blob: 97b58f5baf250c7b0af0081a0ea560c483d4b324 [file] [log] [blame]
// Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include <setjmp.h> // NOLINT
#include <stdlib.h>
#include "vm/globals.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/interpreter.h"
#include "vm/compiler/api/type_check_mode.h"
#include "vm/compiler/assembler/assembler.h"
#include "vm/compiler/assembler/disassembler_kbc.h"
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/compiler/ffi/abi.h"
#include "vm/compiler/frontend/bytecode_reader.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/cpu.h"
#include "vm/dart_entry.h"
#include "vm/debugger.h"
#include "vm/lockers.h"
#include "vm/native_arguments.h"
#include "vm/native_entry.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/os_thread.h"
#include "vm/stack_frame_kbc.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(uint64_t,
trace_interpreter_after,
ULLONG_MAX,
"Trace interpreter execution after instruction count reached.");
DEFINE_FLAG(charp,
interpreter_trace_file,
NULL,
"File to write a dynamic instruction trace to.");
DEFINE_FLAG(uint64_t,
interpreter_trace_file_max_bytes,
100 * MB,
"Maximum size in bytes of the interpreter trace file");
// InterpreterSetjmpBuffer are linked together, and the last created one
// is referenced by the Interpreter. When an exception is thrown, the exception
// runtime looks at where to jump and finds the corresponding
// InterpreterSetjmpBuffer based on the stack pointer of the exception handler.
// The runtime then does a Longjmp on that buffer to return to the interpreter.
class InterpreterSetjmpBuffer {
public:
void Longjmp() {
// "This" is now the last setjmp buffer.
interpreter_->set_last_setjmp_buffer(this);
longjmp(buffer_, 1);
}
explicit InterpreterSetjmpBuffer(Interpreter* interpreter) {
interpreter_ = interpreter;
link_ = interpreter->last_setjmp_buffer();
interpreter->set_last_setjmp_buffer(this);
fp_ = interpreter->fp_;
}
~InterpreterSetjmpBuffer() {
ASSERT(interpreter_->last_setjmp_buffer() == this);
interpreter_->set_last_setjmp_buffer(link_);
}
InterpreterSetjmpBuffer* link() const { return link_; }
uword fp() const { return reinterpret_cast<uword>(fp_); }
jmp_buf buffer_;
private:
ObjectPtr* fp_;
Interpreter* interpreter_;
InterpreterSetjmpBuffer* link_;
friend class Interpreter;
DISALLOW_ALLOCATION();
DISALLOW_COPY_AND_ASSIGN(InterpreterSetjmpBuffer);
};
DART_FORCE_INLINE static ObjectPtr* SavedCallerFP(ObjectPtr* FP) {
return reinterpret_cast<ObjectPtr*>(
static_cast<uword>(FP[kKBCSavedCallerFpSlotFromFp]));
}
DART_FORCE_INLINE static ObjectPtr* FrameArguments(ObjectPtr* FP,
intptr_t argc) {
return FP - (kKBCDartFrameFixedSize + argc);
}
#define RAW_CAST(Type, val) (InterpreterHelpers::CastTo##Type(val))
class InterpreterHelpers {
public:
#define DEFINE_CASTS(Type) \
DART_FORCE_INLINE static Type##Ptr CastTo##Type(ObjectPtr obj) { \
ASSERT((k##Type##Cid == kSmiCid) \
? !obj->IsHeapObject() \
: (k##Type##Cid == kIntegerCid) \
? (!obj->IsHeapObject() || obj->IsMint()) \
: obj->Is##Type()); \
return static_cast<Type##Ptr>(obj); \
}
CLASS_LIST(DEFINE_CASTS)
#undef DEFINE_CASTS
DART_FORCE_INLINE static SmiPtr GetClassIdAsSmi(ObjectPtr obj) {
return Smi::New(obj->IsHeapObject() ? obj->GetClassId()
: static_cast<intptr_t>(kSmiCid));
}
DART_FORCE_INLINE static intptr_t GetClassId(ObjectPtr obj) {
return obj->IsHeapObject() ? obj->GetClassId()
: static_cast<intptr_t>(kSmiCid);
}
DART_FORCE_INLINE static TypeArgumentsPtr GetTypeArguments(
Thread* thread,
InstancePtr instance) {
ClassPtr instance_class =
thread->isolate()->class_table()->At(GetClassId(instance));
return instance_class->ptr()->num_type_arguments_ > 0
? reinterpret_cast<TypeArgumentsPtr*>(instance->ptr())
[instance_class->ptr()
->host_type_arguments_field_offset_in_words_]
: TypeArguments::null();
}
// The usage counter is actually a 'hotness' counter.
