blob: 5f37ada5e7bc75d9b41d983786eb646cd82ba981 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include <utility>
#include "vm/isolate.h"
#include "include/dart_api.h"
#include "include/dart_native_api.h"
#include "platform/assert.h"
#include "platform/atomic.h"
#include "platform/text_buffer.h"
#include "vm/class_finalizer.h"
#include "vm/code_observers.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_api_message.h"
#include "vm/dart_api_state.h"
#include "vm/dart_entry.h"
#include "vm/debugger.h"
#include "vm/deopt_instructions.h"
#include "vm/dispatch_table.h"
#include "vm/flags.h"
#include "vm/heap/heap.h"
#include "vm/heap/pointer_block.h"
#include "vm/heap/safepoint.h"
#include "vm/heap/verifier.h"
#include "vm/image_snapshot.h"
#include "vm/interpreter.h"
#include "vm/isolate_reload.h"
#include "vm/kernel_isolate.h"
#include "vm/lockers.h"
#include "vm/log.h"
#include "vm/message_handler.h"
#include "vm/object.h"
#include "vm/object_id_ring.h"
#include "vm/object_store.h"
#include "vm/os_thread.h"
#include "vm/port.h"
#include "vm/profiler.h"
#include "vm/reusable_handles.h"
#include "vm/reverse_pc_lookup_cache.h"
#include "vm/service.h"
#include "vm/service_event.h"
#include "vm/service_isolate.h"
#include "vm/simulator.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#include "vm/tags.h"
#include "vm/thread_interrupter.h"
#include "vm/thread_registry.h"
#include "vm/timeline.h"
#include "vm/timeline_analysis.h"
#include "vm/visitor.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/assembler/assembler.h"
#include "vm/compiler/stub_code_compiler.h"
#endif
namespace dart {
DECLARE_FLAG(bool, print_metrics);
DECLARE_FLAG(bool, timing);
DECLARE_FLAG(bool, trace_service);
DECLARE_FLAG(bool, warn_on_pause_with_no_debugger);
// Reload flags.
DECLARE_FLAG(int, reload_every);
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
DECLARE_FLAG(bool, check_reloaded);
DECLARE_FLAG(bool, reload_every_back_off);
DECLARE_FLAG(bool, trace_reload);
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
static void DeterministicModeHandler(bool value) {
if (value) {
FLAG_background_compilation = false; // Timing dependent.
FLAG_concurrent_mark = false; // Timing dependent.
FLAG_concurrent_sweep = false; // Timing dependent.
FLAG_scavenger_tasks = 0; // Timing dependent.
FLAG_random_seed = 0x44617274; // "Dart"
}
}
DEFINE_FLAG_HANDLER(DeterministicModeHandler,
deterministic,
"Enable deterministic mode.");
int FLAG_sound_null_safety = kNullSafetyOptionUnspecified;
static void SoundNullSafetyHandler(bool value) {
FLAG_sound_null_safety =
value ? kNullSafetyOptionStrong : kNullSafetyOptionWeak;
}
DEFINE_FLAG_HANDLER(SoundNullSafetyHandler,
sound_null_safety,
"Respect the nullability of types at runtime.");
DEFINE_FLAG(bool,
disable_thread_pool_limit,
false,
"Disables the limit of the thread pool (simulates custom embedder "
"with custom message handler on unlimited number of threads).");
// Quick access to the locally defined thread() and isolate() methods.
#define T (thread())
#define I (isolate())
#if defined(DEBUG)
// Helper class to ensure that a live origin_id is never reused
// and assigned to an isolate.
class VerifyOriginId : public IsolateVisitor {
public:
explicit VerifyOriginId(Dart_Port id) : id_(id) {}
void VisitIsolate(Isolate* isolate) { ASSERT(isolate->origin_id() != id_); }
private:
Dart_Port id_;
DISALLOW_COPY_AND_ASSIGN(VerifyOriginId);
};
#endif
static std::unique_ptr<Message> SerializeMessage(Dart_Port dest_port,
const Instance& obj) {
if (ApiObjectConverter::CanConvert(obj.raw())) {
return Message::New(dest_port, obj.raw(), Message::kNormalPriority);
} else {
MessageWriter writer(false);
return writer.WriteMessage(obj, dest_port, Message::kNormalPriority);
}
}
static InstancePtr DeserializeMessage(Thread* thread, Message* message) {
if (message == NULL) {
return Instance::null();
}
Zone* zone = thread->zone();
if (message->IsRaw()) {
return Instance::RawCast(message->raw_obj());
} else {
MessageSnapshotReader reader(message, thread);
const Object& obj = Object::Handle(zone, reader.ReadObject());
ASSERT(!obj.IsError());
return Instance::RawCast(obj.raw());
}
}
void IsolateGroupSource::add_loaded_blob(
Zone* zone,
const ExternalTypedData& external_typed_data) {
Array& loaded_blobs = Array::Handle();
bool saved_external_typed_data = false;
if (loaded_blobs_ != nullptr) {
loaded_blobs = loaded_blobs_;
// Walk the array, and (if stuff was removed) compact and reuse the space.
// Note that the space has to be compacted as the ordering is important.
WeakProperty& weak_property = WeakProperty::Handle();
WeakProperty& weak_property_tmp = WeakProperty::Handle();
ExternalTypedData& existing_entry = ExternalTypedData::Handle(zone);
intptr_t next_entry_index = 0;
for (intptr_t i = 0; i < loaded_blobs.Length(); i++) {
weak_property ^= loaded_blobs.At(i);
if (weak_property.key() != ExternalTypedData::null()) {
if (i != next_entry_index) {
existing_entry = ExternalTypedData::RawCast(weak_property.key());
weak_property_tmp ^= loaded_blobs.At(next_entry_index);
weak_property_tmp.set_key(existing_entry);
}
next_entry_index++;
}
}
if (next_entry_index < loaded_blobs.Length()) {
// There's now space to re-use.
weak_property ^= loaded_blobs.At(next_entry_index);
weak_property.set_key(external_typed_data);
next_entry_index++;
saved_external_typed_data = true;
}
if (next_entry_index < loaded_blobs.Length()) {
ExternalTypedData& nullExternalTypedData =
ExternalTypedData::Handle(zone);
while (next_entry_index < loaded_blobs.Length()) {
// Null out any extra spaces.
weak_property ^= loaded_blobs.At(next_entry_index);
weak_property.set_key(nullExternalTypedData);
next_entry_index++;
}
}
}
if (!saved_external_typed_data) {
const WeakProperty& weak_property =
WeakProperty::Handle(WeakProperty::New(Heap::kOld));
weak_property.set_key(external_typed_data);
intptr_t length = loaded_blobs.IsNull() ? 0 : loaded_blobs.Length();
Array& new_array =
Array::Handle(Array::Grow(loaded_blobs, length + 1, Heap::kOld));
new_array.SetAt(length, weak_property);
loaded_blobs_ = new_array.raw();
}
num_blob_loads_++;
}
void IdleTimeHandler::InitializeWithHeap(Heap* heap) {
MutexLocker ml(&mutex_);
ASSERT(heap_ == nullptr && heap != nullptr);
heap_ = heap;
}
bool IdleTimeHandler::ShouldCheckForIdle() {
MutexLocker ml(&mutex_);
return idle_start_time_ > 0 && FLAG_idle_timeout_micros != 0 &&
disabled_counter_ == 0;
}
void IdleTimeHandler::UpdateStartIdleTime() {
MutexLocker ml(&mutex_);
if (disabled_counter_ == 0) {
idle_start_time_ = OS::GetCurrentMonotonicMicros();
}
}
bool IdleTimeHandler::ShouldNotifyIdle(int64_t* expiry) {
const int64_t now = OS::GetCurrentMonotonicMicros();
MutexLocker ml(&mutex_);
if (idle_start_time_ > 0 && disabled_counter_ == 0) {
const int64_t expiry_time = idle_start_time_ + FLAG_idle_timeout_micros;
if (expiry_time < now) {
idle_start_time_ = 0;
return true;
}
}
*expiry = now + FLAG_idle_timeout_micros;
return false;
}
void IdleTimeHandler::NotifyIdle(int64_t deadline) {
{
MutexLocker ml(&mutex_);
disabled_counter_++;
}
if (heap_ != nullptr) {
heap_->NotifyIdle(deadline);
}
{
MutexLocker ml(&mutex_);
disabled_counter_--;
idle_start_time_ = 0;
}
}
void IdleTimeHandler::NotifyIdleUsingDefaultDeadline() {
const int64_t now = OS::GetCurrentMonotonicMicros();
NotifyIdle(now + FLAG_idle_timeout_micros);
}
DisableIdleTimerScope::DisableIdleTimerScope(IdleTimeHandler* handler)
: handler_(handler) {
if (handler_ != nullptr) {
MutexLocker ml(&handler_->mutex_);
++handler_->disabled_counter_;
handler_->idle_start_time_ = 0;
}
}
DisableIdleTimerScope::~DisableIdleTimerScope() {
if (handler_ != nullptr) {
MutexLocker ml(&handler_->mutex_);
--handler_->disabled_counter_;
ASSERT(handler_->disabled_counter_ >= 0);
}
}
class FinalizeWeakPersistentHandlesVisitor : public HandleVisitor {
public:
explicit FinalizeWeakPersistentHandlesVisitor(IsolateGroup* isolate_group)
: HandleVisitor(Thread::Current()), isolate_group_(isolate_group) {}
void VisitHandle(uword addr) {
auto handle = reinterpret_cast<FinalizablePersistentHandle*>(addr);
handle->UpdateUnreachable(isolate_group_);
}
private:
IsolateGroup* isolate_group_;
DISALLOW_COPY_AND_ASSIGN(FinalizeWeakPersistentHandlesVisitor);
};
void MutatorThreadPool::OnEnterIdleLocked(MonitorLocker* ml) {
if (FLAG_idle_timeout_micros == 0) return;
// If the isolate has not started running application code yet, we ignore the
// idle time.
if (!isolate_group_->initial_spawn_successful()) return;
int64_t idle_expiry = 0;
// Obtain the idle time we should wait.
if (isolate_group_->idle_time_handler()->ShouldNotifyIdle(&idle_expiry)) {
MonitorLeaveScope mls(ml);
NotifyIdle();
return;
}
// Wait for the recommended idle timeout.
// We can be woken up because of a), b) or c)
const auto result =
ml->WaitMicros(idle_expiry - OS::GetCurrentMonotonicMicros());
// a) If there are new tasks we have to run them.
if (TasksWaitingToRunLocked()) return;
// b) If the thread pool is shutting down we're done.
if (ShuttingDownLocked()) return;
// c) We timed out and should run the idle notifier.
if (result == Monitor::kTimedOut &&
isolate_group_->idle_time_handler()->ShouldNotifyIdle(&idle_expiry)) {
MonitorLeaveScope mls(ml);
NotifyIdle();
return;
}
// There must've been another thread doing active work in the meantime.
// If that thread becomes idle and is the last idle thread it will run this
// code again.
}
void MutatorThreadPool::NotifyIdle() {
EnterIsolateGroupScope isolate_group_scope(isolate_group_);
isolate_group_->idle_time_handler()->NotifyIdleUsingDefaultDeadline();
}
IsolateGroup::IsolateGroup(std::shared_ptr<IsolateGroupSource> source,
void* embedder_data,
ObjectStore* object_store)
: embedder_data_(embedder_data),
thread_pool_(),
isolates_lock_(new SafepointRwLock()),
isolates_(),
start_time_micros_(OS::GetCurrentMonotonicMicros()),
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
last_reload_timestamp_(OS::GetCurrentTimeMillis()),
#endif
source_(std::move(source)),
api_state_(new ApiState()),
thread_registry_(new ThreadRegistry()),
safepoint_handler_(new SafepointHandler(this)),
shared_class_table_(new SharedClassTable()),
object_store_(object_store),
#if defined(DART_PRECOMPILED_RUNTIME)
class_table_(new ClassTable(shared_class_table_.get())),
#else
class_table_(nullptr),
#endif
store_buffer_(new StoreBuffer()),
heap_(nullptr),
saved_unlinked_calls_(Array::null()),
symbols_lock_(new SafepointRwLock()),
type_canonicalization_mutex_(
NOT_IN_PRODUCT("IsolateGroup::type_canonicalization_mutex_")),
type_arguments_canonicalization_mutex_(NOT_IN_PRODUCT(
"IsolateGroup::type_arguments_canonicalization_mutex_")),
active_mutators_monitor_(new Monitor()),
max_active_mutators_(Scavenger::MaxMutatorThreadCount()) {
const bool is_vm_isolate = Dart::VmIsolateNameEquals(source_->name);
if (!is_vm_isolate) {
thread_pool_.reset(
new MutatorThreadPool(this, FLAG_disable_thread_pool_limit
? 0
: Scavenger::MaxMutatorThreadCount()));
}
{
WriteRwLocker wl(ThreadState::Current(), isolate_groups_rwlock_);
id_ = isolate_group_random_->NextUInt64();
}
}
IsolateGroup::IsolateGroup(std::shared_ptr<IsolateGroupSource> source,
void* embedder_data)
: IsolateGroup(source,
embedder_data,
#if !defined(DART_PRECOMPILED_RUNTIME)
// in JIT, with --enable_isolate_groups keep object store
// on isolate, rather than on isolate group
FLAG_enable_isolate_groups ? nullptr :
#endif
new ObjectStore()) {
if (object_store() != nullptr) {
object_store()->InitStubs();
}
}
IsolateGroup::~IsolateGroup() {
// Finalize any weak persistent handles with a non-null referent.
