blob: 6ca4430ebf569a99918714077052503e282eda30 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library tree_ir_builder;
import '../dart2jslib.dart' as dart2js;
import '../elements/elements.dart';
import '../cps_ir/cps_ir_nodes.dart' as cps_ir;
import '../util/util.dart' show CURRENT_ELEMENT_SPANNABLE;
import 'tree_ir_nodes.dart';
/**
* Builder translates from CPS-based IR to direct-style Tree.
*
* A call `Invoke(fun, cont, args)`, where cont is a singly-referenced
* non-exit continuation `Cont(v, body)` is translated into a direct-style call
* whose value is bound in the continuation body:
*
* `LetVal(v, Invoke(fun, args), body)`
*
* and the continuation definition is eliminated. A similar translation is
* applied to continuation invocations where the continuation is
* singly-referenced, though such invocations should not appear in optimized
* IR.
*
* A call `Invoke(fun, cont, args)`, where cont is multiply referenced, is
* translated into a call followed by a jump with an argument:
*
* `Jump L(Invoke(fun, args))`
*
* and the continuation is translated into a named block that takes an
* argument:
*
* `LetLabel(L, v, body)`
*
* Block arguments are later replaced with data flow during the Tree-to-Tree
* translation out of SSA. Jumps are eliminated during the Tree-to-Tree
* control-flow recognition.
*
* Otherwise, the output of Builder looks very much like the input. In
* particular, intermediate values and blocks used for local control flow are
* still all named.
*/
class Builder implements cps_ir.Visitor<Node> {
final dart2js.InternalErrorFunction internalError;
final Map<cps_ir.Primitive, Variable> primitive2variable =
<cps_ir.Primitive, Variable>{};
final Map<cps_ir.MutableVariable, Variable> mutable2variable =
<cps_ir.MutableVariable, Variable>{};
// Continuations with more than one use are replaced with Tree labels. This
// is the mapping from continuations to labels.
final Map<cps_ir.Continuation, Label> labels = <cps_ir.Continuation, Label>{};
ExecutableElement currentElement;
/// The 'this' Parameter for currentElement or the enclosing method.
cps_ir.Parameter thisParameter;
cps_ir.Continuation returnContinuation;
Builder parent;
Builder(this.internalError, [this.parent]);
Builder createInnerBuilder() {
return new Builder(internalError, this);
}
/// Variable used in [buildPhiAssignments] as a temporary when swapping
/// variables.
Variable phiTempVar;
Variable addMutableVariable(cps_ir.MutableVariable irVariable) {
assert(!mutable2variable.containsKey(irVariable));
Variable variable = new Variable(currentElement, irVariable.hint);
mutable2variable[irVariable] = variable;
return variable;
}
Variable getMutableVariable(cps_ir.MutableVariable mutableVariable) {
if (!mutable2variable.containsKey(mutableVariable)) {
return parent.getMutableVariable(mutableVariable)..isCaptured = true;
}
return mutable2variable[mutableVariable];
}
VariableUse getMutableVariableUse(
cps_ir.Reference<cps_ir.MutableVariable> reference) {
Variable variable = getMutableVariable(reference.definition);
return new VariableUse(variable);
}
/// Obtains the variable representing the given primitive. Returns null for
/// primitives that have no reference and do not need a variable.
Variable getVariable(cps_ir.Primitive primitive) {
return primitive2variable.putIfAbsent(primitive,
() => new Variable(currentElement, primitive.hint));
}
/// Obtains a reference to the tree Variable corresponding to the IR primitive
/// referred to by [reference].
/// This increments the reference count for the given variable, so the
/// returned expression must be used in the tree.