// For an instance call, both the usage counters of the caller and of the
// calle will get incremented, as well as the ICdata counter at the call site.
DART_FORCE_INLINE static void IncrementUsageCounter(FunctionPtr f) {
f->ptr()->usage_counter_++;
}
DART_FORCE_INLINE static void IncrementICUsageCount(ObjectPtr* entries,
intptr_t offset,
intptr_t args_tested) {
const intptr_t count_offset = ICData::CountIndexFor(args_tested);
const intptr_t raw_smi_old =
static_cast<intptr_t>(entries[offset + count_offset]);
const intptr_t raw_smi_new = raw_smi_old + Smi::RawValue(1);
*reinterpret_cast<intptr_t*>(&entries[offset + count_offset]) = raw_smi_new;
}
DART_FORCE_INLINE static bool CheckIndex(SmiPtr index, SmiPtr length) {
return !index->IsHeapObject() && (static_cast<intptr_t>(index) >= 0) &&
(static_cast<intptr_t>(index) < static_cast<intptr_t>(length));
}
DART_FORCE_INLINE static intptr_t ArgDescTypeArgsLen(ArrayPtr argdesc) {
return Smi::Value(*reinterpret_cast<SmiPtr*>(
reinterpret_cast<uword>(argdesc->ptr()) +
Array::element_offset(ArgumentsDescriptor::kTypeArgsLenIndex)));
}
DART_FORCE_INLINE static intptr_t ArgDescArgCount(ArrayPtr argdesc) {
return Smi::Value(*reinterpret_cast<SmiPtr*>(
reinterpret_cast<uword>(argdesc->ptr()) +
Array::element_offset(ArgumentsDescriptor::kCountIndex)));
}
DART_FORCE_INLINE static intptr_t ArgDescArgSize(ArrayPtr argdesc) {
return Smi::Value(*reinterpret_cast<SmiPtr*>(
reinterpret_cast<uword>(argdesc->ptr()) +
Array::element_offset(ArgumentsDescriptor::kSizeIndex)));
}
DART_FORCE_INLINE static intptr_t ArgDescPosCount(ArrayPtr argdesc) {
return Smi::Value(*reinterpret_cast<SmiPtr*>(
reinterpret_cast<uword>(argdesc->ptr()) +
Array::element_offset(ArgumentsDescriptor::kPositionalCountIndex)));
}
DART_FORCE_INLINE static BytecodePtr FrameBytecode(ObjectPtr* FP) {
ASSERT(GetClassId(FP[kKBCPcMarkerSlotFromFp]) == kBytecodeCid);
return static_cast<BytecodePtr>(FP[kKBCPcMarkerSlotFromFp]);
}
DART_FORCE_INLINE static bool FieldNeedsGuardUpdate(FieldPtr field,
ObjectPtr value) {
// The interpreter should never see a cloned field.
ASSERT(field->ptr()->owner_->GetClassId() != kFieldCid);
const classid_t guarded_cid = field->ptr()->guarded_cid_;
if (guarded_cid == kDynamicCid) {
// Field is not guarded.
return false;
}
ASSERT(Isolate::Current()->use_field_guards());
const classid_t nullability_cid = field->ptr()->is_nullable_;
const classid_t value_cid = InterpreterHelpers::GetClassId(value);
if (nullability_cid == value_cid) {
// Storing null into a nullable field.
return false;
}
if (guarded_cid != value_cid) {
// First assignment (guarded_cid == kIllegalCid) or
// field no longer monomorphic or
// field has become nullable.
