // Format(instr, "ldp'sf 'rt, 'rt2, 'memop"); | 
|  | const bool is_signed = instr->Bit(30) == 1; | 
|  | int64_t val1 = 0;  // Sign extend into an int64_t. | 
|  | int64_t val2 = 0; | 
|  | if (instr->Bit(31) == 1) { | 
|  | // 64-bit read. | 
|  | val1 = ReadX(address, instr); | 
|  | val2 = ReadX(address + size, instr); | 
|  | } else { | 
|  | if (is_signed) { | 
|  | val1 = static_cast<int64_t>(ReadW(address, instr)); | 
|  | val2 = static_cast<int64_t>(ReadW(address + size, instr)); | 
|  | } else { | 
|  | val1 = static_cast<int64_t>(ReadWU(address, instr)); | 
|  | val2 = static_cast<int64_t>(ReadWU(address + size, instr)); | 
|  | } | 
|  | } | 
|  | // Write to register. | 
|  | if (instr->Bit(31) == 1) { | 
|  | set_register(instr, rt, val1, R31IsZR); | 
|  | set_register(instr, rt2, val2, R31IsZR); | 
|  | } else { | 
|  | set_wregister(rt, static_cast<int32_t>(val1), R31IsZR); | 
|  | set_wregister(rt2, static_cast<int32_t>(val2), R31IsZR); | 
|  | } | 
|  | } else { | 
|  | // Format(instr, "stp'sf 'rt, 'rt2, 'memop"); | 
|  | if (instr->Bit(31) == 1) { | 
|  | const int64_t val1 = get_register(rt, R31IsZR); | 
|  | const int64_t val2 = get_register(rt2, R31IsZR); | 
|  | WriteX(address, val1, instr); | 
|  | WriteX(address + size, val2, instr); | 
|  | } else { | 
|  | const int32_t val1 = get_wregister(rt, R31IsZR); | 
|  | const int32_t val2 = get_wregister(rt2, R31IsZR); | 
|  | WriteW(address, val1, instr); | 
|  | WriteW(address + size, val2, instr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do writeback. | 
|  | if (wb) { | 
|  | set_register(instr, rn, wb_address, R31IsSP); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeLoadRegLiteral(Instr* instr) { | 
|  | if ((instr->Bit(31) != 0) || (instr->Bit(29) != 0) || | 
|  | (instr->Bits(24, 3) != 0)) { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  |  | 
|  | const Register rt = instr->RtField(); | 
|  | const int64_t off = instr->SImm19Field() << 2; | 
|  | const int64_t pc = reinterpret_cast<int64_t>(instr); | 
|  | const int64_t address = pc + off; | 
|  | const int64_t val = ReadX(address, instr); | 
|  | if (instr->Bit(30) != 0) { | 
|  | // Format(instr, "ldrx 'rt, 'pcldr"); | 
|  | set_register(instr, rt, val, R31IsZR); | 
|  | } else { | 
|  | // Format(instr, "ldrw 'rt, 'pcldr"); | 
|  | set_wregister(rt, static_cast<int32_t>(val), R31IsZR); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeLoadStoreExclusive(Instr* instr) { | 
|  | if (instr->Bit(21) != 0 || instr->Bit(23) != instr->Bit(15)) { | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  | const int32_t size = instr->Bits(30, 2); | 
|  | if (size != 3 && size != 2) { | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  | const Register rs = instr->RsField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rt = instr->RtField(); | 
|  | ASSERT(instr->Rt2Field() == R31);  // Should-Be-One | 
|  | const bool is_load = instr->Bit(22) == 1; | 
|  | const bool is_exclusive = instr->Bit(23) == 0; | 
|  | const bool is_ordered = instr->Bit(15) == 1; | 
|  | if (is_load) { | 
|  | const bool is_load_acquire = !is_exclusive && is_ordered; | 
|  | if (is_load_acquire) { | 
|  | ASSERT(rs == R31);  // Should-Be-One | 
|  | // Format(instr, "ldar 'rt, 'rn"); | 
|  | const int64_t addr = get_register(rn, R31IsSP); | 
|  | const intptr_t value = | 
|  | (size == 3) ? ReadAcquire(addr, instr) : ReadAcquireW(addr, instr); | 
|  | set_register(instr, rt, value, R31IsZR); | 
|  | } else { | 
|  | ASSERT(rs == R31);  // Should-Be-One | 
|  | // Format(instr, "ldxr 'rt, 'rn"); | 
|  | const int64_t addr = get_register(rn, R31IsSP); | 
|  | const intptr_t value = (size == 3) ? ReadExclusiveX(addr, instr) | 
|  | : ReadExclusiveW(addr, instr); | 
|  | set_register(instr, rt, value, R31IsZR); | 
|  | } | 
|  | } else { | 
|  | const bool is_store_release = !is_exclusive && is_ordered; | 
|  | if (is_store_release) { | 
|  | ASSERT(rs == R31);  // Should-Be-One | 
|  | // Format(instr, "stlr 'rt, 'rn"); | 
|  | const uword value = get_register(rt, R31IsZR); | 
|  | const uword addr = get_register(rn, R31IsSP); | 
|  | if (size == 3) { | 
|  | WriteRelease(addr, value, instr); | 
|  | } else { | 
|  | WriteReleaseW(addr, static_cast<uint32_t>(value), instr); | 
|  | } | 
|  | } else { | 
|  | // Format(instr, "stxr 'rs, 'rt, 'rn"); | 
|  | const uword value = get_register(rt, R31IsZR); | 
|  | const uword addr = get_register(rn, R31IsSP); | 
|  | const intptr_t status = | 
|  | (size == 3) | 
|  | ? WriteExclusiveX(addr, value, instr) | 
|  | : WriteExclusiveW(addr, static_cast<uint32_t>(value), instr); | 
|  | set_register(instr, rs, status, R31IsSP); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeAtomicMemory(Instr* instr) { | 
|  | const int32_t size = instr->Bits(30, 2); | 
|  | std::memory_order order; | 
|  | switch (instr->Bits(22, 2)) { | 
|  | case 3: | 
|  | order = std::memory_order_acq_rel; | 
|  | break; | 
|  | case 2: | 
|  | order = std::memory_order_acquire; | 
|  | break; | 
|  | case 1: | 
|  | order = std::memory_order_release; | 
|  | break; | 
|  | case 0: | 
|  | order = std::memory_order_relaxed; | 
|  | break; | 
|  | } | 
|  | const Register rs = instr->RsField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rt = instr->RtField(); | 
|  | const int32_t opc = instr->Bits(12, 3); | 
|  |  | 
|  | if (size == 3) { | 
|  | uint64_t in = get_register(rs, R31IsZR); | 
|  | auto addr = | 
|  | reinterpret_cast<std::atomic<uint64_t>*>(get_register(rn, R31IsSP)); | 
|  | uint64_t out; | 
|  | switch (opc) { | 
|  | case 1: | 
|  | out = addr->fetch_and(~in, order); | 
|  | break; | 
|  | case 3: | 
|  | out = addr->fetch_or(in, order); | 
|  | break; | 
|  | default: | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  | set_register(instr, rt, out, R31IsZR); | 
|  | } else if (size == 2) { | 
|  | ASSERT(size == 2); | 
|  | uint32_t in = get_wregister(rs, R31IsZR); | 
|  | auto addr = | 
|  | reinterpret_cast<std::atomic<uint32_t>*>(get_register(rn, R31IsSP)); | 
|  | uint32_t out; | 
|  | switch (opc) { | 
|  | case 1: | 
|  | out = addr->fetch_and(~in, order); | 
|  | break; | 
|  | case 3: | 
|  | out = addr->fetch_or(in, order); | 
|  | break; | 
|  | default: | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  | set_wregister(rt, out, R31IsZR); | 
|  | } else { | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | DART_FORCE_INLINE | 
|  | void Simulator::DecodeLoadStore(Instr* instr) { | 
|  | if (instr->IsAtomicMemoryOp()) { | 
|  | DecodeAtomicMemory(instr); | 
|  | } else if (instr->IsLoadStoreRegOp()) { | 
|  | DecodeLoadStoreReg(instr); | 
|  | } else if (instr->IsLoadStoreRegPairOp()) { | 
|  | DecodeLoadStoreRegPair(instr); | 
|  | } else if (instr->IsLoadRegLiteralOp()) { | 
|  | DecodeLoadRegLiteral(instr); | 
|  | } else if (instr->IsLoadStoreExclusiveOp()) { | 
|  | DecodeLoadStoreExclusive(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | int64_t Simulator::ShiftOperand(uint8_t reg_size, | 
|  | int64_t value, | 
|  | Shift shift_type, | 
|  | uint8_t amount) { | 
|  | if (amount == 0) { | 
|  | return value; | 
|  | } | 
|  | int64_t mask = reg_size == kXRegSizeInBits ? kXRegMask : kWRegMask; | 
|  | switch (shift_type) { | 
|  | case LSL: | 
|  | return (static_cast<uint64_t>(value) << amount) & mask; | 
|  | case LSR: | 
|  | return static_cast<uint64_t>(value) >> amount; | 
|  | case ASR: { | 
|  | // Shift used to restore the sign. | 
|  | uint8_t s_shift = kXRegSizeInBits - reg_size; | 
|  | // Value with its sign restored. | 
|  | int64_t s_value = (value << s_shift) >> s_shift; | 
|  | return (s_value >> amount) & mask; | 
|  | } | 
|  | case ROR: { | 
|  | if (reg_size == kWRegSizeInBits) { | 
|  | value &= kWRegMask; | 
|  | } | 