Expression getVariableUse(cps_ir.Reference<cps_ir.Primitive> reference) {
if (thisParameter != null && reference.definition == thisParameter) {
return new This();
}
return new VariableUse(getVariable(reference.definition));
}
Variable addFunctionParameter(cps_ir.Definition variable) {
if (variable is cps_ir.Parameter) {
return getVariable(variable);
} else {
return addMutableVariable(variable as cps_ir.MutableVariable)
..isCaptured = true;
}
}
FunctionDefinition buildFunction(cps_ir.FunctionDefinition node) {
currentElement = node.element;
if (parent != null) {
// Local function's 'this' refers to enclosing method's 'this'
thisParameter = parent.thisParameter;
} else {
thisParameter = node.thisParameter;
}
List<Variable> parameters =
node.parameters.map(addFunctionParameter).toList();
returnContinuation = node.returnContinuation;
phiTempVar = new Variable(node.element, null);
Statement body = visit(node.body);
return new FunctionDefinition(node.element, parameters, body);
}
/// Returns a list of variables corresponding to the arguments to a method
/// call or similar construct.
///
/// The `readCount` for these variables will be incremented.
///
/// The list will be typed as a list of [Expression] to allow inplace updates
/// on the list during the rewrite phases.
List<Expression> translateArguments(List<cps_ir.Reference> args) {
return new List<Expression>.generate(args.length,
(int index) => getVariableUse(args[index]),
growable: false);
}
Statement buildContinuationAssignment(
cps_ir.Parameter parameter,
Expression argument,
Statement buildRest()) {
Expression expr;
if (parameter.hasAtLeastOneUse) {
expr = new Assign(getVariable(parameter), argument);
} else {
expr = argument;
}
return new ExpressionStatement(expr, buildRest());
}
/// Simultaneously assigns each argument to the corresponding parameter,
/// then continues at the statement created by [buildRest].
Statement buildPhiAssignments(
List<cps_ir.Parameter> parameters,
List<Expression> arguments,
Statement buildRest()) {
assert(parameters.length == arguments.length);
// We want a parallel assignment to all parameters simultaneously.
// Since we do not have parallel assignments in dart_tree, we must linearize
// the assignments without attempting to read a previously-overwritten
// value. For example {x,y = y,x} cannot be linearized to {x = y; y = x},
// for this we must introduce a temporary variable: {t = x; x = y; y = t}.
// [rightHand] is the inverse of [arguments], that is, it maps variables
// to the assignments on which is occurs as the right-hand side.
Map<Variable, List<int>> rightHand = <Variable, List<int>>{};
for (int i = 0; i < parameters.length; i++) {
Variable param = getVariable(parameters[i]);
Expression arg = arguments[i];
if (arg is VariableUse) {
if (param == null || param == arg.variable) {
// No assignment necessary.
--arg.variable.readCount;
continue;
}
// v1 = v0
List<int> list = rightHand[arg.variable];
if (list == null) {
rightHand[arg.variable] = list = <int>[];
}
list.add(i);
} else {
// v1 = this;
}
}
Statement first, current;
void addAssignment(Variable dst, Expression src) {
if (first == null) {
first = current = Assign.makeStatement(dst, src);
} else {
current = current.next = Assign.makeStatement(dst, src);
}
}
List<Expression> assignmentSrc = new List<Expression>(parameters.length);
List<bool> done = new List<bool>.filled(parameters.length, false);
void visitAssignment(int i) {
if (done[i]) {
return;
}
Variable param = getVariable(parameters[i]);
Expression arg = arguments[i];
if (param == null || (arg is VariableUse && param == arg.variable)) {
return; // No assignment necessary.
}
if (assignmentSrc[i] != null) {
// Cycle found; store argument in a temporary variable.
// The temporary will then be used as right-hand side when the
// assignment gets added.