FinalizeWeakPersistentHandlesVisitor visitor(this);
api_state()->VisitWeakHandlesUnlocked(&visitor);
// Ensure we destroy the heap before the other members.
heap_ = nullptr;
ASSERT(marking_stack_ == nullptr);
}
void IsolateGroup::RegisterIsolate(Isolate* isolate) {
SafepointWriteRwLocker ml(Thread::Current(), isolates_lock_.get());
RegisterIsolateLocked(isolate);
}
void IsolateGroup::RegisterIsolateLocked(Isolate* isolate) {
isolates_.Append(isolate);
isolate_count_++;
}
bool IsolateGroup::ContainsOnlyOneIsolate() {
SafepointWriteRwLocker ml(Thread::Current(), isolates_lock_.get());
return isolate_count_ == 0;
}
void IsolateGroup::RunWithLockedGroup(std::function<void()> fun) {
SafepointWriteRwLocker ml(Thread::Current(), isolates_lock_.get());
fun();
}
void IsolateGroup::UnregisterIsolate(Isolate* isolate) {
SafepointWriteRwLocker ml(Thread::Current(), isolates_lock_.get());
isolates_.Remove(isolate);
}
bool IsolateGroup::UnregisterIsolateDecrementCount(Isolate* isolate) {
SafepointWriteRwLocker ml(Thread::Current(), isolates_lock_.get());
isolate_count_--;
return isolate_count_ == 0;
}
void IsolateGroup::CreateHeap(bool is_vm_isolate,
bool is_service_or_kernel_isolate) {
Heap::Init(this,
is_vm_isolate
? 0 // New gen size 0; VM isolate should only allocate in old.
: FLAG_new_gen_semi_max_size * MBInWords,
(is_service_or_kernel_isolate ? kDefaultMaxOldGenHeapSize
: FLAG_old_gen_heap_size) *
MBInWords);
is_vm_isolate_heap_ = is_vm_isolate;
#define ISOLATE_METRIC_CONSTRUCTORS(type, variable, name, unit) \
metric_##variable##_.InitInstance(this, name, nullptr, Metric::unit);
ISOLATE_GROUP_METRIC_LIST(ISOLATE_METRIC_CONSTRUCTORS)
#undef ISOLATE_METRIC_CONSTRUCTORS
}
void IsolateGroup::Shutdown() {
// Ensure to join all threads before waiting for pending GC tasks (the thread
// pool can trigger idle notification, which can start new GC tasks).
//
// (The vm-isolate doesn't have a thread pool.)
if (!Dart::VmIsolateNameEquals(source()->name)) {
ASSERT(thread_pool_ != nullptr);
thread_pool_->Shutdown();
thread_pool_.reset();
}
// Wait for any pending GC tasks.
if (heap_ != nullptr) {
// Wait for any concurrent GC tasks to finish before shutting down.
// TODO(rmacnak): Interrupt tasks for faster shutdown.
PageSpace* old_space = heap_->old_space();
MonitorLocker ml(old_space->tasks_lock());
while (old_space->tasks() > 0) {
ml.Wait();
}
// Needs to happen before ~PageSpace so TLS and the thread registery are
// still valid.
old_space->AbandonMarkingForShutdown();
}
UnregisterIsolateGroup(this);
// If the creation of the isolate group (or the first isolate within the
// isolate group) failed, we do not invoke the cleanup callback (the
// embedder is responsible for handling the creation error).
if (initial_spawn_successful_) {
auto group_shutdown_callback = Isolate::GroupCleanupCallback();
if (group_shutdown_callback != nullptr) {
group_shutdown_callback(embedder_data());
}
}
delete this;
// After this isolate group has died we might need to notify a pending
// `Dart_Cleanup()` call.
{
MonitorLocker ml(Isolate::isolate_creation_monitor_);
if (!Isolate::creation_enabled_ &&
!IsolateGroup::HasApplicationIsolateGroups()) {
ml.Notify();
}
}
}
void IsolateGroup::set_heap(std::unique_ptr<Heap> heap) {
idle_time_handler_.InitializeWithHeap(heap.get());
heap_ = std::move(heap);
}
void IsolateGroup::set_saved_unlinked_calls(const Array& saved_unlinked_calls) {
saved_unlinked_calls_ = saved_unlinked_calls.raw();
}
Thread* IsolateGroup::ScheduleThreadLocked(MonitorLocker* ml,
Thread* existing_mutator_thread,
bool is_vm_isolate,
bool is_mutator,
bool bypass_safepoint) {
ASSERT(threads_lock()->IsOwnedByCurrentThread());
// Schedule the thread into the isolate group by associating
// a 'Thread' structure with it (this is done while we are holding
// the thread registry lock).
Thread* thread = nullptr;
OSThread* os_thread = OSThread::Current();
if (os_thread != nullptr) {
// If a safepoint operation is in progress wait for it
// to finish before scheduling this thread in.
while (!bypass_safepoint && safepoint_handler()->SafepointInProgress()) {
ml->Wait();
}
if (is_mutator) {
if (existing_mutator_thread == nullptr) {
// Allocate a new [Thread] structure for the mutator thread.
thread = thread_registry()->GetFreeThreadLocked(is_vm_isolate);
} else {
// Reuse the existing cached [Thread] structure for the mutator thread.,
// see comment in 'base_isolate.h'.
thread_registry()->AddToActiveListLocked(existing_mutator_thread);
thread = existing_mutator_thread;
}
} else {
thread = thread_registry()->GetFreeThreadLocked(is_vm_isolate);
}
// Now get a free Thread structure.
ASSERT(thread != nullptr);
thread->ResetHighWatermark();
// Set up other values and set the TLS value.
thread->isolate_ = nullptr;
thread->isolate_group_ = this;
thread->field_table_values_ = nullptr;
ASSERT(heap() != nullptr);
thread->heap_ = heap();
thread->set_os_thread(os_thread);
ASSERT(thread->execution_state() == Thread::kThreadInNative);
thread->set_execution_state(Thread::kThreadInVM);
thread->set_safepoint_state(
Thread::SetBypassSafepoints(bypass_safepoint, 0));
thread->set_vm_tag(VMTag::kVMTagId);
ASSERT(thread->no_safepoint_scope_depth() == 0);
os_thread->set_thread(thread);
Thread::SetCurrent(thread);
os_thread->EnableThreadInterrupts();
}
return thread;
}
void IsolateGroup::UnscheduleThreadLocked(MonitorLocker* ml,
Thread* thread,
bool is_mutator,
bool bypass_safepoint) {
thread->heap()->new_space()->AbandonRemainingTLAB(thread);
// Clear since GC will not visit the thread once it is unscheduled. Do this
// under the thread lock to prevent races with the GC visiting thread roots.
if (!is_mutator) {
thread->ClearReusableHandles();
}
// Disassociate the 'Thread' structure and unschedule the thread
// from this isolate group.
if (!is_mutator) {
ASSERT(thread->api_top_scope_ == nullptr);
ASSERT(thread->zone() == nullptr);
ASSERT(thread->sticky_error() == Error::null());
}
if (!bypass_safepoint) {
// Ensure that the thread reports itself as being at a safepoint.
thread->EnterSafepoint();
}
OSThread* os_thread = thread->os_thread();
ASSERT(os_thread != nullptr);
os_thread->DisableThreadInterrupts();
os_thread->set_thread(nullptr);
OSThread::SetCurrent(os_thread);
// Even if we unschedule the mutator thread, e.g. via calling
// `Dart_ExitIsolate()` inside a native, we might still have one or more Dart
// stacks active, which e.g. GC marker threads want to visit. So we don't
// clear out the isolate pointer if we are on the mutator thread.
//
// The [thread] structure for the mutator thread is kept alive in the thread
// registry even if the mutator thread is temporarily unscheduled.
//
// All other threads are not allowed to unschedule themselves and schedule
// again later on.
if (!is_mutator) {
ASSERT(thread->isolate_ == nullptr);
thread->isolate_group_ = nullptr;
}
thread->heap_ = nullptr;
thread->set_os_thread(nullptr);
thread->set_execution_state(Thread::kThreadInNative);
thread->set_safepoint_state(Thread::SetAtSafepoint(true, 0));
thread->clear_pending_functions();
ASSERT(thread->no_safepoint_scope_depth() == 0);
if (is_mutator) {
// The mutator thread structure stays alive and attached to the isolate as
// long as the isolate lives. So we simply remove the thread from the list
// of scheduled threads.
thread_registry()->RemoveFromActiveListLocked(thread);
} else {
// Return thread structure.
thread_registry()->ReturnThreadLocked(thread);
}
}
Thread* IsolateGroup::ScheduleThread(bool bypass_safepoint) {
// We are about to associate the thread with an isolate group and it would
// not be possible to correctly track no_safepoint_scope_depth for the
// thread in the constructor/destructor of MonitorLocker,
// so we create a MonitorLocker object which does not do any
// no_safepoint_scope_depth increments/decrements.
MonitorLocker ml(threads_lock(), false);
const bool is_vm_isolate = false;
// Schedule the thread into the isolate by associating
// a 'Thread' structure with it (this is done while we are holding
// the thread registry lock).
return ScheduleThreadLocked(&ml, /*existing_mutator_thread=*/nullptr,
is_vm_isolate, /*is_mutator=*/false,
bypass_safepoint);
}
void IsolateGroup::UnscheduleThread(Thread* thread,
bool is_mutator,
bool bypass_safepoint) {
// Disassociate the 'Thread' structure and unschedule the thread
// from this isolate group.
//
// We are disassociating the thread from an isolate and it would
// not be possible to correctly track no_safepoint_scope_depth for the
// thread in the constructor/destructor of MonitorLocker,
// so we create a MonitorLocker object which does not do any
// no_safepoint_scope_depth increments/decrements.
MonitorLocker ml(threads_lock(), false);
UnscheduleThreadLocked(&ml, thread, is_mutator, bypass_safepoint);
}
void IsolateGroup::IncreaseMutatorCount(Isolate* mutator) {
ASSERT(mutator->group() == this);
// If the mutator was temporarily blocked on a worker thread, we have to
// unblock the worker thread again.
Thread* mutator_thread = mutator->mutator_thread();
if (mutator_thread != nullptr && mutator_thread->top_exit_frame_info() != 0) {
thread_pool()->MarkCurrentWorkerAsUnBlocked();
}
// Prevent too many mutators from entering the isolate group to avoid
// pathological behavior where many threads are fighting for obtaining TLABs.
{
// NOTE: This is performance critical code, we should avoid monitors and use
// std::atomics in the fast case (where active_mutators <
// max_active_mutators) and only use montiors in the uncommon case.
MonitorLocker ml(active_mutators_monitor_.get());
ASSERT(active_mutators_ <= max_active_mutators_);
while (active_mutators_ == max_active_mutators_) {
waiting_mutators_++;
ml.Wait();
waiting_mutators_--;
}
active_mutators_++;
}
}
void IsolateGroup::DecreaseMutatorCount(Isolate* mutator) {
ASSERT(mutator->group() == this);
// If the mutator thread has an active stack and runs on our thread pool we
// will mark the worker as blocked, thereby possibly spawning a new worker for
// pending tasks (if there are any).
Thread* mutator_thread = mutator->mutator_thread();
ASSERT(mutator_thread != nullptr);
if (mutator_thread->top_exit_frame_info() != 0) {
thread_pool()->MarkCurrentWorkerAsBlocked();
}
{
// NOTE: This is performance critical code, we should avoid monitors and use
// std::atomics in the fast case (where active_mutators <
// max_active_mutators) and only use montiors in the uncommon case.