|  | return (static_cast<uint64_t>(value) >> amount) | | 
|  | ((static_cast<uint64_t>(value) & ((1ULL << amount) - 1ULL)) | 
|  | << (reg_size - amount)); | 
|  | } | 
|  | default: | 
|  | UNIMPLEMENTED(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int64_t Simulator::ExtendOperand(uint8_t reg_size, | 
|  | int64_t value, | 
|  | Extend extend_type, | 
|  | uint8_t amount) { | 
|  | switch (extend_type) { | 
|  | case UXTB: | 
|  | value &= 0xff; | 
|  | break; | 
|  | case UXTH: | 
|  | value &= 0xffff; | 
|  | break; | 
|  | case UXTW: | 
|  | value &= 0xffffffff; | 
|  | break; | 
|  | case SXTB: | 
|  | value = static_cast<int64_t>(static_cast<uint64_t>(value) << 56) >> 56; | 
|  | break; | 
|  | case SXTH: | 
|  | value = static_cast<int64_t>(static_cast<uint64_t>(value) << 48) >> 48; | 
|  | break; | 
|  | case SXTW: | 
|  | value = static_cast<int64_t>(static_cast<uint64_t>(value) << 32) >> 32; | 
|  | break; | 
|  | case UXTX: | 
|  | case SXTX: | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | int64_t mask = (reg_size == kXRegSizeInBits) ? kXRegMask : kWRegMask; | 
|  | return (static_cast<uint64_t>(value) << amount) & mask; | 
|  | } | 
|  |  | 
|  | int64_t Simulator::DecodeShiftExtendOperand(Instr* instr) { | 
|  | const Register rm = instr->RmField(); | 
|  | const int64_t rm_val = get_register(rm, R31IsZR); | 
|  | const uint8_t size = | 
|  | instr->SFField() != 0 ? kXRegSizeInBits : kWRegSizeInBits; | 
|  | if (instr->IsShift()) { | 
|  | const Shift shift_type = instr->ShiftTypeField(); | 
|  | const uint8_t shift_amount = instr->Imm6Field(); | 
|  | return ShiftOperand(size, rm_val, shift_type, shift_amount); | 
|  | } else { | 
|  | ASSERT(instr->IsExtend()); | 
|  | const Extend extend_type = instr->ExtendTypeField(); | 
|  | const uint8_t shift_amount = instr->Imm3Field(); | 
|  | return ExtendOperand(size, rm_val, extend_type, shift_amount); | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeAddSubShiftExt(Instr* instr) { | 
|  | // Format(instr, "add'sf's 'rd, 'rn, 'shift_op"); | 
|  | // also, sub, cmp, etc. | 
|  | const bool addition = (instr->Bit(30) == 0); | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const uint64_t rm_val = DecodeShiftExtendOperand(instr); | 
|  | if (instr->SFField() != 0) { | 
|  | // 64-bit add. | 
|  | const uint64_t rn_val = get_register(rn, instr->RnMode()); | 
|  | const uint64_t alu_out = rn_val + (addition ? rm_val : -rm_val); | 
|  | set_register(instr, rd, alu_out, instr->RdMode()); | 
|  | if (instr->HasS()) { | 
|  | SetNZFlagsX(alu_out); | 
|  | SetCFlag(CarryFromX(alu_out, rn_val, rm_val, addition)); | 
|  | SetVFlag(OverflowFromX(alu_out, rn_val, rm_val, addition)); | 
|  | } | 
|  | } else { | 
|  | // 32-bit add. | 
|  | const uint32_t rn_val = get_wregister(rn, instr->RnMode()); | 
|  | uint32_t rm_val32 = static_cast<uint32_t>(rm_val & kWRegMask); | 
|  | uint32_t carry_in = 0; | 
|  | if (!addition) { | 
|  | carry_in = 1; | 
|  | rm_val32 = ~rm_val32; | 
|  | } | 
|  | const uint32_t alu_out = rn_val + rm_val32 + carry_in; | 
|  | set_wregister(rd, alu_out, instr->RdMode()); | 
|  | if (instr->HasS()) { | 
|  | SetNZFlagsW(alu_out); | 
|  | SetCFlag(CarryFromW(rn_val, rm_val32, carry_in)); | 
|  | SetVFlag(OverflowFromW(rn_val, rm_val32, carry_in)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeAddSubWithCarry(Instr* instr) { | 
|  | // Format(instr, "adc'sf's 'rd, 'rn, 'rm"); | 
|  | // Format(instr, "sbc'sf's 'rd, 'rn, 'rm"); | 
|  | const bool addition = (instr->Bit(30) == 0); | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rm = instr->RmField(); | 
|  | const uint64_t rn_val64 = get_register(rn, R31IsZR); | 
|  | const uint32_t rn_val32 = get_wregister(rn, R31IsZR); | 
|  | const uint64_t rm_val64 = get_register(rm, R31IsZR); | 
|  | uint32_t rm_val32 = get_wregister(rm, R31IsZR); | 
|  | const uint32_t carry_in = c_flag_ ? 1 : 0; | 
|  | if (instr->SFField() != 0) { | 
|  | // 64-bit add. | 
|  | const uint64_t alu_out = | 
|  | rn_val64 + (addition ? rm_val64 : ~rm_val64) + carry_in; | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | if (instr->HasS()) { | 
|  | SetNZFlagsX(alu_out); | 
|  | SetCFlag(CarryFromX(alu_out, rn_val64, rm_val64, addition)); | 
|  | SetVFlag(OverflowFromX(alu_out, rn_val64, rm_val64, addition)); | 
|  | } | 
|  | } else { | 
|  | // 32-bit add. | 
|  | if (!addition) { | 
|  | rm_val32 = ~rm_val32; | 
|  | } | 
|  | const uint32_t alu_out = rn_val32 + rm_val32 + carry_in; | 
|  | set_wregister(rd, alu_out, R31IsZR); | 
|  | if (instr->HasS()) { | 
|  | SetNZFlagsW(alu_out); | 
|  | SetCFlag(CarryFromW(rn_val32, rm_val32, carry_in)); | 
|  | SetVFlag(OverflowFromW(rn_val32, rm_val32, carry_in)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeLogicalShift(Instr* instr) { | 
|  | const int op = (instr->Bits(29, 2) << 1) | instr->Bit(21); | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const int64_t rn_val = get_register(rn, instr->RnMode()); | 
|  | const int64_t rm_val = DecodeShiftExtendOperand(instr); | 
|  | int64_t alu_out = 0; | 
|  | switch (op) { | 
|  | case 0: | 
|  | // Format(instr, "and'sf 'rd, 'rn, 'shift_op"); | 
|  | alu_out = rn_val & rm_val; | 
|  | break; | 
|  | case 1: | 
|  | // Format(instr, "bic'sf 'rd, 'rn, 'shift_op"); | 
|  | alu_out = rn_val & (~rm_val); | 
|  | break; | 
|  | case 2: | 
|  | // Format(instr, "orr'sf 'rd, 'rn, 'shift_op"); | 
|  | alu_out = rn_val | rm_val; | 
|  | break; | 
|  | case 3: | 
|  | // Format(instr, "orn'sf 'rd, 'rn, 'shift_op"); | 
|  | alu_out = rn_val | (~rm_val); | 
|  | break; | 
|  | case 4: | 
|  | // Format(instr, "eor'sf 'rd, 'rn, 'shift_op"); | 
|  | alu_out = rn_val ^ rm_val; | 
|  | break; | 
|  | case 5: | 
|  | // Format(instr, "eon'sf 'rd, 'rn, 'shift_op"); | 
|  | alu_out = rn_val ^ (~rm_val); | 
|  | break; | 
|  | case 6: | 
|  | // Format(instr, "and'sfs 'rd, 'rn, 'shift_op"); | 
|  | alu_out = rn_val & rm_val; | 
|  | break; | 
|  | case 7: | 
|  | // Format(instr, "bic'sfs 'rd, 'rn, 'shift_op"); | 
|  | alu_out = rn_val & (~rm_val); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Set flags if ands or bics. | 
|  | if ((op == 6) || (op == 7)) { | 
|  | if (instr->SFField() == 1) { | 
|  | SetNZFlagsX(alu_out); | 
|  | } else { | 
|  | SetNZFlagsW(alu_out); | 
|  | } | 
|  | SetCFlag(false); | 
|  | SetVFlag(false); | 
|  | } | 
|  |  | 
|  | if (instr->SFField() == 1) { | 
|  | set_register(instr, rd, alu_out, instr->RdMode()); | 
|  | } else { | 
|  | set_wregister(rd, alu_out & kWRegMask, instr->RdMode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int64_t divide64(int64_t top, int64_t bottom, bool is_signed) { | 
|  | // ARM64 does not trap on integer division by zero. The destination register | 
|  | // is instead set to 0. | 
|  | if (bottom == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_signed) { | 
|  | // INT_MIN / -1 = INT_MIN. | 
|  | if ((top == static_cast<int64_t>(0x8000000000000000LL)) && | 
|  | (bottom == static_cast<int64_t>(0xffffffffffffffffLL))) { | 
|  | return static_cast<int64_t>(0x8000000000000000LL); | 
|  | } else { | 
|  | return top / bottom; | 
|  | } | 
|  | } else { | 
|  | const uint64_t utop = static_cast<uint64_t>(top); | 
|  | const uint64_t ubottom = static_cast<uint64_t>(bottom); | 
|  | return static_cast<int64_t>(utop / ubottom); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int32_t divide32(int32_t top, int32_t bottom, bool is_signed) { | 
|  | // ARM64 does not trap on integer division by zero. The destination register | 
|  | // is instead set to 0. | 
|  | if (bottom == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_signed) { | 
|  | // INT_MIN / -1 = INT_MIN. | 
|  | if ((top == static_cast<int32_t>(0x80000000)) && | 
|  | (bottom == static_cast<int32_t>(0xffffffff))) { | 