return true;
}
intptr_t guarded_list_length =
Smi::Value(field->ptr()->guarded_list_length_);
if (UNLIKELY(guarded_list_length >= Field::kUnknownFixedLength)) {
// Guarding length, check this in the runtime.
return true;
}
if (UNLIKELY(field->ptr()->static_type_exactness_state_ >=
StaticTypeExactnessState::Uninitialized().Encode())) {
// Guarding "exactness", check this in the runtime.
return true;
}
// Everything matches.
return false;
}
DART_FORCE_INLINE static bool IsAllocateFinalized(ClassPtr cls) {
return Class::ClassFinalizedBits::decode(cls->ptr()->state_bits_) ==
ClassLayout::kAllocateFinalized;
}
};
DART_FORCE_INLINE static const KBCInstr* SavedCallerPC(ObjectPtr* FP) {
return reinterpret_cast<const KBCInstr*>(
static_cast<uword>(FP[kKBCSavedCallerPcSlotFromFp]));
}
DART_FORCE_INLINE static FunctionPtr FrameFunction(ObjectPtr* FP) {
FunctionPtr function = static_cast<FunctionPtr>(FP[kKBCFunctionSlotFromFp]);
ASSERT(InterpreterHelpers::GetClassId(function) == kFunctionCid ||
InterpreterHelpers::GetClassId(function) == kNullCid);
return function;
}
DART_FORCE_INLINE static ObjectPtr InitializeHeader(uword addr,
intptr_t class_id,
intptr_t instance_size) {
uint32_t tags = 0;
tags = ObjectLayout::ClassIdTag::update(class_id, tags);
tags = ObjectLayout::SizeTag::update(instance_size, tags);
tags = ObjectLayout::OldBit::update(false, tags);
tags = ObjectLayout::OldAndNotMarkedBit::update(false, tags);
tags = ObjectLayout::OldAndNotRememberedBit::update(false, tags);
tags = ObjectLayout::NewBit::update(true, tags);
// Also writes zero in the hash_ field.
*reinterpret_cast<uword*>(addr + Object::tags_offset()) = tags;
return ObjectLayout::FromAddr(addr);
}
DART_FORCE_INLINE static bool TryAllocate(Thread* thread,
intptr_t class_id,
intptr_t instance_size,
ObjectPtr* result) {
ASSERT(instance_size > 0);
ASSERT(Utils::IsAligned(instance_size, kObjectAlignment));
#ifndef PRODUCT
auto table = thread->isolate_group()->shared_class_table();
if (UNLIKELY(table->TraceAllocationFor(class_id))) {
return false;
}
#endif
const uword top = thread->top();
const intptr_t remaining = thread->end() - top;
if (LIKELY(remaining >= instance_size)) {
thread->set_top(top + instance_size);
*result = InitializeHeader(top, class_id, instance_size);
return true;
}
return false;
}
void LookupCache::Clear() {
for (intptr_t i = 0; i < kNumEntries; i++) {
entries_[i].receiver_cid = kIllegalCid;
}
}
bool LookupCache::Lookup(intptr_t receiver_cid,
StringPtr function_name,
ArrayPtr arguments_descriptor,
FunctionPtr* target) const {
ASSERT(receiver_cid != kIllegalCid); // Sentinel value.
const intptr_t hash = receiver_cid ^ static_cast<intptr_t>(function_name) ^
static_cast<intptr_t>(arguments_descriptor);
const intptr_t probe1 = hash & kTableMask;
if (entries_[probe1].receiver_cid == receiver_cid &&
entries_[probe1].function_name == function_name &&
entries_[probe1].arguments_descriptor == arguments_descriptor) {
*target = entries_[probe1].target;
return true;
}
intptr_t probe2 = (hash >> 3) & kTableMask;
if (entries_[probe2].receiver_cid == receiver_cid &&
entries_[probe2].function_name == function_name &&
entries_[probe2].arguments_descriptor == arguments_descriptor) {
*target = entries_[probe2].target;
return true;
}
return false;
}
void LookupCache::Insert(intptr_t receiver_cid,
StringPtr function_name,
ArrayPtr arguments_descriptor,
FunctionPtr target) {
// Otherwise we have to clear the cache or rehash on scavenges too.