MonitorLocker ml(active_mutators_monitor_.get());
ASSERT(active_mutators_ <= max_active_mutators_);
active_mutators_--;
if (waiting_mutators_ > 0) {
ml.Notify();
}
}
}
#ifndef PRODUCT
void IsolateGroup::PrintJSON(JSONStream* stream, bool ref) {
JSONObject jsobj(stream);
PrintToJSONObject(&jsobj, ref);
}
void IsolateGroup::PrintToJSONObject(JSONObject* jsobj, bool ref) {
jsobj->AddProperty("type", (ref ? "@IsolateGroup" : "IsolateGroup"));
jsobj->AddServiceId(ISOLATE_GROUP_SERVICE_ID_FORMAT_STRING, id());
jsobj->AddProperty("name", source()->script_uri);
jsobj->AddPropertyF("number", "%" Pu64 "", id());
if (ref) {
return;
}
{
JSONArray isolate_array(jsobj, "isolates");
for (auto it = isolates_.Begin(); it != isolates_.End(); ++it) {
Isolate* isolate = *it;
isolate_array.AddValue(isolate, /*ref=*/true);
}
}
}
void IsolateGroup::PrintMemoryUsageJSON(JSONStream* stream) {
int64_t used = 0;
int64_t capacity = 0;
int64_t external_used = 0;
for (auto it = isolates_.Begin(); it != isolates_.End(); ++it) {
Isolate* isolate = *it;
used += isolate->heap()->TotalUsedInWords();
capacity += isolate->heap()->TotalCapacityInWords();
external_used += isolate->heap()->TotalExternalInWords();
}
JSONObject jsobj(stream);
// This is the same "MemoryUsage" that the isolate-specific "getMemoryUsage"
// rpc method returns.
// TODO(dartbug.com/36097): Once the heap moves from Isolate to IsolateGroup
// this code needs to be adjusted to not double-count memory.
jsobj.AddProperty("type", "MemoryUsage");
jsobj.AddProperty64("heapUsage", used * kWordSize);
jsobj.AddProperty64("heapCapacity", capacity * kWordSize);
jsobj.AddProperty64("externalUsage", external_used * kWordSize);
}
#endif
void IsolateGroup::ForEach(std::function<void(IsolateGroup*)> action) {
ReadRwLocker wl(Thread::Current(), isolate_groups_rwlock_);
for (auto isolate_group : *isolate_groups_) {
action(isolate_group);
}
}
void IsolateGroup::RunWithIsolateGroup(
uint64_t id,
std::function<void(IsolateGroup*)> action,
std::function<void()> not_found) {
ReadRwLocker wl(Thread::Current(), isolate_groups_rwlock_);
for (auto isolate_group : *isolate_groups_) {
if (isolate_group->id() == id) {
action(isolate_group);
return;
}
}
not_found();
}
void IsolateGroup::RegisterIsolateGroup(IsolateGroup* isolate_group) {
WriteRwLocker wl(ThreadState::Current(), isolate_groups_rwlock_);
isolate_groups_->Append(isolate_group);
}
void IsolateGroup::UnregisterIsolateGroup(IsolateGroup* isolate_group) {
WriteRwLocker wl(ThreadState::Current(), isolate_groups_rwlock_);
isolate_groups_->Remove(isolate_group);
}
bool IsolateGroup::HasApplicationIsolateGroups() {
ReadRwLocker wl(ThreadState::Current(), isolate_groups_rwlock_);
for (auto group : *isolate_groups_) {
if (!IsolateGroup::IsVMInternalIsolateGroup(group)) {
return true;
}
}
return false;
}
bool IsolateGroup::HasOnlyVMIsolateGroup() {
ReadRwLocker wl(ThreadState::Current(), isolate_groups_rwlock_);
for (auto group : *isolate_groups_) {
if (!Dart::VmIsolateNameEquals(group->source()->name)) {
return false;
}
}
return true;
}
void IsolateGroup::Init() {
ASSERT(isolate_groups_rwlock_ == nullptr);
isolate_groups_rwlock_ = new RwLock();
ASSERT(isolate_groups_ == nullptr);
isolate_groups_ = new IntrusiveDList<IsolateGroup>();
isolate_group_random_ = new Random();
}
void IsolateGroup::Cleanup() {
delete isolate_group_random_;
isolate_group_random_ = nullptr;
delete isolate_groups_rwlock_;
isolate_groups_rwlock_ = nullptr;
ASSERT(isolate_groups_->IsEmpty());
delete isolate_groups_;
isolate_groups_ = nullptr;
}
bool IsolateVisitor::IsVMInternalIsolate(Isolate* isolate) const {
return Isolate::IsVMInternalIsolate(isolate);
}
NoOOBMessageScope::NoOOBMessageScope(Thread* thread)
: ThreadStackResource(thread) {
thread->DeferOOBMessageInterrupts();
}
NoOOBMessageScope::~NoOOBMessageScope() {
thread()->RestoreOOBMessageInterrupts();
}
NoReloadScope::NoReloadScope(Isolate* isolate, Thread* thread)
: ThreadStackResource(thread), isolate_(isolate) {
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
ASSERT(isolate_ != NULL);
isolate_->no_reload_scope_depth_.fetch_add(1);
ASSERT(isolate_->no_reload_scope_depth_ >= 0);
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
}
NoReloadScope::~NoReloadScope() {
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
isolate_->no_reload_scope_depth_.fetch_sub(1);
ASSERT(isolate_->no_reload_scope_depth_ >= 0);
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
}
Bequest::~Bequest() {
IsolateGroup* isolate_group = IsolateGroup::Current();
CHECK_ISOLATE_GROUP(isolate_group);
NoSafepointScope no_safepoint_scope;
ApiState* state = isolate_group->api_state();
ASSERT(state != nullptr);
state->FreePersistentHandle(handle_);
}
void Isolate::RegisterClass(const Class& cls) {
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
if (group()->IsReloading()) {
reload_context()->RegisterClass(cls);
return;
}
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
if (cls.IsTopLevel()) {
class_table()->RegisterTopLevel(cls);
} else {
class_table()->Register(cls);
}
}
#if defined(DEBUG)
void Isolate::ValidateClassTable() {
class_table()->Validate();
}
#endif // DEBUG
void Isolate::RegisterStaticField(const Field& field) {
field_table()->Register(field);
}
void Isolate::RehashConstants() {
Thread* thread = Thread::Current();
StackZone stack_zone(thread);
Zone* zone = stack_zone.GetZone();
thread->heap()->ResetCanonicalHashTable();
Class& cls = Class::Handle(zone);
intptr_t top = class_table()->NumCids();
for (intptr_t cid = kInstanceCid; cid < top; cid++) {
if (!class_table()->IsValidIndex(cid) ||
!class_table()->HasValidClassAt(cid)) {
continue;
}
if ((cid == kTypeArgumentsCid) || IsStringClassId(cid)) {
// TypeArguments and Symbols have special tables for canonical objects
// that aren't based on address.
continue;
}
cls = class_table()->At(cid);
cls.RehashConstants(zone);
}
}
#if defined(DEBUG)
void Isolate::ValidateConstants() {
if (FLAG_precompiled_mode) {
// TODO(27003)
return;
}
if (HasAttemptedReload()) {
return;
}
// Verify that all canonical instances are correctly setup in the
// corresponding canonical tables.
BackgroundCompiler::Stop(this);
heap()->CollectAllGarbage();
Thread* thread = Thread::Current();
HeapIterationScope iteration(thread);
VerifyCanonicalVisitor check_canonical(thread);
iteration.IterateObjects(&check_canonical);
}
#endif // DEBUG
void Isolate::SendInternalLibMessage(LibMsgId msg_id, uint64_t capability) {
const Array& msg = Array::Handle(Array::New(3));
Object& element = Object::Handle();
element = Smi::New(Message::kIsolateLibOOBMsg);
msg.SetAt(0, element);
element = Smi::New(msg_id);
msg.SetAt(1, element);
element = Capability::New(capability);
msg.SetAt(2, element);
MessageWriter writer(false);
PortMap::PostMessage(
writer.WriteMessage(msg, main_port(), Message::kOOBPriority));
}
void Isolate::set_object_store(ObjectStore* object_store) {
ASSERT(cached_object_store_ == nullptr);
object_store_shared_ptr_.reset(object_store);
cached_object_store_ = object_store;
isolate_object_store_->set_object_store(object_store);
}
class IsolateMessageHandler : public MessageHandler {
public:
explicit IsolateMessageHandler(Isolate* isolate);
~IsolateMessageHandler();
const char* name() const;
void MessageNotify(Message::Priority priority);
MessageStatus HandleMessage(std::unique_ptr<Message> message);
#ifndef PRODUCT
void NotifyPauseOnStart();
void NotifyPauseOnExit();
#endif // !PRODUCT
#if defined(DEBUG)
// Check that it is safe to access this handler.
void CheckAccess();
#endif
bool IsCurrentIsolate() const;
virtual Isolate* isolate() const { return isolate_; }
private:
// A result of false indicates that the isolate should terminate the
// processing of further events.
ErrorPtr HandleLibMessage(const Array& message);
MessageStatus ProcessUnhandledException(const Error& result);
Isolate* isolate_;
};
IsolateMessageHandler::IsolateMessageHandler(Isolate* isolate)
: isolate_(isolate) {}
IsolateMessageHandler::~IsolateMessageHandler() {}
const char* IsolateMessageHandler::name() const {
return isolate_->name();
}
// Isolate library OOB messages are fixed sized arrays which have the
// following format:
// [ OOB dispatch, Isolate library dispatch, <message specific data> ]
ErrorPtr IsolateMessageHandler::HandleLibMessage(const Array& message) {
if (message.Length() < 2) return Error::null();
Zone* zone = T->zone();
const Object& type = Object::Handle(zone, message.At(1));
if (!type.IsSmi()) return Error::null();
const intptr_t msg_type = Smi::Cast(type).Value();
switch (msg_type) {
case Isolate::kPauseMsg: {
// [ OOB, kPauseMsg, pause capability, resume capability ]
if (message.Length() != 4) return Error::null();
Object& obj = Object::Handle(zone, message.At(2));
if (!I->VerifyPauseCapability(obj)) return Error::null();
obj = message.At(3);
if (!obj.IsCapability()) return Error::null();
if (I->AddResumeCapability(Capability::Cast(obj))) {
increment_paused();
}
break;
}
case Isolate::kResumeMsg: {
// [ OOB, kResumeMsg, pause capability, resume capability ]
if (message.Length() != 4) return Error::null();
Object& obj = Object::Handle(zone, message.At(2));
if (!I->VerifyPauseCapability(obj)) return Error::null();
obj = message.At(3);
if (!obj.IsCapability()) return Error::null();
if (I->RemoveResumeCapability(Capability::Cast(obj))) {
decrement_paused();
}
break;
}
case Isolate::kPingMsg: {
// [ OOB, kPingMsg, responsePort, priority, response ]
if (message.Length() != 5) return Error::null();
const Object& obj2 = Object::Handle(zone, message.At(2));
if (!obj2.IsSendPort()) return Error::null();
const SendPort& send_port = SendPort::Cast(obj2);
const Object& obj3 = Object::Handle(zone, message.At(3));
if (!obj3.IsSmi()) return Error::null();
const intptr_t priority = Smi::Cast(obj3).Value();
const Object& obj4 = Object::Handle(zone, message.At(4));
if (!obj4.IsInstance() && !obj4.IsNull()) return Error::null();
const Instance& response =
obj4.IsNull() ? Instance::null_instance() : Instance::Cast(obj4);
if (priority == Isolate::kImmediateAction) {
PortMap::PostMessage(SerializeMessage(send_port.Id(), response));
} else {
ASSERT((priority == Isolate::kBeforeNextEventAction) ||
(priority == Isolate::kAsEventAction));
// Update the message so that it will be handled immediately when it
// is picked up from the message queue the next time.
message.SetAt(
0, Smi::Handle(zone, Smi::New(Message::kDelayedIsolateLibOOBMsg)));
message.SetAt(3,
Smi::Handle(zone, Smi::New(Isolate::kImmediateAction)));
this->PostMessage(
SerializeMessage(Message::kIllegalPort, message),
priority == Isolate::kBeforeNextEventAction /* at_head */);
}
break;
}
case Isolate::kKillMsg:
case Isolate::kInternalKillMsg: {
// [ OOB, kKillMsg, terminate capability, priority ]
if (message.Length() != 4) return Error::null();
Object& obj = Object::Handle(zone, message.At(3));
if (!obj.IsSmi()) return Error::null();
const intptr_t priority = Smi::Cast(obj).Value();
if (priority == Isolate::kImmediateAction) {
obj = message.At(2);
if (I->VerifyTerminateCapability(obj)) {
// We will kill the current isolate by returning an UnwindError.