|  | return static_cast<int32_t>(0x80000000); | 
|  | } else { | 
|  | return top / bottom; | 
|  | } | 
|  | } else { | 
|  | const uint32_t utop = static_cast<uint32_t>(top); | 
|  | const uint32_t ubottom = static_cast<uint32_t>(bottom); | 
|  | return static_cast<int32_t>(utop / ubottom); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeMiscDP1Source(Instr* instr) { | 
|  | if (instr->Bit(29) != 0) { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  |  | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const int op = instr->Bits(10, 10); | 
|  | const int64_t rn_val64 = get_register(rn, R31IsZR); | 
|  | const int32_t rn_val32 = get_wregister(rn, R31IsZR); | 
|  | switch (op) { | 
|  | case 4: { | 
|  | // Format(instr, "clz'sf 'rd, 'rn"); | 
|  | if (instr->SFField() == 1) { | 
|  | const uint64_t rd_val = Utils::CountLeadingZeros64(rn_val64); | 
|  | set_register(instr, rd, rd_val, R31IsZR); | 
|  | } else { | 
|  | const uint32_t rd_val = Utils::CountLeadingZeros32(rn_val32); | 
|  | set_wregister(rd, rd_val, R31IsZR); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 0: { | 
|  | // Format(instr, "rbit'sf 'rd, 'rn"); | 
|  | if (instr->SFField() == 1) { | 
|  | const uint64_t rd_val = Utils::ReverseBits64(rn_val64); | 
|  | set_register(instr, rd, rd_val, R31IsZR); | 
|  | } else { | 
|  | const uint32_t rd_val = Utils::ReverseBits32(rn_val32); | 
|  | set_wregister(rd, rd_val, R31IsZR); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeMiscDP2Source(Instr* instr) { | 
|  | if (instr->Bit(29) != 0) { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  |  | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rm = instr->RmField(); | 
|  | const int op = instr->Bits(10, 5); | 
|  | const int64_t rn_val64 = get_register(rn, R31IsZR); | 
|  | const int64_t rm_val64 = get_register(rm, R31IsZR); | 
|  | const int32_t rn_val32 = get_wregister(rn, R31IsZR); | 
|  | const int32_t rm_val32 = get_wregister(rm, R31IsZR); | 
|  | switch (op) { | 
|  | case 2: | 
|  | case 3: { | 
|  | // Format(instr, "udiv'sf 'rd, 'rn, 'rm"); | 
|  | // Format(instr, "sdiv'sf 'rd, 'rn, 'rm"); | 
|  | const bool is_signed = instr->Bit(10) == 1; | 
|  | if (instr->SFField() == 1) { | 
|  | set_register(instr, rd, divide64(rn_val64, rm_val64, is_signed), | 
|  | R31IsZR); | 
|  | } else { | 
|  | set_wregister(rd, divide32(rn_val32, rm_val32, is_signed), R31IsZR); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 8: { | 
|  | // Format(instr, "lsl'sf 'rd, 'rn, 'rm"); | 
|  | if (instr->SFField() == 1) { | 
|  | const uint64_t rn_u64 = static_cast<uint64_t>(rn_val64); | 
|  | const int64_t alu_out = rn_u64 << (rm_val64 & (kXRegSizeInBits - 1)); | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } else { | 
|  | const uint32_t rn_u32 = static_cast<uint32_t>(rn_val32); | 
|  | const int32_t alu_out = rn_u32 << (rm_val32 & (kXRegSizeInBits - 1)); | 
|  | set_wregister(rd, alu_out, R31IsZR); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 9: { | 
|  | // Format(instr, "lsr'sf 'rd, 'rn, 'rm"); | 
|  | if (instr->SFField() == 1) { | 
|  | const uint64_t rn_u64 = static_cast<uint64_t>(rn_val64); | 
|  | const int64_t alu_out = rn_u64 >> (rm_val64 & (kXRegSizeInBits - 1)); | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } else { | 
|  | const uint32_t rn_u32 = static_cast<uint32_t>(rn_val32); | 
|  | const int32_t alu_out = rn_u32 >> (rm_val32 & (kXRegSizeInBits - 1)); | 
|  | set_wregister(rd, alu_out, R31IsZR); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 10: { | 
|  | // Format(instr, "asr'sf 'rd, 'rn, 'rm"); | 
|  | if (instr->SFField() == 1) { | 
|  | const int64_t alu_out = rn_val64 >> (rm_val64 & (kXRegSizeInBits - 1)); | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } else { | 
|  | const int32_t alu_out = rn_val32 >> (rm_val32 & (kXRegSizeInBits - 1)); | 
|  | set_wregister(rd, alu_out, R31IsZR); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeMiscDP3Source(Instr* instr) { | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rm = instr->RmField(); | 
|  | const Register ra = instr->RaField(); | 
|  | if ((instr->Bits(29, 2) == 0) && (instr->Bits(21, 3) == 0) && | 
|  | (instr->Bit(15) == 0)) { | 
|  | // Format(instr, "madd'sf 'rd, 'rn, 'rm, 'ra"); | 
|  | if (instr->SFField() == 1) { | 
|  | const uint64_t rn_val = get_register(rn, R31IsZR); | 
|  | const uint64_t rm_val = get_register(rm, R31IsZR); | 
|  | const uint64_t ra_val = get_register(ra, R31IsZR); | 
|  | const uint64_t alu_out = ra_val + (rn_val * rm_val); | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } else { | 
|  | const uint32_t rn_val = get_wregister(rn, R31IsZR); | 
|  | const uint32_t rm_val = get_wregister(rm, R31IsZR); | 
|  | const uint32_t ra_val = get_wregister(ra, R31IsZR); | 
|  | const uint32_t alu_out = ra_val + (rn_val * rm_val); | 
|  | set_wregister(rd, alu_out, R31IsZR); | 
|  | } | 
|  | } else if ((instr->Bits(29, 2) == 0) && (instr->Bits(21, 3) == 0) && | 
|  | (instr->Bit(15) == 1)) { | 
|  | // Format(instr, "msub'sf 'rd, 'rn, 'rm, 'ra"); | 
|  | if (instr->SFField() == 1) { | 
|  | const uint64_t rn_val = get_register(rn, R31IsZR); | 
|  | const uint64_t rm_val = get_register(rm, R31IsZR); | 
|  | const uint64_t ra_val = get_register(ra, R31IsZR); | 
|  | const uint64_t alu_out = ra_val - (rn_val * rm_val); | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } else { | 
|  | const uint32_t rn_val = get_wregister(rn, R31IsZR); | 
|  | const uint32_t rm_val = get_wregister(rm, R31IsZR); | 
|  | const uint32_t ra_val = get_wregister(ra, R31IsZR); | 
|  | const uint32_t alu_out = ra_val - (rn_val * rm_val); | 
|  | set_wregister(rd, alu_out, R31IsZR); | 
|  | } | 
|  | } else if ((instr->Bits(29, 3) == 4) && (instr->Bits(21, 3) == 2) && | 
|  | (instr->Bit(15) == 0)) { | 
|  | ASSERT(ra == R31);  // Should-Be-One | 
|  | // Format(instr, "smulh 'rd, 'rn, 'rm"); | 
|  | const int64_t rn_val = get_register(rn, R31IsZR); | 
|  | const int64_t rm_val = get_register(rm, R31IsZR); | 
|  | #if defined(DART_HOST_OS_WINDOWS) | 
|  | // Visual Studio does not support __int128. | 
|  | int64_t alu_out; | 
|  | Multiply128(rn_val, rm_val, &alu_out); | 
|  | #else | 
|  | const __int128 res = | 
|  | static_cast<__int128>(rn_val) * static_cast<__int128>(rm_val); | 
|  | const int64_t alu_out = static_cast<int64_t>(res >> 64); | 
|  | #endif  // DART_HOST_OS_WINDOWS | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } else if ((instr->Bits(29, 3) == 4) && (instr->Bits(21, 3) == 6) && | 
|  | (instr->Bit(15) == 0)) { | 
|  | ASSERT(ra == R31);  // Should-Be-One | 
|  | // Format(instr, "umulh 'rd, 'rn, 'rm"); | 
|  | const uint64_t rn_val = get_register(rn, R31IsZR); | 
|  | const uint64_t rm_val = get_register(rm, R31IsZR); | 
|  | #if defined(DART_HOST_OS_WINDOWS) | 
|  | // Visual Studio does not support __int128. | 
|  | uint64_t alu_out; | 
|  | UnsignedMultiply128(rn_val, rm_val, &alu_out); | 
|  | #else | 
|  | const unsigned __int128 res = static_cast<unsigned __int128>(rn_val) * | 
|  | static_cast<unsigned __int128>(rm_val); | 
|  | const uint64_t alu_out = static_cast<uint64_t>(res >> 64); | 
|  | #endif  // DART_HOST_OS_WINDOWS | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } else if ((instr->Bits(29, 3) == 4) && (instr->Bit(15) == 0)) { | 
|  | if (instr->Bits(21, 3) == 5) { | 
|  | // Format(instr, "umaddl 'rd, 'rn, 'rm, 'ra"); | 
|  | const uint64_t rn_val = static_cast<uint32_t>(get_wregister(rn, R31IsZR)); | 
|  | const uint64_t rm_val = static_cast<uint32_t>(get_wregister(rm, R31IsZR)); | 
|  | const uint64_t ra_val = get_register(ra, R31IsZR); | 
|  | const uint64_t alu_out = ra_val + (rn_val * rm_val); | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } else { | 
|  | // Format(instr, "smaddl 'rd, 'rn, 'rm, 'ra"); | 
