blob: 053736d90176bb261089f087ad9a36315d5919b2 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/globals.h" // NOLINT
#if defined(HOST_OS_LINUX)
#include "vm/os_thread.h"
#include <errno.h> // NOLINT
#include <stdio.h>
#include <sys/resource.h> // NOLINT
#include <sys/syscall.h> // NOLINT
#include <sys/time.h> // NOLINT
#include "platform/address_sanitizer.h"
#include "platform/assert.h"
#include "platform/safe_stack.h"
#include "platform/signal_blocker.h"
#include "platform/utils.h"
#include "vm/flags.h"
namespace dart {
DEFINE_FLAG(int,
worker_thread_priority,
kMinInt,
"The thread priority the VM should use for new worker threads.");
#define VALIDATE_PTHREAD_RESULT(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_buf[kBufferSize]; \
FATAL2("pthread error: %d (%s)", result, \
Utils::StrError(result, error_buf, kBufferSize)); \
}
// Variation of VALIDATE_PTHREAD_RESULT for named objects.
#if defined(PRODUCT)
#define VALIDATE_PTHREAD_RESULT_NAMED(result) VALIDATE_PTHREAD_RESULT(result)
#else
#define VALIDATE_PTHREAD_RESULT_NAMED(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_buf[kBufferSize]; \
FATAL3("[%s] pthread error: %d (%s)", name_, result, \
Utils::StrError(result, error_buf, kBufferSize)); \
}
#endif
#if defined(DEBUG)
#define ASSERT_PTHREAD_SUCCESS(result) VALIDATE_PTHREAD_RESULT(result)
#else
// NOTE: This (currently) expands to a no-op.
#define ASSERT_PTHREAD_SUCCESS(result) ASSERT(result == 0)
#endif
#ifdef DEBUG
#define RETURN_ON_PTHREAD_FAILURE(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_buf[kBufferSize]; \
fprintf(stderr, "%s:%d: pthread error: %d (%s)\n", __FILE__, __LINE__, \
result, Utils::StrError(result, error_buf, kBufferSize)); \
return result; \
}
#else
#define RETURN_ON_PTHREAD_FAILURE(result) \
if (result != 0) return result;
#endif
static void ComputeTimeSpecMicros(struct timespec* ts, int64_t micros) {
int64_t secs = micros / kMicrosecondsPerSecond;
int64_t nanos =
(micros - (secs * kMicrosecondsPerSecond)) * kNanosecondsPerMicrosecond;
int result = clock_gettime(CLOCK_MONOTONIC, ts);
ASSERT(result == 0);
ts->tv_sec += secs;
ts->tv_nsec += nanos;
if (ts->tv_nsec >= kNanosecondsPerSecond) {
ts->tv_sec += 1;
ts->tv_nsec -= kNanosecondsPerSecond;
}
}
class ThreadStartData {
public:
ThreadStartData(const char* name,
OSThread::ThreadStartFunction function,
uword parameter)
: name_(name), function_(function), parameter_(parameter) {}
const char* name() const { return name_; }
OSThread::ThreadStartFunction function() const { return function_; }
uword parameter() const { return parameter_; }
private:
const char* name_;
OSThread::ThreadStartFunction function_;
uword parameter_;
DISALLOW_COPY_AND_ASSIGN(ThreadStartData);
};
// TODO(bkonyi): remove this call once the prebuilt SDK is updated.
// Spawned threads inherit their spawner's signal mask. We sometimes spawn
// threads for running Dart code from a thread that is blocking SIGPROF.
// This function explicitly unblocks SIGPROF so the profiler continues to
// sample this thread.
static void UnblockSIGPROF() {
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGPROF);
int r = pthread_sigmask(SIG_UNBLOCK, &set, NULL);
USE(r);
ASSERT(r == 0);
ASSERT(!CHECK_IS_BLOCKING(SIGPROF));
}
// Dispatch to the thread start function provided by the caller. This trampoline
// is used to ensure that the thread is properly destroyed if the thread just
// exits.
static void* ThreadStart(void* data_ptr) {
if (FLAG_worker_thread_priority != kMinInt) {
if (setpriority(PRIO_PROCESS, syscall(__NR_gettid),
FLAG_worker_thread_priority) == -1) {
FATAL2("Setting thread priority to %d failed: errno = %d\n",
FLAG_worker_thread_priority, errno);
}
}
ThreadStartData* data = reinterpret_cast<ThreadStartData*>(data_ptr);
const char* name = data->name();
OSThread::ThreadStartFunction function = data->function();
uword parameter = data->parameter();
delete data;
// Set the thread name. There is 16 bytes limit on the name (including \0).
char truncated_name[16];
snprintf(truncated_name, ARRAY_SIZE(truncated_name), "%s", name);
pthread_setname_np(pthread_self(), truncated_name);
// Create new OSThread object and set as TLS for new thread.