if (msg_type == Isolate::kKillMsg) {
const String& msg = String::Handle(
String::New("isolate terminated by Isolate.kill"));
const UnwindError& error =
UnwindError::Handle(UnwindError::New(msg));
error.set_is_user_initiated(true);
return error.raw();
} else if (msg_type == Isolate::kInternalKillMsg) {
const String& msg =
String::Handle(String::New("isolate terminated by vm"));
return UnwindError::New(msg);
} else {
UNREACHABLE();
}
} else {
return Error::null();
}
} else {
ASSERT((priority == Isolate::kBeforeNextEventAction) ||
(priority == Isolate::kAsEventAction));
// Update the message so that it will be handled immediately when it
// is picked up from the message queue the next time.
message.SetAt(
0, Smi::Handle(zone, Smi::New(Message::kDelayedIsolateLibOOBMsg)));
message.SetAt(3,
Smi::Handle(zone, Smi::New(Isolate::kImmediateAction)));
this->PostMessage(
SerializeMessage(Message::kIllegalPort, message),
priority == Isolate::kBeforeNextEventAction /* at_head */);
}
break;
}
case Isolate::kInterruptMsg: {
// [ OOB, kInterruptMsg, pause capability ]
if (message.Length() != 3) return Error::null();
Object& obj = Object::Handle(zone, message.At(2));
if (!I->VerifyPauseCapability(obj)) return Error::null();
#if !defined(PRODUCT)
// If we are already paused, don't pause again.
if (I->debugger()->PauseEvent() == NULL) {
return I->debugger()->PauseInterrupted();
}
#endif
break;
}
case Isolate::kLowMemoryMsg: {
I->heap()->NotifyLowMemory();
break;
}
case Isolate::kDrainServiceExtensionsMsg: {
#ifndef PRODUCT
Object& obj = Object::Handle(zone, message.At(2));
if (!obj.IsSmi()) return Error::null();
const intptr_t priority = Smi::Cast(obj).Value();
if (priority == Isolate::kImmediateAction) {
return I->InvokePendingServiceExtensionCalls();
} else {
ASSERT((priority == Isolate::kBeforeNextEventAction) ||
(priority == Isolate::kAsEventAction));
// Update the message so that it will be handled immediately when it
// is picked up from the message queue the next time.
message.SetAt(
0, Smi::Handle(zone, Smi::New(Message::kDelayedIsolateLibOOBMsg)));
message.SetAt(2,
Smi::Handle(zone, Smi::New(Isolate::kImmediateAction)));
this->PostMessage(
SerializeMessage(Message::kIllegalPort, message),
priority == Isolate::kBeforeNextEventAction /* at_head */);
}
#else
UNREACHABLE();
#endif // !PRODUCT
break;
}
case Isolate::kAddExitMsg:
case Isolate::kDelExitMsg:
case Isolate::kAddErrorMsg:
case Isolate::kDelErrorMsg: {
// [ OOB, msg, listener port ]
if (message.Length() < 3) return Error::null();
const Object& obj = Object::Handle(zone, message.At(2));
if (!obj.IsSendPort()) return Error::null();
const SendPort& listener = SendPort::Cast(obj);
switch (msg_type) {
case Isolate::kAddExitMsg: {
if (message.Length() != 4) return Error::null();
// [ OOB, msg, listener port, response object ]
const Object& response = Object::Handle(zone, message.At(3));
if (!response.IsInstance() && !response.IsNull()) {
return Error::null();
}
I->AddExitListener(listener, response.IsNull()
? Instance::null_instance()
: Instance::Cast(response));
break;
}
case Isolate::kDelExitMsg:
if (message.Length() != 3) return Error::null();
I->RemoveExitListener(listener);
break;
case Isolate::kAddErrorMsg:
if (message.Length() != 3) return Error::null();
I->AddErrorListener(listener);
break;
case Isolate::kDelErrorMsg:
if (message.Length() != 3) return Error::null();
I->RemoveErrorListener(listener);
break;
default:
UNREACHABLE();
}
break;
}
case Isolate::kErrorFatalMsg: {
// [ OOB, kErrorFatalMsg, terminate capability, val ]
if (message.Length() != 4) return Error::null();
// Check that the terminate capability has been passed correctly.
Object& obj = Object::Handle(zone, message.At(2));
if (!I->VerifyTerminateCapability(obj)) return Error::null();
// Get the value to be set.
obj = message.At(3);
if (!obj.IsBool()) return Error::null();
I->SetErrorsFatal(Bool::Cast(obj).value());
break;
}
#if defined(DEBUG)
// Malformed OOB messages are silently ignored in release builds.
default:
FATAL1("Unknown OOB message type: %" Pd "\n", msg_type);
break;
#endif // defined(DEBUG)
}
return Error::null();
}
void IsolateMessageHandler::MessageNotify(Message::Priority priority) {
if (priority >= Message::kOOBPriority) {
// Handle out of band messages even if the mutator thread is busy.
I->ScheduleInterrupts(Thread::kMessageInterrupt);
}
Dart_MessageNotifyCallback callback = I->message_notify_callback();
if (callback != nullptr) {
// Allow the embedder to handle message notification.
(*callback)(Api::CastIsolate(I));
}
}
bool Isolate::HasPendingMessages() {
return message_handler_->HasMessages() || message_handler_->HasOOBMessages();
}
MessageHandler::MessageStatus IsolateMessageHandler::HandleMessage(
std::unique_ptr<Message> message) {
ASSERT(IsCurrentIsolate());
Thread* thread = Thread::Current();
StackZone stack_zone(thread);
Zone* zone = stack_zone.GetZone();
HandleScope handle_scope(thread);
#if defined(SUPPORT_TIMELINE)
TimelineBeginEndScope tbes(
thread, Timeline::GetIsolateStream(),
message->IsOOB() ? "HandleOOBMessage" : "HandleMessage");
tbes.SetNumArguments(1);
tbes.CopyArgument(0, "isolateName", I->name());
#endif
// If the message is in band we lookup the handler to dispatch to. If the
// receive port was closed, we drop the message without deserializing it.
// Illegal port is a special case for artificially enqueued isolate library
// messages which are handled in C++ code below.
Object& msg_handler = Object::Handle(zone);
if (!message->IsOOB() && (message->dest_port() != Message::kIllegalPort)) {
msg_handler = DartLibraryCalls::LookupHandler(message->dest_port());
if (msg_handler.IsError()) {
return ProcessUnhandledException(Error::Cast(msg_handler));
}
if (msg_handler.IsNull()) {
// If the port has been closed then the message will be dropped at this
// point. Make sure to post to the delivery failure port in that case.
if (message->RedirectToDeliveryFailurePort()) {
PortMap::PostMessage(std::move(message));
}
return kOK;
}
}
// Parse the message.
Object& msg_obj = Object::Handle(zone);
if (message->IsRaw()) {
msg_obj = message->raw_obj();
// We should only be sending RawObjects that can be converted to CObjects.
ASSERT(ApiObjectConverter::CanConvert(msg_obj.raw()));
} else if (message->IsBequest()) {
Bequest* bequest = message->bequest();
PersistentHandle* handle = bequest->handle();
const Object& obj = Object::Handle(zone, handle->raw());
msg_obj = obj.raw();
} else {
MessageSnapshotReader reader(message.get(), thread);
msg_obj = reader.ReadObject();
}
if (msg_obj.IsError()) {
// An error occurred while reading the message.
return ProcessUnhandledException(Error::Cast(msg_obj));
}
if (!msg_obj.IsNull() && !msg_obj.IsInstance()) {
// TODO(turnidge): We need to decide what an isolate does with
// malformed messages. If they (eventually) come from a remote
// machine, then it might make sense to drop the message entirely.
// In the case that the message originated locally, which is
// always true for now, then this should never occur.
UNREACHABLE();
}
Instance& msg = Instance::Handle(zone);
msg ^= msg_obj.raw(); // Can't use Instance::Cast because may be null.
MessageStatus status = kOK;
if (message->IsOOB()) {
// OOB messages are expected to be fixed length arrays where the first
// element is a Smi describing the OOB destination. Messages that do not
// confirm to this layout are silently ignored.
if (msg.IsArray()) {
const Array& oob_msg = Array::Cast(msg);
if (oob_msg.Length() > 0) {
const Object& oob_tag = Object::Handle(zone, oob_msg.At(0));
if (oob_tag.IsSmi()) {
switch (Smi::Cast(oob_tag).Value()) {
case Message::kServiceOOBMsg: {
#ifndef PRODUCT
const Error& error =
Error::Handle(Service::HandleIsolateMessage(I, oob_msg));
if (!error.IsNull()) {
status = ProcessUnhandledException(error);
}
#else
UNREACHABLE();
#endif
break;
}
case Message::kIsolateLibOOBMsg: {
const Error& error = Error::Handle(HandleLibMessage(oob_msg));
if (!error.IsNull()) {
status = ProcessUnhandledException(error);
}
break;
}
#if defined(DEBUG)
// Malformed OOB messages are silently ignored in release builds.
default: {
UNREACHABLE();
break;
}
#endif // defined(DEBUG)
}
}
}
}
} else if (message->dest_port() == Message::kIllegalPort) {
// Check whether this is a delayed OOB message which needed handling as
// part of the regular message dispatch. All other messages are dropped on
// the floor.
if (msg.IsArray()) {
const Array& msg_arr = Array::Cast(msg);
if (msg_arr.Length() > 0) {
const Object& oob_tag = Object::Handle(zone, msg_arr.At(0));
if (oob_tag.IsSmi() &&
(Smi::Cast(oob_tag).Value() == Message::kDelayedIsolateLibOOBMsg)) {
const Error& error = Error::Handle(HandleLibMessage(msg_arr));
if (!error.IsNull()) {
status = ProcessUnhandledException(error);
}
}
}
}
} else {
#ifndef PRODUCT
if (!Isolate::IsVMInternalIsolate(I)) {
// Mark all the user isolates as using a simplified timeline page of
// Observatory. The internal isolates will be filtered out from
// the Timeline due to absence of this argument. We still send them in
// order to maintain the original behavior of the full timeline and allow
// the developer to download complete dump files.
tbes.SetNumArguments(2);
tbes.CopyArgument(1, "mode", "basic");
}
#endif
const Object& result =
Object::Handle(zone, DartLibraryCalls::HandleMessage(msg_handler, msg));
if (result.IsError()) {
status = ProcessUnhandledException(Error::Cast(result));
} else {
ASSERT(result.IsNull());
}
}
return status;
}
#ifndef PRODUCT
void IsolateMessageHandler::NotifyPauseOnStart() {
if (Isolate::IsVMInternalIsolate(I)) {
return;
}
if (Service::debug_stream.enabled() || FLAG_warn_on_pause_with_no_debugger) {
StartIsolateScope start_isolate(I);
StackZone zone(T);
HandleScope handle_scope(T);
ServiceEvent pause_event(I, ServiceEvent::kPauseStart);
Service::HandleEvent(&pause_event);
} else if (FLAG_trace_service) {
OS::PrintErr("vm-service: Dropping event of type PauseStart (%s)\n",
I->name());
}
}
void IsolateMessageHandler::NotifyPauseOnExit() {
if (Isolate::IsVMInternalIsolate(I)) {
return;
}
if (Service::debug_stream.enabled() || FLAG_warn_on_pause_with_no_debugger) {
StartIsolateScope start_isolate(I);
StackZone zone(T);
HandleScope handle_scope(T);
ServiceEvent pause_event(I, ServiceEvent::kPauseExit);
Service::HandleEvent(&pause_event);
} else if (FLAG_trace_service) {
OS::PrintErr("vm-service: Dropping event of type PauseExit (%s)\n",
I->name());
}
}
#endif // !PRODUCT
#if defined(DEBUG)
void IsolateMessageHandler::CheckAccess() {
ASSERT(IsCurrentIsolate());
}
#endif
bool IsolateMessageHandler::IsCurrentIsolate() const {
return (I == Isolate::Current());
}
static MessageHandler::MessageStatus StoreError(Thread* thread,
const Error& error) {
thread->set_sticky_error(error);
if (error.IsUnwindError()) {
const UnwindError& unwind = UnwindError::Cast(error);
if (!unwind.is_user_initiated()) {
return MessageHandler::kShutdown;
}
}
return MessageHandler::kError;
}
MessageHandler::MessageStatus IsolateMessageHandler::ProcessUnhandledException(
const Error& result) {
if (FLAG_trace_isolates) {
OS::PrintErr(
"[!] Unhandled exception in %s:\n"
" exception: %s\n",
T->isolate()->name(), result.ToErrorCString());
}
NoReloadScope no_reload_scope(T->isolate(), T);
// Generate the error and stacktrace strings for the error message.