VariableUse source = assignmentSrc[i];
if (source.variable != phiTempVar) { // Only move to temporary once.
assignmentSrc[i] = new VariableUse(phiTempVar);
addAssignment(phiTempVar, arg);
}
return;
}
assignmentSrc[i] = arg;
List<int> paramUses = rightHand[param];
if (paramUses != null) {
for (int useIndex in paramUses) {
visitAssignment(useIndex);
}
}
addAssignment(param, assignmentSrc[i]);
done[i] = true;
}
for (int i = 0; i < parameters.length; i++) {
if (!done[i]) {
visitAssignment(i);
}
}
if (first == null) {
first = buildRest();
} else {
current.next = buildRest();
}
return first;
}
visit(cps_ir.Node node) => node.accept(this);
unexpectedNode(cps_ir.Node node) {
internalError(CURRENT_ELEMENT_SPANNABLE, 'Unexpected IR node: $node');
}
Statement visitSetField(cps_ir.SetField node) {
return new ExpressionStatement(
new SetField(getVariableUse(node.object),
node.field,
getVariableUse(node.value)),
visit(node.body));
}
Expression visitInterceptor(cps_ir.Interceptor node) {
return new Interceptor(getVariableUse(node.input), node.interceptedClasses);
}
Expression visitCreateInstance(cps_ir.CreateInstance node) {
return new CreateInstance(
node.classElement,
translateArguments(node.arguments),
translateArguments(node.typeInformation));
}
Expression visitGetField(cps_ir.GetField node) {
return new GetField(getVariableUse(node.object), node.field);
}
Expression visitCreateBox(cps_ir.CreateBox node) {
return new CreateBox();
}
visitCreateInvocationMirror(cps_ir.CreateInvocationMirror node) {
return new CreateInvocationMirror(
node.selector,
translateArguments(node.arguments));
}
// Executable definitions are not visited directly. They have 'build'
// functions as entry points.
visitFunctionDefinition(cps_ir.FunctionDefinition node) {
return unexpectedNode(node);
}
Statement visitLetPrim(cps_ir.LetPrim node) {
Variable variable = getVariable(node.primitive);
// Don't translate unused primitives.
if (variable == null) return visit(node.body);
Expression value = visit(node.primitive);
return Assign.makeStatement(variable, value, visit(node.body));
}
Statement visitLetCont(cps_ir.LetCont node) {
// Introduce labels for continuations that need them.
for (cps_ir.Continuation continuation in node.continuations) {
if (continuation.hasMultipleUses || continuation.isRecursive) {
labels[continuation] = new Label();
}
}
Statement body = visit(node.body);
// Continuations are bound at the same level, but they have to be
// translated as if nested. This is because the body can invoke any
// of them from anywhere, so it must be nested inside all of them.
//
// The continuation bodies are not always translated directly here because
// they may have been already translated:
// * For singly-used continuations, the continuation's body is
// translated at the site of the continuation invocation.
// * For recursive continuations, there is a single non-recursive
// invocation. The continuation's body is translated at the site
// of the non-recursive continuation invocation.
// See visitInvokeContinuation for the implementation.
Statement current = body;
for (cps_ir.Continuation continuation in node.continuations.reversed) {
Label label = labels[continuation];
if (label != null && !continuation.isRecursive) {
current =
new LabeledStatement(label, current, visit(continuation.body));
}
}
return current;
}
Statement visitLetHandler(cps_ir.LetHandler node) {
Statement tryBody = visit(node.body);
List<Variable> catchParameters =
node.handler.parameters.map(getVariable).toList();
Statement catchBody = visit(node.handler.body);
return new Try(tryBody, catchParameters, catchBody);
}
Statement visitInvokeStatic(cps_ir.InvokeStatic node) {
// Calls are translated to direct style.