|  | const int64_t rn_val = static_cast<int32_t>(get_wregister(rn, R31IsZR)); | 
|  | const int64_t rm_val = static_cast<int32_t>(get_wregister(rm, R31IsZR)); | 
|  | const int64_t ra_val = get_register(ra, R31IsZR); | 
|  | const int64_t alu_out = ra_val + (rn_val * rm_val); | 
|  | set_register(instr, rd, alu_out, R31IsZR); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeConditionalSelect(Instr* instr) { | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rm = instr->RmField(); | 
|  | const int64_t rm_val64 = get_register(rm, R31IsZR); | 
|  | const int32_t rm_val32 = get_wregister(rm, R31IsZR); | 
|  | const int64_t rn_val64 = get_register(rn, instr->RnMode()); | 
|  | const int32_t rn_val32 = get_wregister(rn, instr->RnMode()); | 
|  | int64_t result64 = 0; | 
|  | int32_t result32 = 0; | 
|  |  | 
|  | if ((instr->Bits(29, 2) == 0) && (instr->Bits(10, 2) == 0)) { | 
|  | // Format(instr, "mov'sf'cond 'rd, 'rn, 'rm"); | 
|  | result64 = rm_val64; | 
|  | result32 = rm_val32; | 
|  | if (ConditionallyExecute(instr)) { | 
|  | result64 = rn_val64; | 
|  | result32 = rn_val32; | 
|  | } | 
|  | } else if ((instr->Bits(29, 2) == 0) && (instr->Bits(10, 2) == 1)) { | 
|  | // Format(instr, "csinc'sf'cond 'rd, 'rn, 'rm"); | 
|  | result64 = rm_val64 + 1; | 
|  | result32 = rm_val32 + 1; | 
|  | if (ConditionallyExecute(instr)) { | 
|  | result64 = rn_val64; | 
|  | result32 = rn_val32; | 
|  | } | 
|  | } else if ((instr->Bits(29, 2) == 2) && (instr->Bits(10, 2) == 0)) { | 
|  | // Format(instr, "csinv'sf'cond 'rd, 'rn, 'rm"); | 
|  | result64 = ~rm_val64; | 
|  | result32 = ~rm_val32; | 
|  | if (ConditionallyExecute(instr)) { | 
|  | result64 = rn_val64; | 
|  | result32 = rn_val32; | 
|  | } | 
|  | } else if ((instr->Bits(29, 2) == 2) && (instr->Bits(10, 2) == 1)) { | 
|  | // Format(instr, "csneg'sf'cond 'rd, 'rn, 'rm"); | 
|  | result64 = -rm_val64; | 
|  | result32 = -rm_val32; | 
|  | if (ConditionallyExecute(instr)) { | 
|  | result64 = rn_val64; | 
|  | result32 = rn_val32; | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (instr->SFField() == 1) { | 
|  | set_register(instr, rd, result64, instr->RdMode()); | 
|  | } else { | 
|  | set_wregister(rd, result32, instr->RdMode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeDPRegister(Instr* instr) { | 
|  | if (instr->IsAddSubShiftExtOp()) { | 
|  | DecodeAddSubShiftExt(instr); | 
|  | } else if (instr->IsAddSubWithCarryOp()) { | 
|  | DecodeAddSubWithCarry(instr); | 
|  | } else if (instr->IsLogicalShiftOp()) { | 
|  | DecodeLogicalShift(instr); | 
|  | } else if (instr->IsMiscDP1SourceOp()) { | 
|  | DecodeMiscDP1Source(instr); | 
|  | } else if (instr->IsMiscDP2SourceOp()) { | 
|  | DecodeMiscDP2Source(instr); | 
|  | } else if (instr->IsMiscDP3SourceOp()) { | 
|  | DecodeMiscDP3Source(instr); | 
|  | } else if (instr->IsConditionalSelectOp()) { | 
|  | DecodeConditionalSelect(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeSIMDCopy(Instr* instr) { | 
|  | const int32_t Q = instr->Bit(30); | 
|  | const int32_t op = instr->Bit(29); | 
|  | const int32_t imm4 = instr->Bits(11, 4); | 
|  | const int32_t imm5 = instr->Bits(16, 5); | 
|  |  | 
|  | int32_t idx4 = -1; | 
|  | int32_t idx5 = -1; | 
|  | int32_t element_bytes; | 
|  | if ((imm5 & 0x1) != 0) { | 
|  | idx4 = imm4; | 
|  | idx5 = imm5 >> 1; | 
|  | element_bytes = 1; | 
|  | } else if ((imm5 & 0x2) != 0) { | 
|  | idx4 = imm4 >> 1; | 
|  | idx5 = imm5 >> 2; | 
|  | element_bytes = 2; | 
|  | } else if ((imm5 & 0x4) != 0) { | 
|  | idx4 = imm4 >> 2; | 
|  | idx5 = imm5 >> 3; | 
|  | element_bytes = 4; | 
|  | } else if ((imm5 & 0x8) != 0) { | 
|  | idx4 = imm4 >> 3; | 
|  | idx5 = imm5 >> 4; | 
|  | element_bytes = 8; | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | ASSERT((idx4 != -1) && (idx5 != -1)); | 
|  |  | 
|  | const VRegister vd = instr->VdField(); | 
|  | const VRegister vn = instr->VnField(); | 
|  | const Register rn = instr->RnField(); | 
|  | const Register rd = instr->RdField(); | 
|  | if ((op == 0) && (imm4 == 7)) { | 
|  | if (Q == 0) { | 
|  | // Format(instr, "vmovrs 'rd, 'vn'idx5"); | 
|  | set_wregister(rd, get_vregisters(vn, idx5), R31IsZR); | 
|  | } else { | 
|  | // Format(instr, "vmovrd 'rd, 'vn'idx5"); | 
|  | set_register(instr, rd, get_vregisterd(vn, idx5), R31IsZR); | 
|  | } | 
|  | } else if ((Q == 1) && (op == 0) && (imm4 == 0)) { | 
|  | // Format(instr, "vdup'csz 'vd, 'vn'idx5"); | 
|  | if (element_bytes == 4) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | set_vregisters(vd, i, get_vregisters(vn, idx5)); | 
|  | } | 
|  | } else if (element_bytes == 8) { | 
|  | for (int i = 0; i < 2; i++) { | 
|  | set_vregisterd(vd, i, get_vregisterd(vn, idx5)); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | } else if ((Q == 1) && (op == 0) && (imm4 == 3)) { | 
|  | // Format(instr, "vins'csz 'vd'idx5, 'rn"); | 
|  | if (element_bytes == 4) { | 
|  | set_vregisters(vd, idx5, get_wregister(rn, R31IsZR)); | 
|  | } else if (element_bytes == 8) { | 
|  | set_vregisterd(vd, idx5, get_register(rn, R31IsZR)); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else if ((Q == 1) && (op == 0) && (imm4 == 1)) { | 
|  | // Format(instr, "vdup'csz 'vd, 'rn"); | 
|  | if (element_bytes == 4) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | set_vregisters(vd, i, get_wregister(rn, R31IsZR)); | 
|  | } | 
|  | } else if (element_bytes == 8) { | 
|  | for (int i = 0; i < 2; i++) { | 
|  | set_vregisterd(vd, i, get_register(rn, R31IsZR)); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | } else if ((Q == 1) && (op == 1)) { | 
|  | // Format(instr, "vins'csz 'vd'idx5, 'vn'idx4"); | 
|  | if (element_bytes == 4) { | 
|  | set_vregisters(vd, idx5, get_vregisters(vn, idx4)); | 
|  | } else if (element_bytes == 8) { | 
|  | set_vregisterd(vd, idx5, get_vregisterd(vn, idx4)); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static float vminf(float f1, float f2) { | 
|  | if (isnan(f1) || isnan(f2)) { | 
|  | return std::numeric_limits<float>::quiet_NaN(); | 
|  | } | 
|  | if (f1 == f2) { | 
|  | // take care of (-0.0) < 0.0, (they are equal according to minss) | 
|  | return signbit(f1) ? f1 : f2; | 
|  | } | 
|  | return f1 > f2 ? f2 : f1; | 
|  | } | 
|  |  | 
|  | static float vmaxf(float f1, float f2) { | 
|  | if (isnan(f1) || isnan(f2)) { | 
|  | return std::numeric_limits<float>::quiet_NaN(); | 
|  | } | 
|  | if (f1 == f2) { | 
|  | // take care of (-0.0) < 0.0, (they are equal according to minss) | 
|  | return signbit(f1) ? f2 : f1; | 
|  | } | 
|  | return f1 < f2 ? f2 : f1; | 
|  | } | 
|  |  | 
|  | static double vmind(double f1, double f2) { | 
|  | if (isnan(f1) || isnan(f2)) { | 
|  | return std::numeric_limits<double>::quiet_NaN(); | 
|  | } | 
|  | if (f1 == f2) { | 
|  | // take care of (-0.0) < 0.0, (they are equal according to minss) | 
|  | return signbit(f1) ? f1 : f2; | 
|  | } | 
|  | return f1 > f2 ? f2 : f1; | 
|  | } | 
|  |  | 
|  | static double vmaxd(double f1, double f2) { | 
|  | if (isnan(f1) || isnan(f2)) { | 
|  | return std::numeric_limits<double>::quiet_NaN(); | 
|  | } | 
|  | if (f1 == f2) { | 
|  | // take care of (-0.0) < 0.0, (they are equal according to minss) | 
|  | return signbit(f1) ? f2 : f1; | 
|  | } | 
|  | return f1 < f2 ? f2 : f1; | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeSIMDThreeSame(Instr* instr) { | 
|  | const int Q = instr->Bit(30); | 
|  | const int U = instr->Bit(29); | 
|  | const int opcode = instr->Bits(11, 5); | 
|  |  | 
|  | if (Q == 0) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const VRegister vd = instr->VdField(); | 
|  | const VRegister vn = instr->VnField(); | 
|  | const VRegister vm = instr->VmField(); | 
|  | if (instr->Bit(22) == 0) { | 
|  | // f32 case. | 