String& exc_str = String::Handle(T->zone());
String& stacktrace_str = String::Handle(T->zone());
if (result.IsUnhandledException()) {
Zone* zone = T->zone();
const UnhandledException& uhe = UnhandledException::Cast(result);
const Instance& exception = Instance::Handle(zone, uhe.exception());
Object& tmp = Object::Handle(zone);
tmp = DartLibraryCalls::ToString(exception);
if (!tmp.IsString()) {
tmp = String::New(exception.ToCString());
}
exc_str ^= tmp.raw();
const Instance& stacktrace = Instance::Handle(zone, uhe.stacktrace());
tmp = DartLibraryCalls::ToString(stacktrace);
if (!tmp.IsString()) {
tmp = String::New(stacktrace.ToCString());
}
stacktrace_str ^= tmp.raw();
} else {
exc_str = String::New(result.ToErrorCString());
}
if (result.IsUnwindError()) {
// When unwinding we don't notify error listeners and we ignore
// whether errors are fatal for the current isolate.
return StoreError(T, result);
} else {
bool has_listener = I->NotifyErrorListeners(exc_str, stacktrace_str);
if (I->ErrorsFatal()) {
if (has_listener) {
T->ClearStickyError();
} else {
T->set_sticky_error(result);
}
#if !defined(PRODUCT)
// Notify the debugger about specific unhandled exceptions which are
// withheld when being thrown. Do this after setting the sticky error
// so the isolate has an error set when paused with the unhandled
// exception.
if (result.IsUnhandledException()) {
const UnhandledException& error = UnhandledException::Cast(result);
InstancePtr exception = error.exception();
if ((exception == I->object_store()->out_of_memory()) ||
(exception == I->object_store()->stack_overflow())) {
// We didn't notify the debugger when the stack was full. Do it now.
I->debugger()->PauseException(Instance::Handle(exception));
}
}
#endif // !defined(PRODUCT)
return kError;
}
}
return kOK;
}
void Isolate::FlagsInitialize(Dart_IsolateFlags* api_flags) {
const bool false_by_default = false;
const bool true_by_default = true;
USE(true_by_default);
USE(false_by_default);
api_flags->version = DART_FLAGS_CURRENT_VERSION;
#define INIT_FROM_FLAG(when, name, bitname, isolate_flag, flag) \
api_flags->isolate_flag = flag;
ISOLATE_FLAG_LIST(INIT_FROM_FLAG)
#undef INIT_FROM_FLAG
api_flags->entry_points = NULL;
api_flags->load_vmservice_library = false;
api_flags->copy_parent_code = false;
api_flags->null_safety = false;
}
void Isolate::FlagsCopyTo(Dart_IsolateFlags* api_flags) const {
api_flags->version = DART_FLAGS_CURRENT_VERSION;
#define INIT_FROM_FIELD(when, name, bitname, isolate_flag, flag) \
api_flags->isolate_flag = name();
ISOLATE_FLAG_LIST(INIT_FROM_FIELD)
#undef INIT_FROM_FIELD
api_flags->entry_points = NULL;
api_flags->load_vmservice_library = should_load_vmservice();
api_flags->copy_parent_code = false;
api_flags->null_safety = null_safety();
}
void Isolate::FlagsCopyFrom(const Dart_IsolateFlags& api_flags) {
#if defined(DART_PRECOMPILER)
#define FLAG_FOR_PRECOMPILER(action) action
#else
#define FLAG_FOR_PRECOMPILER(action)
#endif
#if !defined(PRODUCT)
#define FLAG_FOR_NONPRODUCT(action) action
#else
#define FLAG_FOR_NONPRODUCT(action)
#endif
#define FLAG_FOR_PRODUCT(action) action
#define SET_FROM_FLAG(when, name, bitname, isolate_flag, flag) \
FLAG_FOR_##when(isolate_flags_ = bitname##Bit::update( \
api_flags.isolate_flag, isolate_flags_));
ISOLATE_FLAG_LIST(SET_FROM_FLAG)
#undef FLAG_FOR_NONPRODUCT
#undef FLAG_FOR_PRECOMPILER
#undef FLAG_FOR_PRODUCT
#undef SET_FROM_FLAG
set_should_load_vmservice(api_flags.load_vmservice_library);
set_null_safety(api_flags.null_safety);
// Copy entry points list.
ASSERT(embedder_entry_points_ == NULL);
if (api_flags.entry_points != NULL) {
intptr_t count = 0;
while (api_flags.entry_points[count].function_name != NULL)
count++;
embedder_entry_points_ = new Dart_QualifiedFunctionName[count + 1];
for (intptr_t i = 0; i < count; i++) {
embedder_entry_points_[i].library_uri =
Utils::StrDup(api_flags.entry_points[i].library_uri);
embedder_entry_points_[i].class_name =
Utils::StrDup(api_flags.entry_points[i].class_name);
embedder_entry_points_[i].function_name =
Utils::StrDup(api_flags.entry_points[i].function_name);
}
memset(&embedder_entry_points_[count], 0,
sizeof(Dart_QualifiedFunctionName));
}
// Leave others at defaults.
}
#if defined(DEBUG)
// static
void BaseIsolate::AssertCurrent(BaseIsolate* isolate) {
ASSERT(isolate == Isolate::Current());
}
void BaseIsolate::AssertCurrentThreadIsMutator() const {
ASSERT(Isolate::Current() == this);
ASSERT(Thread::Current()->IsMutatorThread());
}
#endif // defined(DEBUG)
#if defined(DEBUG)
#define REUSABLE_HANDLE_SCOPE_INIT(object) \
reusable_##object##_handle_scope_active_(false),
#else
#define REUSABLE_HANDLE_SCOPE_INIT(object)
#endif // defined(DEBUG)
#define REUSABLE_HANDLE_INITIALIZERS(object) object##_handle_(nullptr),
// TODO(srdjan): Some Isolate monitors can be shared. Replace their usage with
// that shared monitor.
Isolate::Isolate(IsolateGroup* isolate_group,
const Dart_IsolateFlags& api_flags)
: BaseIsolate(),
current_tag_(UserTag::null()),
default_tag_(UserTag::null()),
ic_miss_code_(Code::null()),
shared_class_table_(isolate_group->shared_class_table()),
field_table_(new FieldTable()),
isolate_group_(isolate_group),
isolate_object_store_(
new IsolateObjectStore(isolate_group->object_store())),
object_store_shared_ptr_(isolate_group->object_store_shared_ptr()),
#if defined(DART_PRECOMPILED_RUNTIME)
class_table_(isolate_group->class_table_shared_ptr()),
#else
class_table_(new ClassTable(shared_class_table_)),
#endif
#if !defined(DART_PRECOMPILED_RUNTIME)
native_callback_trampolines_(),
#endif
#if !defined(PRODUCT)
last_resume_timestamp_(OS::GetCurrentTimeMillis()),
vm_tag_counters_(),
pending_service_extension_calls_(GrowableObjectArray::null()),
registered_service_extension_handlers_(GrowableObjectArray::null()),
#define ISOLATE_METRIC_CONSTRUCTORS(type, variable, name, unit) \
metric_##variable##_(),
ISOLATE_METRIC_LIST(ISOLATE_METRIC_CONSTRUCTORS)
#undef ISOLATE_METRIC_CONSTRUCTORS
reload_every_n_stack_overflow_checks_(FLAG_reload_every),
#endif // !defined(PRODUCT)
start_time_micros_(OS::GetCurrentMonotonicMicros()),
random_(),
mutex_(NOT_IN_PRODUCT("Isolate::mutex_")),
constant_canonicalization_mutex_(
NOT_IN_PRODUCT("Isolate::constant_canonicalization_mutex_")),
megamorphic_mutex_(NOT_IN_PRODUCT("Isolate::megamorphic_mutex_")),
kernel_data_lib_cache_mutex_(
NOT_IN_PRODUCT("Isolate::kernel_data_lib_cache_mutex_")),
kernel_data_class_cache_mutex_(
NOT_IN_PRODUCT("Isolate::kernel_data_class_cache_mutex_")),
kernel_constants_mutex_(
NOT_IN_PRODUCT("Isolate::kernel_constants_mutex_")),
pending_deopts_(new MallocGrowableArray<PendingLazyDeopt>()),
tag_table_(GrowableObjectArray::null()),
deoptimized_code_array_(GrowableObjectArray::null()),
sticky_error_(Error::null()),
field_list_mutex_(NOT_IN_PRODUCT("Isolate::field_list_mutex_")),
boxed_field_list_(GrowableObjectArray::null()),
spawn_count_monitor_(),
handler_info_cache_(),
catch_entry_moves_cache_() {
cached_object_store_ = object_store_shared_ptr_.get();
cached_class_table_table_ = class_table_->table();
FlagsCopyFrom(api_flags);
SetErrorsFatal(true);
// TODO(asiva): A Thread is not available here, need to figure out
// how the vm_tag (kEmbedderTagId) can be set, these tags need to
// move to the OSThread structure.
set_user_tag(UserTags::kDefaultUserTag);
if (obfuscate()) {
OS::PrintErr(
"Warning: This VM has been configured to obfuscate symbol information "
"which violates the Dart standard.\n"
" See dartbug.com/30524 for more information.\n");
}
if (FLAG_enable_interpreter) {
NOT_IN_PRECOMPILED(background_compiler_ = new BackgroundCompiler(
this, /* optimizing = */ false));
}
NOT_IN_PRECOMPILED(optimizing_background_compiler_ =
new BackgroundCompiler(this, /* optimizing = */ true));
}
#undef REUSABLE_HANDLE_SCOPE_INIT
#undef REUSABLE_HANDLE_INITIALIZERS
Isolate::~Isolate() {
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
// TODO(32796): Re-enable assertion.
// RELEASE_ASSERT(reload_context_ == NULL);
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
if (FLAG_enable_interpreter) {
delete background_compiler_;
background_compiler_ = nullptr;
}
delete optimizing_background_compiler_;
optimizing_background_compiler_ = nullptr;
#if !defined(PRODUCT)
delete debugger_;
debugger_ = nullptr;
delete object_id_ring_;
object_id_ring_ = nullptr;
delete pause_loop_monitor_;
pause_loop_monitor_ = nullptr;
#endif // !defined(PRODUCT)
free(name_);
delete field_table_;
#if defined(USING_SIMULATOR)
delete simulator_;
#endif
delete pending_deopts_;
pending_deopts_ = nullptr;
delete message_handler_;
message_handler_ =
nullptr; // Fail fast if we send messages to a dead isolate.
ASSERT(deopt_context_ ==
nullptr); // No deopt in progress when isolate deleted.
ASSERT(spawn_count_ == 0);
// We have cached the mutator thread, delete it.
ASSERT(scheduled_mutator_thread_ == nullptr);
mutator_thread_->isolate_ = nullptr;
delete mutator_thread_;
mutator_thread_ = nullptr;
if (obfuscation_map_ != nullptr) {
for (intptr_t i = 0; obfuscation_map_[i] != nullptr; i++) {
delete[] obfuscation_map_[i];
}
delete[] obfuscation_map_;
}
if (embedder_entry_points_ != nullptr) {
for (intptr_t i = 0; embedder_entry_points_[i].function_name != nullptr;
i++) {
free(const_cast<char*>(embedder_entry_points_[i].library_uri));
free(const_cast<char*>(embedder_entry_points_[i].class_name));
free(const_cast<char*>(embedder_entry_points_[i].function_name));
}
delete[] embedder_entry_points_;
}
}
void Isolate::InitVM() {
create_group_callback_ = nullptr;
initialize_callback_ = nullptr;
shutdown_callback_ = nullptr;
cleanup_callback_ = nullptr;
cleanup_group_callback_ = nullptr;
if (isolate_creation_monitor_ == nullptr) {
isolate_creation_monitor_ = new Monitor();
}
ASSERT(isolate_creation_monitor_ != nullptr);
EnableIsolateCreation();
}
Isolate* Isolate::InitIsolate(const char* name_prefix,
IsolateGroup* isolate_group,
const Dart_IsolateFlags& api_flags,
bool is_vm_isolate) {
Isolate* result = new Isolate(isolate_group, api_flags);
result->BuildName(name_prefix);
if (!is_vm_isolate) {
// vm isolate object store is initialized later, after null instance
// is created (in Dart::Init).
// Non-vm isolates need to have isolate object store initialized is that
// exit_listeners have to be null-initialized as they will be used if
// we fail to create isolate below, have to do low level shutdown.
if (result->object_store() == nullptr) {
// in JIT with --enable-isolate-groups each isolate still
// has to have its own object store
result->set_object_store(new ObjectStore());
result->object_store()->InitStubs();
}
result->isolate_object_store()->Init();
}
ASSERT(result != nullptr);
#if !defined(PRODUCT)
// Initialize metrics.