List<Expression> arguments = translateArguments(node.arguments);
Expression invoke = new InvokeStatic(node.target, node.selector, arguments,
node.sourceInformation);
return continueWithExpression(node.continuation, invoke);
}
Statement visitInvokeMethod(cps_ir.InvokeMethod node) {
InvokeMethod invoke = new InvokeMethod(getVariableUse(node.receiver),
node.selector,
node.mask,
translateArguments(node.arguments));
invoke.receiverIsNotNull = node.receiverIsNotNull;
return continueWithExpression(node.continuation, invoke);
}
Statement visitInvokeMethodDirectly(cps_ir.InvokeMethodDirectly node) {
Expression receiver = getVariableUse(node.receiver);
List<Expression> arguments = translateArguments(node.arguments);
Expression invoke = new InvokeMethodDirectly(receiver, node.target,
node.selector, arguments);
return continueWithExpression(node.continuation, invoke);
}
Statement visitThrow(cps_ir.Throw node) {
Expression value = getVariableUse(node.value);
return new Throw(value);
}
Statement visitRethrow(cps_ir.Rethrow node) {
return new Rethrow();
}
Statement visitUnreachable(cps_ir.Unreachable node) {
return new Unreachable();
}
Expression visitNonTailThrow(cps_ir.NonTailThrow node) {
return unexpectedNode(node);
}
Statement continueWithExpression(cps_ir.Reference continuation,
Expression expression) {
cps_ir.Continuation cont = continuation.definition;
if (cont == returnContinuation) {
return new Return(expression);
} else {
assert(cont.parameters.length == 1);
Function nextBuilder = cont.hasExactlyOneUse ?
() => visit(cont.body) : () => new Break(labels[cont]);
return buildContinuationAssignment(cont.parameters.single, expression,
nextBuilder);
}
}
Statement visitLetMutable(cps_ir.LetMutable node) {
Variable variable = addMutableVariable(node.variable);
Expression value = getVariableUse(node.value);
Statement body = visit(node.body);
return Assign.makeStatement(variable, value, body);
}
Expression visitGetMutableVariable(cps_ir.GetMutableVariable node) {
return getMutableVariableUse(node.variable);
}
Statement visitSetMutableVariable(cps_ir.SetMutableVariable node) {
Variable variable = getMutableVariable(node.variable.definition);
Expression value = getVariableUse(node.value);
return Assign.makeStatement(variable, value, visit(node.body));
}
Statement visitTypeCast(cps_ir.TypeCast node) {
Expression value = getVariableUse(node.value);
List<Expression> typeArgs = translateArguments(node.typeArguments);
Expression expression =
new TypeOperator(value, node.type, typeArgs, isTypeTest: false);
return continueWithExpression(node.continuation, expression);
}
Expression visitTypeTest(cps_ir.TypeTest node) {
Expression value = getVariableUse(node.value);
List<Expression> typeArgs = translateArguments(node.typeArguments);
return new TypeOperator(value, node.type, typeArgs, isTypeTest: true);
}
Statement visitInvokeConstructor(cps_ir.InvokeConstructor node) {
List<Expression> arguments = translateArguments(node.arguments);
Expression invoke = new InvokeConstructor(
node.type,
node.target,
node.selector,
arguments);
return continueWithExpression(node.continuation, invoke);
}
Statement visitInvokeContinuation(cps_ir.InvokeContinuation node) {
// Invocations of the return continuation are translated to returns.
// Other continuation invocations are replaced with assignments of the
// arguments to formal parameter variables, followed by the body if
// the continuation is singly reference or a break if it is multiply
// referenced.
cps_ir.Continuation cont = node.continuation.definition;
if (cont == returnContinuation) {
assert(node.arguments.length == 1);
return new Return(getVariableUse(node.arguments.single));
} else {
List<Expression> arguments = translateArguments(node.arguments);
return buildPhiAssignments(cont.parameters, arguments,
() {
// Translate invocations of recursive and non-recursive
// continuations differently.
// * Non-recursive continuations
// - If there is one use, translate the continuation body
// inline at the invocation site.
// - If there are multiple uses, translate to Break.
// * Recursive continuations
// - There is a single non-recursive invocation. Translate
// the continuation body inline as a labeled loop at the
// invocation site.