ASSERT(function_name->IsOldObject());
ASSERT(arguments_descriptor->IsOldObject());
ASSERT(target->IsOldObject());
const intptr_t hash = receiver_cid ^ static_cast<intptr_t>(function_name) ^
static_cast<intptr_t>(arguments_descriptor);
const intptr_t probe1 = hash & kTableMask;
if (entries_[probe1].receiver_cid == kIllegalCid) {
entries_[probe1].receiver_cid = receiver_cid;
entries_[probe1].function_name = function_name;
entries_[probe1].arguments_descriptor = arguments_descriptor;
entries_[probe1].target = target;
return;
}
const intptr_t probe2 = (hash >> 3) & kTableMask;
if (entries_[probe2].receiver_cid == kIllegalCid) {
entries_[probe2].receiver_cid = receiver_cid;
entries_[probe2].function_name = function_name;
entries_[probe2].arguments_descriptor = arguments_descriptor;
entries_[probe2].target = target;
return;
}
entries_[probe1].receiver_cid = receiver_cid;
entries_[probe1].function_name = function_name;
entries_[probe1].arguments_descriptor = arguments_descriptor;
entries_[probe1].target = target;
}
Interpreter::Interpreter()
: stack_(NULL),
fp_(NULL),
pp_(nullptr),
argdesc_(nullptr),
lookup_cache_() {
// Setup interpreter support first. Some of this information is needed to
// setup the architecture state.
// We allocate the stack here, the size is computed as the sum of
// the size specified by the user and the buffer space needed for
// handling stack overflow exceptions. To be safe in potential
// stack underflows we also add some underflow buffer space.
stack_ = new uintptr_t[(OSThread::GetSpecifiedStackSize() +
OSThread::kStackSizeBufferMax +
kInterpreterStackUnderflowSize) /
sizeof(uintptr_t)];
// Low address.
stack_base_ =
reinterpret_cast<uword>(stack_) + kInterpreterStackUnderflowSize;
// Limit for StackOverflowError.
overflow_stack_limit_ = stack_base_ + OSThread::GetSpecifiedStackSize();
// High address.
stack_limit_ = overflow_stack_limit_ + OSThread::kStackSizeBufferMax;
last_setjmp_buffer_ = NULL;
DEBUG_ONLY(icount_ = 1); // So that tracing after 0 traces first bytecode.
#if defined(DEBUG)
trace_file_bytes_written_ = 0;
trace_file_ = NULL;
if (FLAG_interpreter_trace_file != NULL) {
Dart_FileOpenCallback file_open = Dart::file_open_callback();
if (file_open != NULL) {
trace_file_ = file_open(FLAG_interpreter_trace_file, /* write */ true);
trace_buffer_ = new KBCInstr[kTraceBufferInstrs];
trace_buffer_idx_ = 0;
}
}
#endif
// Make sure interpreter's unboxing view is consistent with compiler.
supports_unboxed_doubles_ = FlowGraphCompiler::SupportsUnboxedDoubles();
supports_unboxed_simd128_ = FlowGraphCompiler::SupportsUnboxedSimd128();
}
Interpreter::~Interpreter() {
delete[] stack_;
pp_ = NULL;
argdesc_ = NULL;
#if defined(DEBUG)
if (trace_file_ != NULL) {
FlushTraceBuffer();
// Close the file.
Dart_FileCloseCallback file_close = Dart::file_close_callback();
if (file_close != NULL) {
file_close(trace_file_);
trace_file_ = NULL;
delete[] trace_buffer_;
trace_buffer_ = NULL;
}
}
#endif
}
// Get the active Interpreter for the current isolate.
Interpreter* Interpreter::Current() {
Thread* thread = Thread::Current();
Interpreter* interpreter = thread->interpreter();
if (interpreter == nullptr) {
NoSafepointScope no_safepoint;
interpreter = new Interpreter();
thread->set_interpreter(interpreter);
}
return interpreter;
}
#if defined(DEBUG)
// Returns true if tracing of executed instructions is enabled.