|  | for (int idx = 0; idx < 4; idx++) { | 
|  | const int32_t vn_val = get_vregisters(vn, idx); | 
|  | const int32_t vm_val = get_vregisters(vm, idx); | 
|  | const volatile float vn_flt = bit_cast<float, int32_t>(vn_val); | 
|  | const volatile float vm_flt = bit_cast<float, int32_t>(vm_val); | 
|  | int32_t res = 0.0; | 
|  | if ((U == 0) && (opcode == 0x3)) { | 
|  | if (instr->Bit(23) == 0) { | 
|  | // Format(instr, "vand 'vd, 'vn, 'vm"); | 
|  | res = vn_val & vm_val; | 
|  | } else { | 
|  | // Format(instr, "vorr 'vd, 'vn, 'vm"); | 
|  | res = vn_val | vm_val; | 
|  | } | 
|  | } else if ((U == 1) && (opcode == 0x3)) { | 
|  | // Format(instr, "veor 'vd, 'vn, 'vm"); | 
|  | res = vn_val ^ vm_val; | 
|  | } else if ((U == 0) && (opcode == 0x10)) { | 
|  | // Format(instr, "vadd'vsz 'vd, 'vn, 'vm"); | 
|  | res = vn_val + vm_val; | 
|  | } else if ((U == 1) && (opcode == 0x10)) { | 
|  | // Format(instr, "vsub'vsz 'vd, 'vn, 'vm"); | 
|  | res = vn_val - vm_val; | 
|  | } else if ((U == 0) && (opcode == 0x1a)) { | 
|  | if (instr->Bit(23) == 0) { | 
|  | // Format(instr, "vadd'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int32_t, float>(vn_flt + vm_flt); | 
|  | } else { | 
|  | // Format(instr, "vsub'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int32_t, float>(vn_flt - vm_flt); | 
|  | } | 
|  | } else if ((U == 1) && (opcode == 0x1b)) { | 
|  | // Format(instr, "vmul'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int32_t, float>(vn_flt * vm_flt); | 
|  | } else if ((U == 1) && (opcode == 0x1f)) { | 
|  | // Format(instr, "vdiv'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int32_t, float>(vn_flt / vm_flt); | 
|  | } else if ((U == 0) && (opcode == 0x1c)) { | 
|  | // Format(instr, "vceq'vsz 'vd, 'vn, 'vm"); | 
|  | res = (vn_flt == vm_flt) ? 0xffffffff : 0; | 
|  | } else if ((U == 1) && (opcode == 0x1c)) { | 
|  | if (instr->Bit(23) == 1) { | 
|  | // Format(instr, "vcgt'vsz 'vd, 'vn, 'vm"); | 
|  | res = (vn_flt > vm_flt) ? 0xffffffff : 0; | 
|  | } else { | 
|  | // Format(instr, "vcge'vsz 'vd, 'vn, 'vm"); | 
|  | res = (vn_flt >= vm_flt) ? 0xffffffff : 0; | 
|  | } | 
|  | } else if ((U == 0) && (opcode == 0x1e)) { | 
|  | if (instr->Bit(23) == 1) { | 
|  | // Format(instr, "vmin'vsz 'vd, 'vn, 'vm"); | 
|  | const float m = vminf(vn_flt, vm_flt); | 
|  | res = bit_cast<int32_t, float>(m); | 
|  | } else { | 
|  | // Format(instr, "vmax'vsz 'vd, 'vn, 'vm"); | 
|  | const float m = vmaxf(vn_flt, vm_flt); | 
|  | res = bit_cast<int32_t, float>(m); | 
|  | } | 
|  | } else if ((U == 0) && (opcode == 0x1f)) { | 
|  | if (instr->Bit(23) == 0) { | 
|  | // Format(instr, "vrecps'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int32_t, float>(2.0 - (vn_flt * vm_flt)); | 
|  | } else { | 
|  | // Format(instr, "vrsqrt'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int32_t, float>((3.0 - vn_flt * vm_flt) / 2.0); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | set_vregisters(vd, idx, res); | 
|  | } | 
|  | } else { | 
|  | // f64 case. | 
|  | for (int idx = 0; idx < 2; idx++) { | 
|  | const int64_t vn_val = get_vregisterd(vn, idx); | 
|  | const int64_t vm_val = get_vregisterd(vm, idx); | 
|  | const volatile double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
|  | const volatile double vm_dbl = bit_cast<double, int64_t>(vm_val); | 
|  | int64_t res = 0.0; | 
|  | if ((U == 0) && (opcode == 0x3)) { | 
|  | if (instr->Bit(23) == 0) { | 
|  | // Format(instr, "vand 'vd, 'vn, 'vm"); | 
|  | res = vn_val & vm_val; | 
|  | } else { | 
|  | // Format(instr, "vorr 'vd, 'vn, 'vm"); | 
|  | res = vn_val | vm_val; | 
|  | } | 
|  | } else if ((U == 1) && (opcode == 0x3)) { | 
|  | // Format(instr, "veor 'vd, 'vn, 'vm"); | 
|  | res = vn_val ^ vm_val; | 
|  | } else if ((U == 0) && (opcode == 0x10)) { | 
|  | // Format(instr, "vadd'vsz 'vd, 'vn, 'vm"); | 
|  | res = vn_val + vm_val; | 
|  | } else if ((U == 1) && (opcode == 0x10)) { | 
|  | // Format(instr, "vsub'vsz 'vd, 'vn, 'vm"); | 
|  | res = vn_val - vm_val; | 
|  | } else if ((U == 0) && (opcode == 0x1a)) { | 
|  | if (instr->Bit(23) == 0) { | 
|  | // Format(instr, "vadd'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int64_t, double>(vn_dbl + vm_dbl); | 
|  | } else { | 
|  | // Format(instr, "vsub'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int64_t, double>(vn_dbl - vm_dbl); | 
|  | } | 
|  | } else if ((U == 1) && (opcode == 0x1b)) { | 
|  | // Format(instr, "vmul'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int64_t, double>(vn_dbl * vm_dbl); | 
|  | } else if ((U == 1) && (opcode == 0x1f)) { | 
|  | // Format(instr, "vdiv'vsz 'vd, 'vn, 'vm"); | 
|  | res = bit_cast<int64_t, double>(vn_dbl / vm_dbl); | 
|  | } else if ((U == 0) && (opcode == 0x1c)) { | 
|  | // Format(instr, "vceq'vsz 'vd, 'vn, 'vm"); | 
|  | res = (vn_dbl == vm_dbl) ? 0xffffffffffffffffLL : 0; | 
|  | } else if ((U == 1) && (opcode == 0x1c)) { | 
|  | if (instr->Bit(23) == 1) { | 
|  | // Format(instr, "vcgt'vsz 'vd, 'vn, 'vm"); | 
|  | res = (vn_dbl > vm_dbl) ? 0xffffffffffffffffLL : 0; | 
|  | } else { | 
|  | // Format(instr, "vcge'vsz 'vd, 'vn, 'vm"); | 
|  | res = (vn_dbl >= vm_dbl) ? 0xffffffffffffffffLL : 0; | 
|  | } | 
|  | } else if ((U == 0) && (opcode == 0x1e)) { | 
|  | if (instr->Bit(23) == 1) { | 
|  | // Format(instr, "vmin'vsz 'vd, 'vn, 'vm"); | 
|  | const double m = vmind(vn_dbl, vm_dbl); | 
|  | res = bit_cast<int64_t, double>(m); | 
|  | } else { | 
|  | // Format(instr, "vmax'vsz 'vd, 'vn, 'vm"); | 
|  | const double m = vmaxd(vn_dbl, vm_dbl); | 
|  | res = bit_cast<int64_t, double>(m); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | set_vregisterd(vd, idx, res); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static float arm_reciprocal_sqrt_estimate(float a) { | 
|  | // From the ARM Architecture Reference Manual A2-87. | 
|  | if (isinf(a) || (fabs(a) >= exp2f(126))) | 
|  | return 0.0; | 
|  | else if (a == 0.0) | 
|  | return kPosInfinity; | 
|  | else if (isnan(a)) | 
|  | return a; | 
|  |  | 
|  | uint32_t a_bits = bit_cast<uint32_t, float>(a); | 
|  | uint64_t scaled; | 
|  | if (((a_bits >> 23) & 1) != 0) { | 
|  | // scaled = '0 01111111101' : operand<22:0> : Zeros(29) | 
|  | scaled = (static_cast<uint64_t>(0x3fd) << 52) | | 
|  | ((static_cast<uint64_t>(a_bits) & 0x7fffff) << 29); | 
|  | } else { | 
|  | // scaled = '0 01111111110' : operand<22:0> : Zeros(29) | 
|  | scaled = (static_cast<uint64_t>(0x3fe) << 52) | | 
|  | ((static_cast<uint64_t>(a_bits) & 0x7fffff) << 29); | 
|  | } | 
|  | // result_exp = (380 - UInt(operand<30:23>) DIV 2; | 
|  | int32_t result_exp = (380 - ((a_bits >> 23) & 0xff)) / 2; | 
|  |  | 
|  | double scaled_d = bit_cast<double, uint64_t>(scaled); | 
|  | ASSERT((scaled_d >= 0.25) && (scaled_d < 1.0)); | 
|  |  | 
|  | double r; | 
|  | if (scaled_d < 0.5) { | 
|  | // range 0.25 <= a < 0.5 | 
|  |  | 
|  | // a in units of 1/512 rounded down. | 
|  | int32_t q0 = static_cast<int32_t>(scaled_d * 512.0); | 
|  | // reciprocal root r. | 
|  | r = 1.0 / sqrt((static_cast<double>(q0) + 0.5) / 512.0); | 
|  | } else { | 
|  | // range 0.5 <= a < 1.0 | 
|  |  | 
|  | // a in units of 1/256 rounded down. | 
|  | int32_t q1 = static_cast<int32_t>(scaled_d * 256.0); | 
|  | // reciprocal root r. | 
|  | r = 1.0 / sqrt((static_cast<double>(q1) + 0.5) / 256.0); | 
|  | } | 
|  | // r in units of 1/256 rounded to nearest. | 
|  | int32_t s = static_cast<int>(256.0 * r + 0.5); | 
|  | double estimate = static_cast<double>(s) / 256.0; | 
|  | ASSERT((estimate >= 1.0) && (estimate <= (511.0 / 256.0))); | 
|  |  | 
|  | // result = 0 : result_exp<7:0> : estimate<51:29> | 
|  | int32_t result_bits = | 
|  | ((result_exp & 0xff) << 23) | | 
|  | ((bit_cast<uint64_t, double>(estimate) >> 29) & 0x7fffff); | 