// - Translate the recursive invocations to Continue.
if (cont.isRecursive) {
return node.isRecursive
? new Continue(labels[cont])
: new WhileTrue(labels[cont], visit(cont.body));
} else {
if (cont.hasExactlyOneUse) {
if (!node.isEscapingTry) {
return visit(cont.body);
}
labels[cont] = new Label();
}
return new Break(labels[cont]);
}
});
}
}
Statement visitBranch(cps_ir.Branch node) {
Expression condition = visit(node.condition);
Statement thenStatement, elseStatement;
cps_ir.Continuation cont = node.trueContinuation.definition;
assert(cont.parameters.isEmpty);
thenStatement =
cont.hasExactlyOneUse ? visit(cont.body) : new Break(labels[cont]);
cont = node.falseContinuation.definition;
assert(cont.parameters.isEmpty);
elseStatement =
cont.hasExactlyOneUse ? visit(cont.body) : new Break(labels[cont]);
return new If(condition, thenStatement, elseStatement);
}
Expression visitConstant(cps_ir.Constant node) {
return new Constant(node.value);
}
Expression visitLiteralList(cps_ir.LiteralList node) {
return new LiteralList(
node.type,
translateArguments(node.values));
}
Expression visitLiteralMap(cps_ir.LiteralMap node) {
return new LiteralMap(
node.type,
new List<LiteralMapEntry>.generate(node.entries.length, (int index) {
return new LiteralMapEntry(
getVariableUse(node.entries[index].key),
getVariableUse(node.entries[index].value));
})
);
}
FunctionDefinition makeSubFunction(cps_ir.FunctionDefinition function) {
return createInnerBuilder().buildFunction(function);
}
Expression visitCreateFunction(cps_ir.CreateFunction node) {
FunctionDefinition def = makeSubFunction(node.definition);
return new FunctionExpression(def);
}
visitParameter(cps_ir.Parameter node) {
// Continuation parameters are not visited (continuations themselves are
// not visited yet).
unexpectedNode(node);
}
visitContinuation(cps_ir.Continuation node) {
// Until continuations with multiple uses are supported, they are not
// visited.
unexpectedNode(node);
}
visitMutableVariable(cps_ir.MutableVariable node) {
// These occur as parameters or bound by LetMutable. They are not visited
// directly.
unexpectedNode(node);
}
Expression visitIsTrue(cps_ir.IsTrue node) {
return getVariableUse(node.value);
}
Expression visitReifyRuntimeType(cps_ir.ReifyRuntimeType node) {
return new ReifyRuntimeType(getVariableUse(node.value));
}
Expression visitReadTypeVariable(cps_ir.ReadTypeVariable node) {
return new ReadTypeVariable(node.variable, getVariableUse(node.target));
}
@override
Node visitTypeExpression(cps_ir.TypeExpression node) {
return new TypeExpression(
node.dartType,
node.arguments.map(getVariableUse).toList());
}
Expression visitGetStatic(cps_ir.GetStatic node) {
return new GetStatic(node.element, node.sourceInformation);
}
Statement visitGetLazyStatic(cps_ir.GetLazyStatic node) {
// In the tree IR, GetStatic handles lazy fields because tree
// expressions are allowed to have side effects.
GetStatic value = new GetStatic(node.element, node.sourceInformation);
return continueWithExpression(node.continuation, value);
}
Statement visitSetStatic(cps_ir.SetStatic node) {
SetStatic setStatic = new SetStatic(
node.element,
getVariableUse(node.value),
node.sourceInformation);
return new ExpressionStatement(setStatic, visit(node.body));
}
Expression visitApplyBuiltinOperator(cps_ir.ApplyBuiltinOperator node) {
if (node.operator == BuiltinOperator.IsFalsy) {
return new Not(getVariableUse(node.arguments.single));
}
return new ApplyBuiltinOperator(node.operator,
translateArguments(node.arguments));
}
Statement visitForeignCode(cps_ir.ForeignCode node) {
if (node.codeTemplate.isExpression) {
Expression foreignCode = new ForeignExpression(
node.codeTemplate,
node.type,
node.arguments.map(getVariableUse).toList(growable: false),
node.nativeBehavior,
node.dependency);
return continueWithExpression(node.continuation, foreignCode);
} else {
assert(node.continuation == null);
return new ForeignStatement(
node.codeTemplate,
node.type,
node.arguments.map(getVariableUse).toList(growable: false),
node.nativeBehavior,
node.dependency);
}
}
}