// May be called on entry, when icount_ has not been incremented yet.
DART_FORCE_INLINE bool Interpreter::IsTracingExecution() const {
return icount_ > FLAG_trace_interpreter_after;
}
// Prints bytecode instruction at given pc for instruction tracing.
DART_NOINLINE void Interpreter::TraceInstruction(const KBCInstr* pc) const {
THR_Print("%" Pu64 " ", icount_);
if (FLAG_support_disassembler) {
KernelBytecodeDisassembler::Disassemble(
reinterpret_cast<uword>(pc),
reinterpret_cast<uword>(KernelBytecode::Next(pc)));
} else {
THR_Print("Disassembler not supported in this mode.\n");
}
}
DART_FORCE_INLINE bool Interpreter::IsWritingTraceFile() const {
return (trace_file_ != NULL) &&
(trace_file_bytes_written_ < FLAG_interpreter_trace_file_max_bytes);
}
void Interpreter::FlushTraceBuffer() {
Dart_FileWriteCallback file_write = Dart::file_write_callback();
if (file_write == NULL) {
return;
}
if (trace_file_bytes_written_ >= FLAG_interpreter_trace_file_max_bytes) {
return;
}
const intptr_t bytes_to_write = Utils::Minimum(
static_cast<uint64_t>(trace_buffer_idx_ * sizeof(KBCInstr)),
FLAG_interpreter_trace_file_max_bytes - trace_file_bytes_written_);
if (bytes_to_write == 0) {
return;
}
file_write(trace_buffer_, bytes_to_write, trace_file_);
trace_file_bytes_written_ += bytes_to_write;
trace_buffer_idx_ = 0;
}
DART_NOINLINE void Interpreter::WriteInstructionToTrace(const KBCInstr* pc) {
Dart_FileWriteCallback file_write = Dart::file_write_callback();
if (file_write == NULL) {
return;
}
const KBCInstr* next = KernelBytecode::Next(pc);
while ((trace_buffer_idx_ < kTraceBufferInstrs) && (pc != next)) {
trace_buffer_[trace_buffer_idx_++] = *pc;
++pc;
}
if (trace_buffer_idx_ == kTraceBufferInstrs) {
FlushTraceBuffer();
}
}
#endif // defined(DEBUG)
// Calls into the Dart runtime are based on this interface.
typedef void (*InterpreterRuntimeCall)(NativeArguments arguments);
// Calls to leaf Dart runtime functions are based on this interface.
typedef intptr_t (*InterpreterLeafRuntimeCall)(intptr_t r0,
intptr_t r1,
intptr_t r2,
intptr_t r3);
// Calls to leaf float Dart runtime functions are based on this interface.
typedef double (*InterpreterLeafFloatRuntimeCall)(double d0, double d1);
void Interpreter::Exit(Thread* thread,
ObjectPtr* base,
ObjectPtr* frame,
const KBCInstr* pc) {
frame[0] = Function::null();
frame[1] = Bytecode::null();
frame[2] = static_cast<ObjectPtr>(reinterpret_cast<uword>(pc));
frame[3] = static_cast<ObjectPtr>(reinterpret_cast<uword>(base));
ObjectPtr* exit_fp = frame + kKBCDartFrameFixedSize;
thread->set_top_exit_frame_info(reinterpret_cast<uword>(exit_fp));
fp_ = exit_fp;
#if defined(DEBUG)
if (IsTracingExecution()) {
THR_Print("%" Pu64 " ", icount_);
THR_Print("Exiting interpreter 0x%" Px " at fp_ 0x%" Px "\n",
reinterpret_cast<uword>(this), reinterpret_cast<uword>(exit_fp));
}
#endif
}
void Interpreter::Unexit(Thread* thread) {
#if !defined(PRODUCT)
// For the profiler.