OSThread* thread = OSThread::CreateOSThread();
if (thread != NULL) {
OSThread::SetCurrent(thread);
thread->set_name(name);
UnblockSIGPROF();
// Call the supplied thread start function handing it its parameters.
function(parameter);
}
return NULL;
}
int OSThread::Start(const char* name,
ThreadStartFunction function,
uword parameter) {
pthread_attr_t attr;
int result = pthread_attr_init(&attr);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_setstacksize(&attr, OSThread::GetMaxStackSize());
RETURN_ON_PTHREAD_FAILURE(result);
ThreadStartData* data = new ThreadStartData(name, function, parameter);
pthread_t tid;
result = pthread_create(&tid, &attr, ThreadStart, data);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_destroy(&attr);
RETURN_ON_PTHREAD_FAILURE(result);
return 0;
}
const ThreadId OSThread::kInvalidThreadId = static_cast<ThreadId>(0);
const ThreadJoinId OSThread::kInvalidThreadJoinId =
static_cast<ThreadJoinId>(0);
ThreadLocalKey OSThread::CreateThreadLocal(ThreadDestructor destructor) {
pthread_key_t key = kUnsetThreadLocalKey;
int result = pthread_key_create(&key, destructor);
VALIDATE_PTHREAD_RESULT(result);
ASSERT(key != kUnsetThreadLocalKey);
return key;
}
void OSThread::DeleteThreadLocal(ThreadLocalKey key) {
ASSERT(key != kUnsetThreadLocalKey);
int result = pthread_key_delete(key);
VALIDATE_PTHREAD_RESULT(result);
}
void OSThread::SetThreadLocal(ThreadLocalKey key, uword value) {
ASSERT(key != kUnsetThreadLocalKey);
int result = pthread_setspecific(key, reinterpret_cast<void*>(value));
VALIDATE_PTHREAD_RESULT(result);
}
intptr_t OSThread::GetMaxStackSize() {
const int kStackSize = (128 * kWordSize * KB);
return kStackSize;
}
ThreadId OSThread::GetCurrentThreadId() {
return pthread_self();
}
#ifdef SUPPORT_TIMELINE
ThreadId OSThread::GetCurrentThreadTraceId() {
return syscall(__NR_gettid);
}
#endif // PRODUCT
ThreadJoinId OSThread::GetCurrentThreadJoinId(OSThread* thread) {
ASSERT(thread != NULL);
// Make sure we're filling in the join id for the current thread.
ASSERT(thread->id() == GetCurrentThreadId());
// Make sure the join_id_ hasn't been set, yet.
DEBUG_ASSERT(thread->join_id_ == kInvalidThreadJoinId);
pthread_t id = pthread_self();
#if defined(DEBUG)
thread->join_id_ = id;
#endif
return id;
}
void OSThread::Join(ThreadJoinId id) {
int result = pthread_join(id, NULL);
ASSERT(result == 0);
}
intptr_t OSThread::ThreadIdToIntPtr(ThreadId id) {
ASSERT(sizeof(id) == sizeof(intptr_t));
return static_cast<intptr_t>(id);
}
ThreadId OSThread::ThreadIdFromIntPtr(intptr_t id) {
return static_cast<ThreadId>(id);
}
bool OSThread::Compare(ThreadId a, ThreadId b) {
return pthread_equal(a, b) != 0;
}
bool OSThread::GetCurrentStackBounds(uword* lower, uword* upper) {
pthread_attr_t attr;
// May fail on the main thread.
if (pthread_getattr_np(pthread_self(), &attr) != 0) {
return false;
}
void* base;
size_t size;
int error = pthread_attr_getstack(&attr, &base, &size);
pthread_attr_destroy(&attr);
if (error != 0) {
return false;
}
*lower = reinterpret_cast<uword>(base);
*upper = *lower + size;
return true;
}
#if defined(USING_SAFE_STACK)
NO_SANITIZE_ADDRESS
NO_SANITIZE_SAFE_STACK
uword OSThread::GetCurrentSafestackPointer() {
#error "SAFE_STACK is unsupported on this platform"
return 0;
}
NO_SANITIZE_ADDRESS
NO_SANITIZE_SAFE_STACK
void OSThread::SetCurrentSafestackPointer(uword ssp) {
#error "SAFE_STACK is unsupported on this platform"
}
#endif
Mutex::Mutex(NOT_IN_PRODUCT(const char* name))
#if !defined(PRODUCT)
: name_(name)
#endif
{
pthread_mutexattr_t attr;
int result = pthread_mutexattr_init(&attr);
VALIDATE_PTHREAD_RESULT_NAMED(result);
#if defined(DEBUG)
result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
VALIDATE_PTHREAD_RESULT_NAMED(result);
#endif // defined(DEBUG)
result = pthread_mutex_init(data_.mutex(), &attr);
// Verify that creating a pthread_mutex succeeded.