|  | return bit_cast<float, int32_t>(result_bits); | 
|  | } | 
|  |  | 
|  | static float arm_recip_estimate(float a) { | 
|  | // From the ARM Architecture Reference Manual A2-85. | 
|  | if (isinf(a) || (fabs(a) >= exp2f(126))) | 
|  | return 0.0; | 
|  | else if (a == 0.0) | 
|  | return kPosInfinity; | 
|  | else if (isnan(a)) | 
|  | return a; | 
|  |  | 
|  | uint32_t a_bits = bit_cast<uint32_t, float>(a); | 
|  | // scaled = '0011 1111 1110' : a<22:0> : Zeros(29) | 
|  | uint64_t scaled = (static_cast<uint64_t>(0x3fe) << 52) | | 
|  | ((static_cast<uint64_t>(a_bits) & 0x7fffff) << 29); | 
|  | // result_exp = 253 - UInt(a<30:23>) | 
|  | int32_t result_exp = 253 - ((a_bits >> 23) & 0xff); | 
|  | ASSERT((result_exp >= 1) && (result_exp <= 252)); | 
|  |  | 
|  | double scaled_d = bit_cast<double, uint64_t>(scaled); | 
|  | ASSERT((scaled_d >= 0.5) && (scaled_d < 1.0)); | 
|  |  | 
|  | // a in units of 1/512 rounded down. | 
|  | int32_t q = static_cast<int32_t>(scaled_d * 512.0); | 
|  | // reciprocal r. | 
|  | double r = 1.0 / ((static_cast<double>(q) + 0.5) / 512.0); | 
|  | // r in units of 1/256 rounded to nearest. | 
|  | int32_t s = static_cast<int32_t>(256.0 * r + 0.5); | 
|  | double estimate = static_cast<double>(s) / 256.0; | 
|  | ASSERT((estimate >= 1.0) && (estimate <= (511.0 / 256.0))); | 
|  |  | 
|  | // result = sign : result_exp<7:0> : estimate<51:29> | 
|  | int32_t result_bits = | 
|  | (a_bits & 0x80000000) | ((result_exp & 0xff) << 23) | | 
|  | ((bit_cast<uint64_t, double>(estimate) >> 29) & 0x7fffff); | 
|  | return bit_cast<float, int32_t>(result_bits); | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeSIMDTwoReg(Instr* instr) { | 
|  | const int32_t Q = instr->Bit(30); | 
|  | const int32_t U = instr->Bit(29); | 
|  | const int32_t op = instr->Bits(12, 5); | 
|  | const int32_t sz = instr->Bits(22, 2); | 
|  | const VRegister vd = instr->VdField(); | 
|  | const VRegister vn = instr->VnField(); | 
|  |  | 
|  | if (Q != 1) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((U == 1) && (op == 5)) { | 
|  | // Format(instr, "vnot 'vd, 'vn"); | 
|  | for (int i = 0; i < 2; i++) { | 
|  | set_vregisterd(vd, i, ~get_vregisterd(vn, i)); | 
|  | } | 
|  | } else if ((U == 0) && (op == 0xf)) { | 
|  | if (sz == 2) { | 
|  | // Format(instr, "vabss 'vd, 'vn"); | 
|  | for (int i = 0; i < 4; i++) { | 
|  | const int32_t vn_val = get_vregisters(vn, i); | 
|  | const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
|  | set_vregisters(vd, i, bit_cast<int32_t, float>(fabsf(vn_flt))); | 
|  | } | 
|  | } else if (sz == 3) { | 
|  | // Format(instr, "vabsd 'vd, 'vn"); | 
|  | for (int i = 0; i < 2; i++) { | 
|  | const int64_t vn_val = get_vregisterd(vn, i); | 
|  | const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
|  | set_vregisterd(vd, i, bit_cast<int64_t, double>(fabs(vn_dbl))); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else if ((U == 1) && (op == 0xf)) { | 
|  | if (sz == 2) { | 
|  | // Format(instr, "vnegs 'vd, 'vn"); | 
|  | for (int i = 0; i < 4; i++) { | 
|  | const int32_t vn_val = get_vregisters(vn, i); | 
|  | const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
|  | set_vregisters(vd, i, bit_cast<int32_t, float>(-vn_flt)); | 
|  | } | 
|  | } else if (sz == 3) { | 
|  | // Format(instr, "vnegd 'vd, 'vn"); | 
|  | for (int i = 0; i < 2; i++) { | 
|  | const int64_t vn_val = get_vregisterd(vn, i); | 
|  | const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
|  | set_vregisterd(vd, i, bit_cast<int64_t, double>(-vn_dbl)); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else if ((U == 1) && (op == 0x1f)) { | 
|  | if (sz == 2) { | 
|  | // Format(instr, "vsqrts 'vd, 'vn"); | 
|  | for (int i = 0; i < 4; i++) { | 
|  | const int32_t vn_val = get_vregisters(vn, i); | 
|  | const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
|  | set_vregisters(vd, i, bit_cast<int32_t, float>(sqrtf(vn_flt))); | 
|  | } | 
|  | } else if (sz == 3) { | 
|  | // Format(instr, "vsqrtd 'vd, 'vn"); | 
|  | for (int i = 0; i < 2; i++) { | 
|  | const int64_t vn_val = get_vregisterd(vn, i); | 
|  | const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
|  | set_vregisterd(vd, i, bit_cast<int64_t, double>(sqrt(vn_dbl))); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else if ((U == 0) && (op == 0x1d)) { | 
|  | if (sz != 2) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | // Format(instr, "vrecpes 'vd, 'vn"); | 
|  | for (int i = 0; i < 4; i++) { | 
|  | const int32_t vn_val = get_vregisters(vn, i); | 
|  | const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
|  | const float re = arm_recip_estimate(vn_flt); | 
|  | set_vregisters(vd, i, bit_cast<int32_t, float>(re)); | 
|  | } | 
|  | } else if ((U == 1) && (op == 0x1d)) { | 
|  | if (sz != 2) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | // Format(instr, "vrsqrtes 'vd, 'vn"); | 
|  | for (int i = 0; i < 4; i++) { | 
|  | const int32_t vn_val = get_vregisters(vn, i); | 
|  | const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
|  | const float re = arm_reciprocal_sqrt_estimate(vn_flt); | 
|  | set_vregisters(vd, i, bit_cast<int32_t, float>(re)); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeDPSimd1(Instr* instr) { | 
|  | if (instr->IsSIMDCopyOp()) { | 
|  | DecodeSIMDCopy(instr); | 
|  | } else if (instr->IsSIMDThreeSameOp()) { | 
|  | DecodeSIMDThreeSame(instr); | 
|  | } else if (instr->IsSIMDTwoRegOp()) { | 
|  | DecodeSIMDTwoReg(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeFPImm(Instr* instr) { | 
|  | if ((instr->Bit(31) != 0) || (instr->Bit(29) != 0) || (instr->Bit(23) != 0) || | 
|  | (instr->Bits(5, 5) != 0)) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | if (instr->Bit(22) == 1) { | 
|  | // Double. | 
|  | // Format(instr, "fmovd 'vd, #'immd"); | 
|  | const VRegister vd = instr->VdField(); | 
|  | const int64_t immd = Instr::VFPExpandImm(instr->Imm8Field()); | 
|  | set_vregisterd(vd, 0, immd); | 
|  | set_vregisterd(vd, 1, 0); | 
|  | } else { | 
|  | // Single. | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeFPIntCvt(Instr* instr) { | 
|  | const VRegister vd = instr->VdField(); | 
|  | const VRegister vn = instr->VnField(); | 
|  | const Register rd = instr->RdField(); | 
|  | const Register rn = instr->RnField(); | 
|  |  | 
|  | if (instr->Bit(29) != 0) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((instr->SFField() == 0) && (instr->Bits(22, 2) == 0)) { | 
|  | if (instr->Bits(16, 5) == 6) { | 
|  | // Format(instr, "fmovrs'sf 'rd, 'vn"); | 
|  | const int32_t vn_val = get_vregisters(vn, 0); | 
|  | set_wregister(rd, vn_val, R31IsZR); | 
|  | } else if (instr->Bits(16, 5) == 7) { | 
|  | // Format(instr, "fmovsr'sf 'vd, 'rn"); | 
|  | const int32_t rn_val = get_wregister(rn, R31IsZR); | 
|  | set_vregisters(vd, 0, rn_val); | 
|  | set_vregisters(vd, 1, 0); | 
|  | set_vregisters(vd, 2, 0); | 
|  | set_vregisters(vd, 3, 0); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else if (instr->Bits(22, 2) == 1) { | 
|  | if (instr->Bits(16, 5) == 2) { | 
|  | // Format(instr, "scvtfd'sf 'vd, 'rn"); | 
|  | const int64_t rn_val64 = get_register(rn, instr->RnMode()); | 
|  | const int32_t rn_val32 = get_wregister(rn, instr->RnMode()); | 
|  | const double vn_dbl = (instr->SFField() == 1) | 
|  | ? static_cast<double>(rn_val64) | 
|  | : static_cast<double>(rn_val32); | 
|  | set_vregisterd(vd, 0, bit_cast<int64_t, double>(vn_dbl)); | 
|  | set_vregisterd(vd, 1, 0); | 
|  | } else if (instr->Bits(16, 5) == 6) { | 
|  | // Format(instr, "fmovrd'sf 'rd, 'vn"); | 
|  | const int64_t vn_val = get_vregisterd(vn, 0); | 
|  | set_register(instr, rd, vn_val, R31IsZR); | 
|  | } else if (instr->Bits(16, 5) == 7) { | 
|  | // Format(instr, "fmovdr'sf 'vd, 'rn"); | 
|  | const int64_t rn_val = get_register(rn, R31IsZR); | 