ObjectPtr* exit_fp =
reinterpret_cast<ObjectPtr*>(thread->top_exit_frame_info());
ASSERT(exit_fp != 0);
pc_ = SavedCallerPC(exit_fp);
fp_ = SavedCallerFP(exit_fp);
#endif
thread->set_top_exit_frame_info(0);
}
// Calling into runtime may trigger garbage collection and relocate objects,
// so all ObjectPtr pointers become outdated and should not be used across
// runtime calls.
// Note: functions below are marked DART_NOINLINE to recover performance where
// inlining these functions into the interpreter loop seemed to cause some code
// quality issues. Functions with the "returns_twice" attribute, such as setjmp,
// prevent reusing spill slots and large frame sizes.
static DART_NOINLINE bool InvokeRuntime(Thread* thread,
Interpreter* interpreter,
RuntimeFunction drt,
const NativeArguments& args) {
InterpreterSetjmpBuffer buffer(interpreter);
if (!setjmp(buffer.buffer_)) {
thread->set_vm_tag(reinterpret_cast<uword>(drt));
drt(args);
thread->set_vm_tag(VMTag::kDartInterpretedTagId);
interpreter->Unexit(thread);
return true;
} else {
return false;
}
}
static DART_NOINLINE bool InvokeNative(Thread* thread,
Interpreter* interpreter,
NativeFunctionWrapper wrapper,
Dart_NativeFunction function,
Dart_NativeArguments args) {
InterpreterSetjmpBuffer buffer(interpreter);
if (!setjmp(buffer.buffer_)) {
thread->set_vm_tag(reinterpret_cast<uword>(function));
wrapper(args, function);
thread->set_vm_tag(VMTag::kDartInterpretedTagId);
interpreter->Unexit(thread);
return true;
} else {
return false;
}
}
extern "C" {
// Note: The invocation stub follows the C ABI, so we cannot pass C++ struct
// values like ObjectPtr. In some calling conventions (IA32), ObjectPtr is
// passed/returned different from a pointer.
typedef uword /*ObjectPtr*/ (*invokestub)(uword /*CodePtr*/ code,
uword /*ArrayPtr*/ argdesc,
ObjectPtr* arg0,
Thread* thread);
}
DART_NOINLINE bool Interpreter::InvokeCompiled(Thread* thread,
FunctionPtr function,
ObjectPtr* call_base,
ObjectPtr* call_top,
const KBCInstr** pc,
ObjectPtr** FP,
ObjectPtr** SP) {
ASSERT(Function::HasCode(function));
CodePtr code = function->ptr()->code_;
ASSERT(code != StubCode::LazyCompile().raw());
// TODO(regis): Once we share the same stack, try to invoke directly.
#if defined(DEBUG)
if (IsTracingExecution()) {
THR_Print("%" Pu64 " ", icount_);
THR_Print("invoking compiled %s\n", Function::Handle(function).ToCString());
}
#endif
// On success, returns a RawInstance. On failure, a RawError.
invokestub volatile entrypoint = reinterpret_cast<invokestub>(
StubCode::InvokeDartCodeFromBytecode().EntryPoint());
ObjectPtr result;
Exit(thread, *FP, call_top + 1, *pc);
{
InterpreterSetjmpBuffer buffer(this);
if (!setjmp(buffer.buffer_)) {
#if defined(USING_SIMULATOR)
// We need to beware that bouncing between the interpreter and the
// simulator may exhaust the C stack before exhausting either the
// interpreter or simulator stacks.
if (!thread->os_thread()->HasStackHeadroom()) {
thread->SetStackLimit(-1);
}
result = bit_copy<ObjectPtr, int64_t>(Simulator::Current()->Call(
reinterpret_cast<intptr_t>(entrypoint), static_cast<intptr_t>(code),
static_cast<intptr_t>(argdesc_),
reinterpret_cast<intptr_t>(call_base),
reinterpret_cast<intptr_t>(thread)));
#else
result = static_cast<ObjectPtr>(entrypoint(static_cast<uword>(code),
static_cast<uword>(argdesc_),
call_base, thread));
#endif
ASSERT(thread->vm_tag() == VMTag::kDartInterpretedTagId);
ASSERT(thread->execution_state() == Thread::kThreadInGenerated);
Unexit(thread);
} else {
return false;
}
}
// Pop args and push result.