#define ISOLATE_METRIC_INIT(type, variable, name, unit) \
result->metric_##variable##_.InitInstance(result, name, NULL, Metric::unit);
ISOLATE_METRIC_LIST(ISOLATE_METRIC_INIT);
#undef ISOLATE_METRIC_INIT
#endif // !defined(PRODUCT)
// First we ensure we enter the isolate. This will ensure we're participating
// in any safepointing requests from this point on. Other threads requesting a
// safepoint operation will therefore wait until we've stopped.
//
// Though the [result] isolate is still in a state where no memory has been
// allocated, which means it's safe to GC the isolate group until here.
if (!Thread::EnterIsolate(result)) {
delete result;
return nullptr;
}
// Setup the isolate message handler.
MessageHandler* handler = new IsolateMessageHandler(result);
ASSERT(handler != nullptr);
result->set_message_handler(handler);
result->set_main_port(PortMap::CreatePort(result->message_handler()));
#if defined(DEBUG)
// Verify that we are never reusing a live origin id.
VerifyOriginId id_verifier(result->main_port());
Isolate::VisitIsolates(&id_verifier);
#endif
result->set_origin_id(result->main_port());
result->set_pause_capability(result->random()->NextUInt64());
result->set_terminate_capability(result->random()->NextUInt64());
// Now we register the isolate in the group. From this point on any GC would
// traverse the isolate roots (before this point, the roots are only pointing
// to vm-isolate objects, e.g. null)
isolate_group->RegisterIsolate(result);
if (ServiceIsolate::NameEquals(name_prefix)) {
ASSERT(!ServiceIsolate::Exists());
ServiceIsolate::SetServiceIsolate(result);
#if !defined(DART_PRECOMPILED_RUNTIME)
} else if (KernelIsolate::NameEquals(name_prefix)) {
ASSERT(!KernelIsolate::Exists());
KernelIsolate::SetKernelIsolate(result);
#endif // !defined(DART_PRECOMPILED_RUNTIME)
}
#if !defined(PRODUCT)
result->debugger_ = new Debugger(result);
#endif
if (FLAG_trace_isolates) {
if (name_prefix == nullptr || strcmp(name_prefix, "vm-isolate") != 0) {
OS::PrintErr(
"[+] Starting isolate:\n"
"\tisolate: %s\n",
result->name());
}
}
// Add to isolate list. Shutdown and delete the isolate on failure.
if (!TryMarkIsolateReady(result)) {
result->LowLevelShutdown();
Isolate::LowLevelCleanup(result);
return nullptr;
}
return result;
}
Thread* Isolate::mutator_thread() const {
ASSERT(thread_registry() != nullptr);
return mutator_thread_;
}
ObjectPtr Isolate::CallTagHandler(Dart_LibraryTag tag,
const Object& arg1,
const Object& arg2) {
Thread* thread = Thread::Current();
Api::Scope api_scope(thread);
Dart_Handle api_arg1 = Api::NewHandle(thread, arg1.raw());
Dart_Handle api_arg2 = Api::NewHandle(thread, arg2.raw());
Dart_Handle api_result;
{
TransitionVMToNative transition(thread);
ASSERT(HasTagHandler());
api_result = group()->library_tag_handler()(tag, api_arg1, api_arg2);
}
return Api::UnwrapHandle(api_result);
}
ObjectPtr Isolate::CallDeferredLoadHandler(intptr_t id) {
Thread* thread = Thread::Current();
Api::Scope api_scope(thread);
Dart_Handle api_result;
{
TransitionVMToNative transition(thread);
RELEASE_ASSERT(HasDeferredLoadHandler());
api_result = group()->deferred_load_handler()(id);
}
return Api::UnwrapHandle(api_result);
}
void Isolate::SetupImagePage(const uint8_t* image_buffer, bool is_executable) {
Image image(image_buffer);
heap()->SetupImagePage(image.object_start(), image.object_size(),
is_executable);
}
void Isolate::ScheduleInterrupts(uword interrupt_bits) {
// We take the threads lock here to ensure that the mutator thread does not
// exit the isolate while we are trying to schedule interrupts on it.
MonitorLocker ml(group()->threads_lock());
Thread* mthread = mutator_thread();
if (mthread != nullptr) {
mthread->ScheduleInterrupts(interrupt_bits);
}
}
void Isolate::set_name(const char* name) {
free(name_);
name_ = Utils::StrDup(name);
}
int64_t IsolateGroup::UptimeMicros() const {
return OS::GetCurrentMonotonicMicros() - start_time_micros_;
}
int64_t Isolate::UptimeMicros() const {
return OS::GetCurrentMonotonicMicros() - start_time_micros_;
}
Dart_Port Isolate::origin_id() {
MutexLocker ml(&origin_id_mutex_);
return origin_id_;
}
void Isolate::set_origin_id(Dart_Port id) {
MutexLocker ml(&origin_id_mutex_);
ASSERT((id == main_port_ && origin_id_ == 0) || (origin_id_ == main_port_));
origin_id_ = id;
}
bool Isolate::IsPaused() const {
#if defined(PRODUCT)
return false;
#else
return (debugger_ != nullptr) && (debugger_->PauseEvent() != nullptr);
#endif // !defined(PRODUCT)
}
ErrorPtr Isolate::PausePostRequest() {
#if !defined(PRODUCT)
if (debugger_ == nullptr) {
return Error::null();
}
ASSERT(!IsPaused());
const Error& error = Error::Handle(debugger_->PausePostRequest());
if (!error.IsNull()) {
if (Thread::Current()->top_exit_frame_info() == 0) {
return error.raw();
} else {
Exceptions::PropagateError(error);
UNREACHABLE();
}
}
#endif
return Error::null();
}
void Isolate::BuildName(const char* name_prefix) {
ASSERT(name_ == nullptr);
if (name_prefix == nullptr) {
name_ = OS::SCreate(nullptr, "isolate-%" Pd64 "", main_port());
} else {
name_ = Utils::StrDup(name_prefix);
}
}
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
bool Isolate::CanReload() const {
return !Isolate::IsVMInternalIsolate(this) && is_runnable() &&
!group()->IsReloading() && (no_reload_scope_depth_ == 0) &&
IsolateCreationEnabled() &&
OSThread::Current()->HasStackHeadroom(64 * KB);
}
bool IsolateGroup::ReloadSources(JSONStream* js,
bool force_reload,
const char* root_script_url,
const char* packages_url,
bool dont_delete_reload_context) {
ASSERT(!IsReloading());
// TODO(dartbug.com/36097): Support multiple isolates within an isolate group.
RELEASE_ASSERT(!FLAG_enable_isolate_groups);
RELEASE_ASSERT(isolates_.First() == isolates_.Last());
RELEASE_ASSERT(isolates_.First() == Isolate::Current());
auto shared_class_table = IsolateGroup::Current()->shared_class_table();
std::shared_ptr<IsolateGroupReloadContext> group_reload_context(
new IsolateGroupReloadContext(this, shared_class_table, js));
group_reload_context_ = group_reload_context;
ForEachIsolate([&](Isolate* isolate) {
isolate->SetHasAttemptedReload(true);
isolate->reload_context_ =
new IsolateReloadContext(group_reload_context_, isolate);
});
const bool success =
group_reload_context_->Reload(force_reload, root_script_url, packages_url,
/*kernel_buffer=*/nullptr,
/*kernel_buffer_size=*/0);
if (!dont_delete_reload_context) {
ForEachIsolate([&](Isolate* isolate) { isolate->DeleteReloadContext(); });
DeleteReloadContext();
}
return success;
}
bool IsolateGroup::ReloadKernel(JSONStream* js,
bool force_reload,
const uint8_t* kernel_buffer,
intptr_t kernel_buffer_size,
bool dont_delete_reload_context) {
ASSERT(!IsReloading());
// TODO(dartbug.com/36097): Support multiple isolates within an isolate group.
RELEASE_ASSERT(!FLAG_enable_isolate_groups);
RELEASE_ASSERT(isolates_.First() == isolates_.Last());
RELEASE_ASSERT(isolates_.First() == Isolate::Current());
auto shared_class_table = IsolateGroup::Current()->shared_class_table();
std::shared_ptr<IsolateGroupReloadContext> group_reload_context(
new IsolateGroupReloadContext(this, shared_class_table, js));
group_reload_context_ = group_reload_context;
ForEachIsolate([&](Isolate* isolate) {
isolate->SetHasAttemptedReload(true);
isolate->reload_context_ =
new IsolateReloadContext(group_reload_context_, isolate);
});
const bool success = group_reload_context_->Reload(
force_reload,
/*root_script_url=*/nullptr,
/*packages_url=*/nullptr, kernel_buffer, kernel_buffer_size);
if (!dont_delete_reload_context) {
ForEachIsolate([&](Isolate* isolate) { isolate->DeleteReloadContext(); });
DeleteReloadContext();
}
return success;
}
void IsolateGroup::DeleteReloadContext() {
SafepointOperationScope safepoint_scope(Thread::Current());
group_reload_context_.reset();
}
void Isolate::DeleteReloadContext() {
// Another thread may be in the middle of GetClassForHeapWalkAt.
SafepointOperationScope safepoint_scope(Thread::Current());
delete reload_context_;
reload_context_ = nullptr;
}
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
const char* Isolate::MakeRunnable() {
ASSERT(Isolate::Current() == nullptr);
MutexLocker ml(&mutex_);
// Check if we are in a valid state to make the isolate runnable.
if (is_runnable() == true) {
return "Isolate is already runnable";
}
// Set the isolate as runnable and if we are being spawned schedule
// isolate on thread pool for execution.
ASSERT(object_store()->root_library() != Library::null());
set_is_runnable(true);
#ifndef PRODUCT
if (!Isolate::IsVMInternalIsolate(this)) {
debugger()->OnIsolateRunnable();
if (FLAG_pause_isolates_on_unhandled_exceptions) {
debugger()->SetExceptionPauseInfo(kPauseOnUnhandledExceptions);
}
}
#endif // !PRODUCT
IsolateSpawnState* state = spawn_state();
if (state != nullptr) {
ASSERT(this == state->isolate());
Run();
}
#if defined(SUPPORT_TIMELINE)
TimelineStream* stream = Timeline::GetIsolateStream();
ASSERT(stream != nullptr);
TimelineEvent* event = stream->StartEvent();
if (event != nullptr) {
event->Instant("Runnable");
event->Complete();
}
#endif
#ifndef PRODUCT
if (!Isolate::IsVMInternalIsolate(this) &&
Service::isolate_stream.enabled()) {
ServiceEvent runnableEvent(this, ServiceEvent::kIsolateRunnable);
Service::HandleEvent(&runnableEvent);
}
GetRunnableLatencyMetric()->set_value(UptimeMicros());
if (FLAG_print_benchmarking_metrics) {
{
StartIsolateScope scope(this);
heap()->CollectAllGarbage();
}
int64_t heap_size = (heap()->UsedInWords(Heap::kNew) * kWordSize) +
(heap()->UsedInWords(Heap::kOld) * kWordSize);
GetRunnableHeapSizeMetric()->set_value(heap_size);
}
#endif // !PRODUCT
return nullptr;
}
bool Isolate::VerifyPauseCapability(const Object& capability) const {
return !capability.IsNull() && capability.IsCapability() &&
(pause_capability() == Capability::Cast(capability).Id());
}
bool Isolate::VerifyTerminateCapability(const Object& capability) const {
return !capability.IsNull() && capability.IsCapability() &&
(terminate_capability() == Capability::Cast(capability).Id());
}
bool Isolate::AddResumeCapability(const Capability& capability) {
// Ensure a limit for the number of resume capabilities remembered.
static const intptr_t kMaxResumeCapabilities =
compiler::target::kSmiMax / (6 * kWordSize);
const GrowableObjectArray& caps = GrowableObjectArray::Handle(
current_zone(), isolate_object_store()->resume_capabilities());
Capability& current = Capability::Handle(current_zone());
intptr_t insertion_index = -1;
for (intptr_t i = 0; i < caps.Length(); i++) {
current ^= caps.At(i);
if (current.IsNull()) {
if (insertion_index < 0) {
insertion_index = i;
}
} else if (current.Id() == capability.Id()) {
return false;
}
}
if (insertion_index < 0) {
if (caps.Length() >= kMaxResumeCapabilities) {
// Cannot grow the array of resume capabilities beyond its max. Additional
// pause requests are ignored. In practice will never happen as we will
// run out of memory beforehand.