|  | set_vregisterd(vd, 0, rn_val); | 
|  | set_vregisterd(vd, 1, 0); | 
|  | } else if ((instr->Bits(16, 5) == 8) || (instr->Bits(16, 5) == 16) || | 
|  | (instr->Bits(16, 5) == 24)) { | 
|  | const intptr_t max = instr->Bit(31) == 1 ? INT64_MAX : INT32_MAX; | 
|  | const intptr_t min = instr->Bit(31) == 1 ? INT64_MIN : INT32_MIN; | 
|  | double vn_val = bit_cast<double, int64_t>(get_vregisterd(vn, 0)); | 
|  | switch (instr->Bits(16, 5)) { | 
|  | case 8: | 
|  | // Format(instr, "fcvtps'sf 'rd, 'vn"); | 
|  | vn_val = ceil(vn_val); | 
|  | break; | 
|  | case 16: | 
|  | // Format(instr, "fcvtms'sf 'rd, 'vn"); | 
|  | vn_val = floor(vn_val); | 
|  | break; | 
|  | case 24: | 
|  | // Format(instr, "fcvtzs'sf 'rd, 'vn"); | 
|  | break; | 
|  | } | 
|  | int64_t result; | 
|  | if (vn_val >= static_cast<double>(max)) { | 
|  | result = max; | 
|  | } else if (vn_val <= static_cast<double>(min)) { | 
|  | result = min; | 
|  | } else { | 
|  | result = static_cast<int64_t>(vn_val); | 
|  | } | 
|  | if (instr->Bit(31) == 1) { | 
|  | set_register(instr, rd, result, instr->RdMode()); | 
|  | } else { | 
|  | set_register(instr, rd, result & 0xffffffffll, instr->RdMode()); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeFPOneSource(Instr* instr) { | 
|  | const int opc = instr->Bits(15, 6); | 
|  | const VRegister vd = instr->VdField(); | 
|  | const VRegister vn = instr->VnField(); | 
|  | const int64_t vn_val = get_vregisterd(vn, 0); | 
|  | const int32_t vn_val32 = vn_val & kWRegMask; | 
|  | const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
|  | const float vn_flt = bit_cast<float, int32_t>(vn_val32); | 
|  |  | 
|  | if ((opc != 5) && (instr->Bit(22) != 1)) { | 
|  | // Source is interpreted as single-precision only if we're doing a | 
|  | // conversion from single -> double. | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int64_t res_val = 0; | 
|  | switch (opc) { | 
|  | case 0: | 
|  | // Format("fmovdd 'vd, 'vn"); | 
|  | res_val = get_vregisterd(vn, 0); | 
|  | break; | 
|  | case 1: | 
|  | // Format("fabsd 'vd, 'vn"); | 
|  | res_val = bit_cast<int64_t, double>(fabs(vn_dbl)); | 
|  | break; | 
|  | case 2: | 
|  | // Format("fnegd 'vd, 'vn"); | 
|  | res_val = bit_cast<int64_t, double>(-vn_dbl); | 
|  | break; | 
|  | case 3: | 
|  | // Format("fsqrtd 'vd, 'vn"); | 
|  | res_val = bit_cast<int64_t, double>(sqrt(vn_dbl)); | 
|  | break; | 
|  | case 4: { | 
|  | // Format(instr, "fcvtsd 'vd, 'vn"); | 
|  | const uint32_t val = | 
|  | bit_cast<uint32_t, float>(static_cast<float>(vn_dbl)); | 
|  | res_val = static_cast<int64_t>(val); | 
|  | break; | 
|  | } | 
|  | case 5: | 
|  | // Format(instr, "fcvtds 'vd, 'vn"); | 
|  | res_val = bit_cast<int64_t, double>(static_cast<double>(vn_flt)); | 
|  | break; | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_vregisterd(vd, 0, res_val); | 
|  | set_vregisterd(vd, 1, 0); | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeFPTwoSource(Instr* instr) { | 
|  | if (instr->Bits(22, 2) != 1) { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | const VRegister vd = instr->VdField(); | 
|  | const VRegister vn = instr->VnField(); | 
|  | const VRegister vm = instr->VmField(); | 
|  | const double vn_val = bit_cast<double, int64_t>(get_vregisterd(vn, 0)); | 
|  | const double vm_val = bit_cast<double, int64_t>(get_vregisterd(vm, 0)); | 
|  | const int opc = instr->Bits(12, 4); | 
|  | double result; | 
|  |  | 
|  | switch (opc) { | 
|  | case 0: | 
|  | // Format(instr, "fmuld 'vd, 'vn, 'vm"); | 
|  | result = vn_val * vm_val; | 
|  | break; | 
|  | case 1: | 
|  | // Format(instr, "fdivd 'vd, 'vn, 'vm"); | 
|  | result = vn_val / vm_val; | 
|  | break; | 
|  | case 2: | 
|  | // Format(instr, "faddd 'vd, 'vn, 'vm"); | 
|  | result = vn_val + vm_val; | 
|  | break; | 
|  | case 3: | 
|  | // Format(instr, "fsubd 'vd, 'vn, 'vm"); | 
|  | result = vn_val - vm_val; | 
|  | break; | 
|  | default: | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | set_vregisterd(vd, 0, bit_cast<int64_t, double>(result)); | 
|  | set_vregisterd(vd, 1, 0); | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeFPCompare(Instr* instr) { | 
|  | const VRegister vn = instr->VnField(); | 
|  | const VRegister vm = instr->VmField(); | 
|  | const double vn_val = bit_cast<double, int64_t>(get_vregisterd(vn, 0)); | 
|  | double vm_val; | 
|  |  | 
|  | if ((instr->Bit(22) == 1) && (instr->Bits(3, 2) == 0)) { | 
|  | // Format(instr, "fcmpd 'vn, 'vm"); | 
|  | vm_val = bit_cast<double, int64_t>(get_vregisterd(vm, 0)); | 
|  | } else if ((instr->Bit(22) == 1) && (instr->Bits(3, 2) == 1)) { | 
|  | if (instr->VmField() == V0) { | 
|  | // Format(instr, "fcmpd 'vn, #0.0"); | 
|  | vm_val = 0.0; | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | n_flag_ = false; | 
|  | z_flag_ = false; | 
|  | c_flag_ = false; | 
|  | v_flag_ = false; | 
|  |  | 
|  | if (isnan(vn_val) || isnan(vm_val)) { | 
|  | c_flag_ = true; | 
|  | v_flag_ = true; | 
|  | } else if (vn_val == vm_val) { | 
|  | z_flag_ = true; | 
|  | c_flag_ = true; | 
|  | } else if (vn_val < vm_val) { | 
|  | n_flag_ = true; | 
|  | } else { | 
|  | c_flag_ = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeFP(Instr* instr) { | 
|  | if (instr->IsFPImmOp()) { | 
|  | DecodeFPImm(instr); | 
|  | } else if (instr->IsFPIntCvtOp()) { | 
|  | DecodeFPIntCvt(instr); | 
|  | } else if (instr->IsFPOneSourceOp()) { | 
|  | DecodeFPOneSource(instr); | 
|  | } else if (instr->IsFPTwoSourceOp()) { | 
|  | DecodeFPTwoSource(instr); | 
|  | } else if (instr->IsFPCompareOp()) { | 
|  | DecodeFPCompare(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::DecodeDPSimd2(Instr* instr) { | 
|  | if (instr->IsFPOp()) { | 
|  | DecodeFP(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Executes the current instruction. | 
|  | DART_FORCE_INLINE | 
|  | void Simulator::InstructionDecodeImpl(Instr* instr) { | 
|  | pc_modified_ = false; | 
|  |  | 
|  | if (instr->IsLoadStoreOp()) { | 
|  | DecodeLoadStore(instr); | 
|  | } else if (instr->IsDPImmediateOp()) { | 
|  | DecodeDPImmediate(instr); | 
|  | } else if (instr->IsCompareBranchOp()) { | 
|  | DecodeCompareBranch(instr); | 
|  | } else if (instr->IsDPRegisterOp()) { | 
|  | DecodeDPRegister(instr); | 
|  | } else if (instr->IsDPSimd1Op()) { | 
|  | DecodeDPSimd1(instr); | 
|  | } else if (instr->IsDPSimd2Op()) { | 
|  | DecodeDPSimd2(instr); | 
|  | } else { | 
|  | UnimplementedInstruction(instr); | 
|  | } | 
|  |  | 
|  | if (!pc_modified_) { | 
|  | set_pc(reinterpret_cast<int64_t>(instr) + Instr::kInstrSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::InstructionDecode(Instr* instr) { | 
|  | if (IsTracingExecution()) { | 
|  | THR_Print("%" Pu64 " ", icount_); | 
|  | const uword start = reinterpret_cast<uword>(instr); | 
|  | const uword end = start + Instr::kInstrSize; | 
|  | if (FLAG_support_disassembler) { | 
|  | Disassembler::Disassemble(start, end); | 
|  | } else { | 
|  | THR_Print("Disassembler not supported in this mode.\n"); | 
|  | } | 
|  | } | 
|  | InstructionDecodeImpl(instr); | 
|  | } | 
|  |  | 
|  | void Simulator::Execute() { | 
|  | if (LIKELY(FLAG_stop_sim_at == ULLONG_MAX && | 
|  | FLAG_trace_sim_after == ULLONG_MAX)) { | 
|  | ExecuteNoTrace(); | 
|  | } else { | 
|  | ExecuteTrace(); | 
|  | } | 
|  |  | 
|  | // We can't instrument the runtime. | 
|  | memory_.FlushAll(); | 
|  | } | 
|  |  | 
|  | void Simulator::ExecuteNoTrace() { | 
|  | // Get the PC to simulate. Cannot use the accessor here as we need the | 
|  | // raw PC value and not the one used as input to arithmetic instructions. | 
|  | uword program_counter = get_pc(); | 
|  |  | 
|  | // Fast version of the dispatch loop without checking whether the simulator | 