VALIDATE_PTHREAD_RESULT_NAMED(result);
result = pthread_mutexattr_destroy(&attr);
VALIDATE_PTHREAD_RESULT_NAMED(result);
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
}
Mutex::~Mutex() {
int result = pthread_mutex_destroy(data_.mutex());
// Verify that the pthread_mutex was destroyed.
VALIDATE_PTHREAD_RESULT_NAMED(result);
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
#endif // defined(DEBUG)
}
void Mutex::Lock() {
int result = pthread_mutex_lock(data_.mutex());
// Specifically check for dead lock to help debugging.
ASSERT(result != EDEADLK);
ASSERT_PTHREAD_SUCCESS(result); // Verify no other errors.
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
owner_ = OSThread::GetCurrentThreadId();
#endif // defined(DEBUG)
}
bool Mutex::TryLock() {
int result = pthread_mutex_trylock(data_.mutex());
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT_PTHREAD_SUCCESS(result); // Verify no other errors.
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
owner_ = OSThread::GetCurrentThreadId();
#endif // defined(DEBUG)
return true;
}
void Mutex::Unlock() {
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
int result = pthread_mutex_unlock(data_.mutex());
// Specifically check for wrong thread unlocking to aid debugging.
ASSERT(result != EPERM);
ASSERT_PTHREAD_SUCCESS(result); // Verify no other errors.
}
Monitor::Monitor() {
pthread_mutexattr_t mutex_attr;
int result = pthread_mutexattr_init(&mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
result = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_ERRORCHECK);
VALIDATE_PTHREAD_RESULT(result);
#endif // defined(DEBUG)
result = pthread_mutex_init(data_.mutex(), &mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_mutexattr_destroy(&mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
pthread_condattr_t cond_attr;
result = pthread_condattr_init(&cond_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_condattr_setclock(&cond_attr, CLOCK_MONOTONIC);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_cond_init(data_.cond(), &cond_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_condattr_destroy(&cond_attr);
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
}
Monitor::~Monitor() {
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
#endif // defined(DEBUG)
int result = pthread_mutex_destroy(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
result = pthread_cond_destroy(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
bool Monitor::TryEnter() {
int result = pthread_mutex_trylock(data_.mutex());
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT_PTHREAD_SUCCESS(result); // Verify no other errors.
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
owner_ = OSThread::GetCurrentThreadId();
#endif // defined(DEBUG)
return true;
}
void Monitor::Enter() {
int result = pthread_mutex_lock(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
owner_ = OSThread::GetCurrentThreadId();
#endif // defined(DEBUG)
}
void Monitor::Exit() {
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
int result = pthread_mutex_unlock(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
}
Monitor::WaitResult Monitor::Wait(int64_t millis) {
Monitor::WaitResult retval = WaitMicros(millis * kMicrosecondsPerMillisecond);
return retval;
}
Monitor::WaitResult Monitor::WaitMicros(int64_t micros) {
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
ThreadId saved_owner = owner_;
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
Monitor::WaitResult retval = kNotified;
if (micros == kNoTimeout) {
// Wait forever.
int result = pthread_cond_wait(data_.cond(), data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
} else {
struct timespec ts;
ComputeTimeSpecMicros(&ts, micros);
int result = pthread_cond_timedwait(data_.cond(), data_.mutex(), &ts);
ASSERT((result == 0) || (result == ETIMEDOUT));
if (result == ETIMEDOUT) {
retval = kTimedOut;
}
}
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
owner_ = OSThread::GetCurrentThreadId();
ASSERT(owner_ == saved_owner);
#endif // defined(DEBUG)
return retval;
}
void Monitor::Notify() {
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
int result = pthread_cond_signal(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
void Monitor::NotifyAll() {
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
int result = pthread_cond_broadcast(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
} // namespace dart
#endif // defined(HOST_OS_LINUX)