return false;
}
caps.Add(capability);
} else {
caps.SetAt(insertion_index, capability);
}
return true;
}
bool Isolate::RemoveResumeCapability(const Capability& capability) {
const GrowableObjectArray& caps = GrowableObjectArray::Handle(
current_zone(), isolate_object_store()->resume_capabilities());
Capability& current = Capability::Handle(current_zone());
for (intptr_t i = 0; i < caps.Length(); i++) {
current ^= caps.At(i);
if (!current.IsNull() && (current.Id() == capability.Id())) {
// Remove the matching capability from the list.
current = Capability::null();
caps.SetAt(i, current);
return true;
}
}
return false;
}
// TODO(iposva): Remove duplicated code and start using some hash based
// structure instead of these linear lookups.
void Isolate::AddExitListener(const SendPort& listener,
const Instance& response) {
// Ensure a limit for the number of listeners remembered.
static const intptr_t kMaxListeners =
compiler::target::kSmiMax / (12 * kWordSize);
const GrowableObjectArray& listeners = GrowableObjectArray::Handle(
current_zone(), isolate_object_store()->exit_listeners());
SendPort& current = SendPort::Handle(current_zone());
intptr_t insertion_index = -1;
for (intptr_t i = 0; i < listeners.Length(); i += 2) {
current ^= listeners.At(i);
if (current.IsNull()) {
if (insertion_index < 0) {
insertion_index = i;
}
} else if (current.Id() == listener.Id()) {
listeners.SetAt(i + 1, response);
return;
}
}
if (insertion_index < 0) {
if (listeners.Length() >= kMaxListeners) {
// Cannot grow the array of listeners beyond its max. Additional
// listeners are ignored. In practice will never happen as we will
// run out of memory beforehand.
return;
}
listeners.Add(listener);
listeners.Add(response);
} else {
listeners.SetAt(insertion_index, listener);
listeners.SetAt(insertion_index + 1, response);
}
}
void Isolate::RemoveExitListener(const SendPort& listener) {
const GrowableObjectArray& listeners = GrowableObjectArray::Handle(
current_zone(), isolate_object_store()->exit_listeners());
SendPort& current = SendPort::Handle(current_zone());
for (intptr_t i = 0; i < listeners.Length(); i += 2) {
current ^= listeners.At(i);
if (!current.IsNull() && (current.Id() == listener.Id())) {
// Remove the matching listener from the list.
current = SendPort::null();
listeners.SetAt(i, current);
listeners.SetAt(i + 1, Object::null_instance());
return;
}
}
}
void Isolate::NotifyExitListeners() {
const GrowableObjectArray& listeners = GrowableObjectArray::Handle(
current_zone(), isolate_object_store()->exit_listeners());
if (listeners.IsNull()) return;
SendPort& listener = SendPort::Handle(current_zone());
Instance& response = Instance::Handle(current_zone());
for (intptr_t i = 0; i < listeners.Length(); i += 2) {
listener ^= listeners.At(i);
if (!listener.IsNull()) {
Dart_Port port_id = listener.Id();
response ^= listeners.At(i + 1);
PortMap::PostMessage(SerializeMessage(port_id, response));
}
}
}
void Isolate::AddErrorListener(const SendPort& listener) {
// Ensure a limit for the number of listeners remembered.
static const intptr_t kMaxListeners =
compiler::target::kSmiMax / (6 * kWordSize);
const GrowableObjectArray& listeners = GrowableObjectArray::Handle(
current_zone(), isolate_object_store()->error_listeners());
SendPort& current = SendPort::Handle(current_zone());
intptr_t insertion_index = -1;
for (intptr_t i = 0; i < listeners.Length(); i++) {
current ^= listeners.At(i);
if (current.IsNull()) {
if (insertion_index < 0) {
insertion_index = i;
}
} else if (current.Id() == listener.Id()) {
return;
}
}
if (insertion_index < 0) {
if (listeners.Length() >= kMaxListeners) {
// Cannot grow the array of listeners beyond its max. Additional
// listeners are ignored. In practice will never happen as we will
// run out of memory beforehand.
return;
}
listeners.Add(listener);
} else {
listeners.SetAt(insertion_index, listener);
}
}
void Isolate::RemoveErrorListener(const SendPort& listener) {
const GrowableObjectArray& listeners = GrowableObjectArray::Handle(
current_zone(), isolate_object_store()->error_listeners());
SendPort& current = SendPort::Handle(current_zone());
for (intptr_t i = 0; i < listeners.Length(); i++) {
current ^= listeners.At(i);
if (!current.IsNull() && (current.Id() == listener.Id())) {
// Remove the matching listener from the list.
current = SendPort::null();
listeners.SetAt(i, current);
return;
}
}
}
bool Isolate::NotifyErrorListeners(const String& msg,
const String& stacktrace) {
const GrowableObjectArray& listeners = GrowableObjectArray::Handle(
current_zone(), isolate_object_store()->error_listeners());
if (listeners.IsNull()) return false;
const Array& arr = Array::Handle(current_zone(), Array::New(2));
arr.SetAt(0, msg);
arr.SetAt(1, stacktrace);
SendPort& listener = SendPort::Handle(current_zone());
for (intptr_t i = 0; i < listeners.Length(); i++) {
listener ^= listeners.At(i);
if (!listener.IsNull()) {
Dart_Port port_id = listener.Id();
PortMap::PostMessage(SerializeMessage(port_id, arr));
}
}
return listeners.Length() > 0;
}
static MessageHandler::MessageStatus RunIsolate(uword parameter) {
Isolate* isolate = reinterpret_cast<Isolate*>(parameter);
IsolateSpawnState* state = nullptr;
{
// TODO(turnidge): Is this locking required here at all anymore?
MutexLocker ml(isolate->mutex());
state = isolate->spawn_state();
}
{
StartIsolateScope start_scope(isolate);
Thread* thread = Thread::Current();
ASSERT(thread->isolate() == isolate);
StackZone zone(thread);
HandleScope handle_scope(thread);
// If particular values were requested for this newly spawned isolate, then
// they are set here before the isolate starts executing user code.
isolate->SetErrorsFatal(state->errors_are_fatal());
if (state->on_exit_port() != ILLEGAL_PORT) {
const SendPort& listener =
SendPort::Handle(SendPort::New(state->on_exit_port()));
isolate->AddExitListener(listener, Instance::null_instance());
}
if (state->on_error_port() != ILLEGAL_PORT) {
const SendPort& listener =
SendPort::Handle(SendPort::New(state->on_error_port()));
isolate->AddErrorListener(listener);
}
// Switch back to spawning isolate.
if (!ClassFinalizer::ProcessPendingClasses()) {
// Error is in sticky error already.
#if defined(DEBUG)
const Error& error = Error::Handle(thread->sticky_error());
ASSERT(!error.IsUnwindError());
#endif
return MessageHandler::kError;
}
Object& result = Object::Handle();
result = state->ResolveFunction();
bool is_spawn_uri = state->is_spawn_uri();
if (result.IsError()) {
return StoreError(thread, Error::Cast(result));
}
ASSERT(result.IsFunction());
Function& func = Function::Handle(thread->zone());
func ^= result.raw();
func = func.ImplicitClosureFunction();
const Array& capabilities = Array::Handle(Array::New(2));
Capability& capability = Capability::Handle();
capability = Capability::New(isolate->pause_capability());
capabilities.SetAt(0, capability);
// Check whether this isolate should be started in paused state.
if (state->paused()) {
bool added = isolate->AddResumeCapability(capability);
ASSERT(added); // There should be no pending resume capabilities.
isolate->message_handler()->increment_paused();
}
capability = Capability::New(isolate->terminate_capability());
capabilities.SetAt(1, capability);
// Instead of directly invoking the entry point we call '_startIsolate' with
// the entry point as argument.
// Since this function ("RunIsolate") is used for both Isolate.spawn and
// Isolate.spawnUri we also send a boolean flag as argument so that the
// "_startIsolate" function can act corresponding to how the isolate was
// created.
const Array& args = Array::Handle(Array::New(7));
args.SetAt(0, SendPort::Handle(SendPort::New(state->parent_port())));
args.SetAt(1, Instance::Handle(func.ImplicitStaticClosure()));
args.SetAt(2, Instance::Handle(state->BuildArgs(thread)));
args.SetAt(3, Instance::Handle(state->BuildMessage(thread)));
args.SetAt(4, is_spawn_uri ? Bool::True() : Bool::False());
args.SetAt(5, ReceivePort::Handle(ReceivePort::New(
isolate->main_port(), true /* control port */)));
args.SetAt(6, capabilities);
const Library& lib = Library::Handle(Library::IsolateLibrary());
const String& entry_name = String::Handle(String::New("_startIsolate"));
const Function& entry_point =
Function::Handle(lib.LookupLocalFunction(entry_name));
ASSERT(entry_point.IsFunction() && !entry_point.IsNull());
result = DartEntry::InvokeFunction(entry_point, args);
if (result.IsError()) {
return StoreError(thread, Error::Cast(result));
}
}
return MessageHandler::kOK;
}
static void ShutdownIsolate(uword parameter) {
Isolate* isolate = reinterpret_cast<Isolate*>(parameter);
{
// Print the error if there is one. This may execute dart code to
// print the exception object, so we need to use a StartIsolateScope.
StartIsolateScope start_scope(isolate);
Thread* thread = Thread::Current();
ASSERT(thread->isolate() == isolate);
// We must wait for any outstanding spawn calls to complete before
// running the shutdown callback.
isolate->WaitForOutstandingSpawns();
StackZone zone(thread);
HandleScope handle_scope(thread);
#if defined(DEBUG)
isolate->ValidateConstants();
#endif // defined(DEBUG)
Dart::RunShutdownCallback();
}
// Shut the isolate down.
Dart::ShutdownIsolate(isolate);
}
void Isolate::SetStickyError(ErrorPtr sticky_error) {
ASSERT(
((sticky_error_ == Error::null()) || (sticky_error == Error::null())) &&
(sticky_error != sticky_error_));
sticky_error_ = sticky_error;
}
void Isolate::Run() {
message_handler()->Run(group()->thread_pool(), RunIsolate, ShutdownIsolate,
reinterpret_cast<uword>(this));
}
void Isolate::AddClosureFunction(const Function& function) const {
ASSERT(!Compiler::IsBackgroundCompilation());
GrowableObjectArray& closures =
GrowableObjectArray::Handle(object_store()->closure_functions());
ASSERT(!closures.IsNull());
ASSERT(function.IsNonImplicitClosureFunction());
closures.Add(function, Heap::kOld);
}
// If the linear lookup turns out to be too expensive, the list
// of closures could be maintained in a hash map, with the key
// being the token position of the closure. There are almost no
// collisions with this simple hash value. However, iterating over
// all closure functions becomes more difficult, especially when
// the list/map changes while iterating over it.
FunctionPtr Isolate::LookupClosureFunction(const Function& parent,
TokenPosition token_pos) const {
const GrowableObjectArray& closures =
GrowableObjectArray::Handle(object_store()->closure_functions());
ASSERT(!closures.IsNull());
Function& closure = Function::Handle();
intptr_t num_closures = closures.Length();
for (intptr_t i = 0; i < num_closures; i++) {
closure ^= closures.At(i);
if ((closure.token_pos() == token_pos) &&
(closure.parent_function() == parent.raw())) {
return closure.raw();
}
}
return Function::null();
}
intptr_t Isolate::FindClosureIndex(const Function& needle) const {
const GrowableObjectArray& closures_array =
GrowableObjectArray::Handle(object_store()->closure_functions());
intptr_t num_closures = closures_array.Length();
for (intptr_t i = 0; i < num_closures; i++) {
if (closures_array.At(i) == needle.raw()) {
return i;
}
}
return -1;
}
FunctionPtr Isolate::ClosureFunctionFromIndex(intptr_t idx) const {
const GrowableObjectArray& closures_array =
GrowableObjectArray::Handle(object_store()->closure_functions());
if ((idx < 0) || (idx >= closures_array.Length())) {
return Function::null();
}
return Function::RawCast(closures_array.At(idx));
}
// static
void Isolate::NotifyLowMemory() {
Isolate::KillAllIsolates(Isolate::kLowMemoryMsg);
}
void Isolate::LowLevelShutdown() {
// Ensure we have a zone and handle scope so that we can call VM functions,
// but we no longer allocate new heap objects.
Thread* thread = Thread::Current();
StackZone stack_zone(thread);
HandleScope handle_scope(thread);
NoSafepointScope no_safepoint_scope;
// Notify exit listeners that this isolate is shutting down.
if (object_store() != nullptr) {
const Error& error = Error::Handle(thread->sticky_error());
if (error.IsNull() || !error.IsUnwindError() ||
UnwindError::Cast(error).is_user_initiated()) {
NotifyExitListeners();
}
}
// Close all the ports owned by this isolate.