|  | // should be stopping at a particular executed instruction. | 
|  | while (program_counter != kEndSimulatingPC) { | 
|  | Instr* instr = reinterpret_cast<Instr*>(program_counter); | 
|  | icount_++; | 
|  | InstructionDecodeImpl(instr); | 
|  | program_counter = get_pc(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Simulator::ExecuteTrace() { | 
|  | // Get the PC to simulate. Cannot use the accessor here as we need the | 
|  | // raw PC value and not the one used as input to arithmetic instructions. | 
|  | uword program_counter = get_pc(); | 
|  |  | 
|  | // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when | 
|  | // we reach the particular instruction count or address. | 
|  | while (program_counter != kEndSimulatingPC) { | 
|  | Instr* instr = reinterpret_cast<Instr*>(program_counter); | 
|  | icount_++; | 
|  | if (icount_ == FLAG_stop_sim_at) { | 
|  | SimulatorDebugger dbg(this); | 
|  | dbg.Stop(instr, "Instruction count reached"); | 
|  | } else if (reinterpret_cast<uint64_t>(instr) == FLAG_stop_sim_at) { | 
|  | SimulatorDebugger dbg(this); | 
|  | dbg.Stop(instr, "Instruction address reached"); | 
|  | } else if (IsIllegalAddress(program_counter)) { | 
|  | HandleIllegalAccess(program_counter, instr); | 
|  | } else { | 
|  | InstructionDecode(instr); | 
|  | } | 
|  | program_counter = get_pc(); | 
|  | } | 
|  | } | 
|  |  | 
|  | int64_t Simulator::Call(int64_t entry, | 
|  | int64_t parameter0, | 
|  | int64_t parameter1, | 
|  | int64_t parameter2, | 
|  | int64_t parameter3, | 
|  | bool fp_return, | 
|  | bool fp_args) { | 
|  | // Save the SP register before the call so we can restore it. | 
|  | const intptr_t sp_before_call = get_register(R31, R31IsSP); | 
|  |  | 
|  | // Setup parameters. | 
|  | if (fp_args) { | 
|  | set_vregisterd(V0, 0, parameter0); | 
|  | set_vregisterd(V0, 1, 0); | 
|  | set_vregisterd(V1, 0, parameter1); | 
|  | set_vregisterd(V1, 1, 0); | 
|  | set_vregisterd(V2, 0, parameter2); | 
|  | set_vregisterd(V2, 1, 0); | 
|  | set_vregisterd(V3, 0, parameter3); | 
|  | set_vregisterd(V3, 1, 0); | 
|  | } else { | 
|  | set_register(nullptr, R0, parameter0); | 
|  | set_register(nullptr, R1, parameter1); | 
|  | set_register(nullptr, R2, parameter2); | 
|  | set_register(nullptr, R3, parameter3); | 
|  | } | 
|  |  | 
|  | // Make sure the activation frames are properly aligned. | 
|  | intptr_t stack_pointer = sp_before_call; | 
|  | if (OS::ActivationFrameAlignment() > 1) { | 
|  | stack_pointer = | 
|  | Utils::RoundDown(stack_pointer, OS::ActivationFrameAlignment()); | 
|  | } | 
|  | set_register(nullptr, R31, stack_pointer, R31IsSP); | 
|  |  | 
|  | // Prepare to execute the code at entry. | 
|  | set_pc(entry); | 
|  | // Put down marker for end of simulation. The simulator will stop simulation | 
|  | // when the PC reaches this value. By saving the "end simulation" value into | 
|  | // the LR the simulation stops when returning to this call point. | 
|  | set_register(nullptr, LR, kEndSimulatingPC); | 
|  |  | 
|  | // Remember the values of callee-saved registers, and set them up with a | 
|  | // known value so that we are able to check that they are preserved | 
|  | // properly across Dart execution. | 
|  | int64_t preserved_vals[kAbiPreservedCpuRegCount]; | 
|  | const double dicount = static_cast<double>(icount_); | 
|  | const int64_t callee_saved_value = bit_cast<int64_t, double>(dicount); | 
|  | for (int i = kAbiFirstPreservedCpuReg; i <= kAbiLastPreservedCpuReg; i++) { | 
|  | const Register r = static_cast<Register>(i); | 
|  | preserved_vals[i - kAbiFirstPreservedCpuReg] = get_register(r); | 
|  | set_register(nullptr, r, callee_saved_value); | 
|  | } | 
|  |  | 
|  | // Only the bottom half of the V registers must be preserved. | 
|  | int64_t preserved_dvals[kAbiPreservedFpuRegCount]; | 
|  | for (int i = kAbiFirstPreservedFpuReg; i <= kAbiLastPreservedFpuReg; i++) { | 
|  | const VRegister r = static_cast<VRegister>(i); | 
|  | preserved_dvals[i - kAbiFirstPreservedFpuReg] = get_vregisterd(r, 0); | 
|  | set_vregisterd(r, 0, callee_saved_value); | 
|  | set_vregisterd(r, 1, 0); | 
|  | } | 
|  |  | 
|  | // Start the simulation. | 
|  | Execute(); | 
|  |  | 
|  | // Check that the callee-saved registers have been preserved, | 
|  | // and restore them with the original value. | 
|  | for (int i = kAbiFirstPreservedCpuReg; i <= kAbiLastPreservedCpuReg; i++) { | 
|  | const Register r = static_cast<Register>(i); | 
|  | ASSERT(callee_saved_value == get_register(r)); | 
|  | set_register(nullptr, r, preserved_vals[i - kAbiFirstPreservedCpuReg]); | 
|  | } | 
|  |  | 
|  | for (int i = kAbiFirstPreservedFpuReg; i <= kAbiLastPreservedFpuReg; i++) { | 
|  | const VRegister r = static_cast<VRegister>(i); | 
|  | ASSERT(callee_saved_value == get_vregisterd(r, 0)); | 
|  | set_vregisterd(r, 0, preserved_dvals[i - kAbiFirstPreservedFpuReg]); | 
|  | set_vregisterd(r, 1, 0); | 
|  | } | 
|  |  | 
|  | // Restore the SP register and return R0. | 
|  | set_register(nullptr, R31, sp_before_call, R31IsSP); | 
|  | int64_t return_value; | 
|  | if (fp_return) { | 
|  | return_value = get_vregisterd(V0, 0); | 
|  | } else { | 
|  | return_value = get_register(R0); | 
|  | } | 
|  |  | 
|  | return return_value; | 
|  | } | 
|  |  | 
|  | void Simulator::JumpToFrame(uword pc, uword sp, uword fp, Thread* thread) { | 
|  | // Walk over all setjmp buffers (simulated --> C++ transitions) | 
|  | // and try to find the setjmp associated with the simulated stack pointer. | 
|  | SimulatorSetjmpBuffer* buf = last_setjmp_buffer(); | 
|  | while (buf->link() != nullptr && buf->link()->sp() <= sp) { | 
|  | buf = buf->link(); | 
|  | } | 
|  | ASSERT(buf != nullptr); | 
|  |  | 
|  | // The C++ caller has not cleaned up the stack memory of C++ frames. | 
|  | // Prepare for unwinding frames by destroying all the stack resources | 
|  | // in the previous C++ frames. | 
|  | StackResource::Unwind(thread); | 
|  |  | 
|  | // Keep the following code in sync with `StubCode::JumpToFrameStub()`. | 
|  |  | 
|  | // Unwind the C++ stack and continue simulation in the target frame. | 
|  | set_pc(static_cast<int64_t>(pc)); | 
|  | set_register(nullptr, SP, static_cast<int64_t>(sp)); | 
|  | set_register(nullptr, FP, static_cast<int64_t>(fp)); | 
|  | set_register(nullptr, THR, reinterpret_cast<int64_t>(thread)); | 
|  | set_register(nullptr, R31, thread->saved_stack_limit() - 4096); | 
|  | #if defined(DART_TARGET_OS_FUCHSIA) | 
|  | set_register(nullptr, R18, thread->saved_shadow_call_stack()); | 
|  | #endif | 
|  | // Set the tag. | 
|  | thread->set_vm_tag(VMTag::kDartTagId); | 
|  | // Clear top exit frame. | 
|  | thread->set_top_exit_frame_info(0); | 
|  | // Restore pool pointer. | 
|  | int64_t code = | 
|  | *reinterpret_cast<int64_t*>(fp + kPcMarkerSlotFromFp * kWordSize); | 
|  | int64_t pp = FLAG_precompiled_mode | 
|  | ? static_cast<int64_t>(thread->global_object_pool()) | 
|  | : *reinterpret_cast<int64_t*>( | 
|  | code + Code::object_pool_offset() - kHeapObjectTag); | 
|  | pp -= kHeapObjectTag;  // In the PP register, the pool pointer is untagged. | 
|  | set_register(nullptr, CODE_REG, code); | 
|  | set_register(nullptr, PP, pp); | 
|  | set_register( | 
|  | nullptr, HEAP_BITS, | 
|  | (thread->write_barrier_mask() << 32) | (thread->heap_base() >> 32)); | 
|  | set_register(nullptr, NULL_REG, static_cast<int64_t>(Object::null())); | 
|  | if (FLAG_precompiled_mode) { | 
|  | set_register(nullptr, DISPATCH_TABLE_REG, | 
|  | reinterpret_cast<int64_t>(thread->dispatch_table_array())); | 
|  | } | 
|  |  | 
|  | buf->Longjmp(); | 
|  | } | 
|  |  | 
|  | }  // namespace dart | 
|  |  | 
|  | #endif  // !defined(DART_INCLUDE_SIMULATOR) | 
|  |  | 
|  | #endif  // defined TARGET_ARCH_ARM64 |