PortMap::ClosePorts(message_handler());
// Fail fast if anybody tries to post any more messages to this isolate.
delete message_handler();
set_message_handler(nullptr);
#if defined(SUPPORT_TIMELINE)
// Before analyzing the isolate's timeline blocks- reclaim all cached
// blocks.
Timeline::ReclaimCachedBlocksFromThreads();
#endif
// Dump all timing data for the isolate.
#if defined(SUPPORT_TIMELINE) && !defined(PRODUCT)
if (FLAG_timing) {
TimelinePauseTrace tpt;
tpt.Print();
}
#endif // !PRODUCT
#if !defined(PRODUCT)
if (FLAG_dump_megamorphic_stats) {
MegamorphicCacheTable::PrintSizes(this);
}
if (FLAG_dump_symbol_stats) {
Symbols::DumpStats(this);
}
if (FLAG_trace_isolates) {
heap()->PrintSizes();
OS::PrintErr(
"[-] Stopping isolate:\n"
"\tisolate: %s\n",
name());
}
if (FLAG_print_metrics || FLAG_print_benchmarking_metrics) {
LogBlock lb;
OS::PrintErr("Printing metrics for %s\n", name());
#define ISOLATE_GROUP_METRIC_PRINT(type, variable, name, unit) \
OS::PrintErr("%s\n", isolate_group_->Get##variable##Metric()->ToString());
ISOLATE_GROUP_METRIC_LIST(ISOLATE_GROUP_METRIC_PRINT)
#undef ISOLATE_GROUP_METRIC_PRINT
#define ISOLATE_METRIC_PRINT(type, variable, name, unit) \
OS::PrintErr("%s\n", metric_##variable##_.ToString());
ISOLATE_METRIC_LIST(ISOLATE_METRIC_PRINT)
#undef ISOLATE_METRIC_PRINT
OS::PrintErr("\n");
}
#endif // !defined(PRODUCT)
}
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
void Isolate::MaybeIncreaseReloadEveryNStackOverflowChecks() {
if (FLAG_reload_every_back_off) {
if (reload_every_n_stack_overflow_checks_ < 5000) {
reload_every_n_stack_overflow_checks_ += 99;
} else {
reload_every_n_stack_overflow_checks_ *= 2;
}
// Cap the value.
if (reload_every_n_stack_overflow_checks_ > 1000000) {
reload_every_n_stack_overflow_checks_ = 1000000;
}
}
}
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
void Isolate::set_forward_table_new(WeakTable* table) {
std::unique_ptr<WeakTable> value(table);
forward_table_new_ = std::move(value);
}
void Isolate::set_forward_table_old(WeakTable* table) {
std::unique_ptr<WeakTable> value(table);
forward_table_old_ = std::move(value);
}
void Isolate::Shutdown() {
ASSERT(this == Isolate::Current());
BackgroundCompiler::Stop(this);
if (FLAG_enable_interpreter) {
delete background_compiler_;
background_compiler_ = nullptr;
}
delete optimizing_background_compiler_;
optimizing_background_compiler_ = nullptr;
Thread* thread = Thread::Current();
// Don't allow anymore dart code to execution on this isolate.
thread->ClearStackLimit();
{
StackZone zone(thread);
HandleScope handle_scope(thread);
ServiceIsolate::SendIsolateShutdownMessage();
KernelIsolate::NotifyAboutIsolateShutdown(this);
#if !defined(PRODUCT)
debugger()->Shutdown();
#endif
}
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
if (FLAG_check_reloaded && is_runnable() &&
!Isolate::IsVMInternalIsolate(this)) {
if (!HasAttemptedReload()) {
FATAL(
"Isolate did not reload before exiting and "
"--check-reloaded is enabled.\n");
}
}
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
// Then, proceed with low-level teardown.
Isolate::UnMarkIsolateReady(this);
// Post message before LowLevelShutdown that sends onExit message.
// This ensures that exit message comes last.
if (bequest_.get() != nullptr) {
auto beneficiary = bequest_->beneficiary();
PortMap::PostMessage(Message::New(beneficiary, bequest_.release(),
Message::kNormalPriority));
}
LowLevelShutdown();
// Now we can unregister from the thread, invoke cleanup callback, delete the
// isolate (and possibly the isolate group).
Isolate::LowLevelCleanup(this);
}
void Isolate::LowLevelCleanup(Isolate* isolate) {
#if !defined(DART_PECOMPILED_RUNTIME)
if (KernelIsolate::IsKernelIsolate(isolate)) {
KernelIsolate::SetKernelIsolate(nullptr);
#endif
} else if (ServiceIsolate::IsServiceIsolate(isolate)) {
ServiceIsolate::SetServiceIsolate(nullptr);
}
// Cache these two fields, since they are no longer available after the
// `delete this` further down.
IsolateGroup* isolate_group = isolate->isolate_group_;
Dart_IsolateCleanupCallback cleanup = Isolate::CleanupCallback();
auto callback_data = isolate->init_callback_data_;
// From this point on the isolate is no longer visited by GC (which is ok,
// since we're just going to delete it anyway).
isolate_group->UnregisterIsolate(isolate);
// From this point on the isolate doesn't participate in safepointing
// requests anymore.
Thread::ExitIsolate();
// Now it's safe to delete the isolate.
delete isolate;
// Run isolate specific cleanup function for all non "vm-isolate's.
const bool is_vm_isolate = Dart::vm_isolate() == isolate;
if (!is_vm_isolate) {
if (cleanup != nullptr) {
cleanup(isolate_group->embedder_data(), callback_data);
}
}
const bool shutdown_group =
isolate_group->UnregisterIsolateDecrementCount(isolate);
if (shutdown_group) {
// The "vm-isolate" does not have a thread pool.
ASSERT(is_vm_isolate == (isolate_group->thread_pool() == nullptr));
if (is_vm_isolate ||
!isolate_group->thread_pool()->CurrentThreadIsWorker()) {
isolate_group->Shutdown();
} else {
class ShutdownGroupTask : public ThreadPool::Task {
public:
explicit ShutdownGroupTask(IsolateGroup* isolate_group)
: isolate_group_(isolate_group) {}
virtual void Run() { isolate_group_->Shutdown(); }
private:
IsolateGroup* isolate_group_;
};
// The current thread is running on the isolate group's thread pool.
// So we cannot safely delete the isolate group (and it's pool).
// Instead we will destroy the isolate group on the VM-global pool.
Dart::thread_pool()->Run<ShutdownGroupTask>(isolate_group);
}
} else {
if (FLAG_enable_isolate_groups) {
// TODO(dartbug.com/36097): An isolate just died. A significant amount of
// memory might have become unreachable. We should evaluate how to best
// inform the GC about this situation.
}
}
} // namespace dart
Dart_InitializeIsolateCallback Isolate::initialize_callback_ = nullptr;
Dart_IsolateGroupCreateCallback Isolate::create_group_callback_ = nullptr;
Dart_IsolateShutdownCallback Isolate::shutdown_callback_ = nullptr;
Dart_IsolateCleanupCallback Isolate::cleanup_callback_ = nullptr;
Dart_IsolateGroupCleanupCallback Isolate::cleanup_group_callback_ = nullptr;
Random* IsolateGroup::isolate_group_random_ = nullptr;
Monitor* Isolate::isolate_creation_monitor_ = nullptr;
bool Isolate::creation_enabled_ = false;
RwLock* IsolateGroup::isolate_groups_rwlock_ = nullptr;
IntrusiveDList<IsolateGroup>* IsolateGroup::isolate_groups_ = nullptr;
void Isolate::VisitObjectPointers(ObjectPointerVisitor* visitor,
ValidationPolicy validate_frames) {
ASSERT(visitor != nullptr);
// Visit objects in the object store if there is no isolate group object store
if (group()->object_store() == nullptr && object_store() != nullptr) {
object_store()->VisitObjectPointers(visitor);
}
// Visit objects in the isolate object store.
if (isolate_object_store() != nullptr) {
isolate_object_store()->VisitObjectPointers(visitor);
}
// Visit objects in the class table unless it's shared by the group.
// If it is shared, it is visited by IsolateGroup::VisitObjectPointers
if (group()->class_table() != class_table()) {
class_table()->VisitObjectPointers(visitor);
}
// Visit objects in the field table.
field_table()->VisitObjectPointers(visitor);
visitor->clear_gc_root_type();
// Visit the objects directly referenced from the isolate structure.
visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&current_tag_));
visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&default_tag_));
visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&ic_miss_code_));
visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&tag_table_));
visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&deoptimized_code_array_));
visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&sticky_error_));
if (isolate_group_ != nullptr) {
if (isolate_group_->source()->loaded_blobs_ != nullptr) {
visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(
&(isolate_group_->source()->loaded_blobs_)));
}
}
#if !defined(PRODUCT)
visitor->VisitPointer(
reinterpret_cast<ObjectPtr*>(&pending_service_extension_calls_));
visitor->VisitPointer(
reinterpret_cast<ObjectPtr*>(&registered_service_extension_handlers_));
#endif // !defined(PRODUCT)
// Visit the boxed_field_list_.
// 'boxed_field_list_' access via mutator and background compilation threads
// is guarded with a monitor. This means that we can visit it only
// when at safepoint or the field_list_mutex_ lock has been taken.
visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&boxed_field_list_));
if (background_compiler() != nullptr) {
background_compiler()->VisitPointers(visitor);
}
if (optimizing_background_compiler() != nullptr) {
optimizing_background_compiler()->VisitPointers(visitor);
}
#if !defined(PRODUCT)
// Visit objects in the debugger.
if (debugger() != nullptr) {
debugger()->VisitObjectPointers(visitor);
}
#if !defined(DART_PRECOMPILED_RUNTIME)
// Visit objects that are being used for isolate reload.
if (reload_context() != nullptr) {
reload_context()->VisitObjectPointers(visitor);
reload_context()->group_reload_context()->VisitObjectPointers(visitor);
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
if (ServiceIsolate::IsServiceIsolate(this)) {
ServiceIsolate::VisitObjectPointers(visitor);
}
#endif // !defined(PRODUCT)
#if !defined(DART_PRECOMPILED_RUNTIME)
// Visit objects that are being used for deoptimization.
if (deopt_context() != nullptr) {
deopt_context()->VisitObjectPointers(visitor);
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
}
void IsolateGroup::ReleaseStoreBuffers() {
thread_registry()->ReleaseStoreBuffers();
}
void Isolate::RememberLiveTemporaries() {
if (mutator_thread_ != nullptr) {
mutator_thread_->RememberLiveTemporaries();
}
}
void Isolate::DeferredMarkLiveTemporaries() {
if (mutator_thread_ != nullptr) {
mutator_thread_->DeferredMarkLiveTemporaries();
}
}
void IsolateGroup::EnableIncrementalBarrier(
MarkingStack* marking_stack,
MarkingStack* deferred_marking_stack) {
ASSERT(marking_stack_ == nullptr);
marking_stack_ = marking_stack;
deferred_marking_stack_ = deferred_marking_stack;
thread_registry()->AcquireMarkingStacks();
ASSERT(Thread::Current()->is_marking());
}
void IsolateGroup::DisableIncrementalBarrier() {
thread_registry()->ReleaseMarkingStacks();
ASSERT(marking_stack_ != nullptr);
marking_stack_ = nullptr;
deferred_marking_stack_ = nullptr;
}
void IsolateGroup::ForEachIsolate(
std::function<void(Isolate* isolate)> function,
bool at_safepoint) {
if (at_safepoint) {
ASSERT(Thread::Current()->IsAtSafepoint() ||
(Thread::Current()->task_kind() == Thread::kMutatorTask) ||
(Thread::Current()->task_kind() == Thread::kMarkerTask) ||
(Thread::Current()->task_kind() == Thread::kCompactorTask) ||
(Thread::Current()->task_kind() == Thread::kScavengerTask));
for (Isolate* isolate : isolates_) {
function(isolate);
}
} else {
SafepointReadRwLocker ml(Thread::Current(), isolates_lock_.get());
for (Isolate* isolate : isolates_) {
function(isolate);
}
}
}
Isolate* IsolateGroup::FirstIsolate() const {
SafepointWriteRwLocker ml(Thread::Current(), isolates_lock_.get());
return FirstIsolateLocked();
}
Isolate* IsolateGroup::FirstIsolateLocked() const {
return isolates_.IsEmpty() ? nullptr : isolates_.First();
}
void IsolateGroup::RunWithStoppedMutatorsCallable(
Callable* single_current_mutator,
Callable* otherwise,
bool use_force_growth_in_otherwise) {
auto thread = Thread::Current();