*SP = call_base;
**SP = result;
pp_ = InterpreterHelpers::FrameBytecode(*FP)->ptr()->object_pool_;
// If the result is an error (not a Dart instance), it must either be rethrown
// (in the case of an unhandled exception) or it must be returned to the
// caller of the interpreter to be propagated.
if (result->IsHeapObject()) {
const intptr_t result_cid = result->GetClassId();
if (result_cid == kUnhandledExceptionCid) {
(*SP)[0] = UnhandledException::RawCast(result)->ptr()->exception_;
(*SP)[1] = UnhandledException::RawCast(result)->ptr()->stacktrace_;
(*SP)[2] = 0; // Space for result.
Exit(thread, *FP, *SP + 3, *pc);
NativeArguments args(thread, 2, *SP, *SP + 2);
if (!InvokeRuntime(thread, this, DRT_ReThrow, args)) {
return false;
}
UNREACHABLE();
}
if (IsErrorClassId(result_cid)) {
// Unwind to entry frame.
fp_ = *FP;
pc_ = SavedCallerPC(fp_);
while (!IsEntryFrameMarker(pc_)) {
fp_ = SavedCallerFP(fp_);
pc_ = SavedCallerPC(fp_);
}
// Pop entry frame.
fp_ = SavedCallerFP(fp_);
special_[KernelBytecode::kExceptionSpecialIndex] = result;
return false;
}
}
return true;
}
DART_FORCE_INLINE bool Interpreter::InvokeBytecode(Thread* thread,
FunctionPtr function,
ObjectPtr* call_base,
ObjectPtr* call_top,
const KBCInstr** pc,
ObjectPtr** FP,
ObjectPtr** SP) {
ASSERT(Function::HasBytecode(function));
#if defined(DEBUG)
if (IsTracingExecution()) {
THR_Print("%" Pu64 " ", icount_);
THR_Print("invoking %s\n",
Function::Handle(function).ToFullyQualifiedCString());
}
#endif
ObjectPtr* callee_fp = call_top + kKBCDartFrameFixedSize;
ASSERT(function == FrameFunction(callee_fp));
BytecodePtr bytecode = function->ptr()->bytecode_;
callee_fp[kKBCPcMarkerSlotFromFp] = bytecode;
callee_fp[kKBCSavedCallerPcSlotFromFp] =
static_cast<ObjectPtr>(reinterpret_cast<uword>(*pc));
callee_fp[kKBCSavedCallerFpSlotFromFp] =
static_cast<ObjectPtr>(reinterpret_cast<uword>(*FP));
pp_ = bytecode->ptr()->object_pool_;
*pc = reinterpret_cast<const KBCInstr*>(bytecode->ptr()->instructions_);
NOT_IN_PRODUCT(pc_ = *pc); // For the profiler.
*FP = callee_fp;
NOT_IN_PRODUCT(fp_ = callee_fp); // For the profiler.
*SP = *FP - 1;
return true;
}
DART_FORCE_INLINE bool Interpreter::Invoke(Thread* thread,
ObjectPtr* call_base,
ObjectPtr* call_top,
const KBCInstr** pc,
ObjectPtr** FP,
ObjectPtr** SP) {
ObjectPtr* callee_fp = call_top + kKBCDartFrameFixedSize;
FunctionPtr function = FrameFunction(callee_fp);
for (;;) {
if (Function::HasCode(function)) {
return InvokeCompiled(thread, function, call_base, call_top, pc, FP, SP);
}
if (Function::HasBytecode(function)) {
return InvokeBytecode(thread, function, call_base, call_top, pc, FP, SP);
}
// Compile the function to either generate code or load bytecode.
call_top[1] = 0; // Code result.
call_top[2] = function;
Exit(thread, *FP, call_top + 3, *pc);
NativeArguments native_args(thread, 1, call_top + 2, call_top + 1);
if (!InvokeRuntime(thread, this, DRT_CompileFunction, native_args)) {
return false;
}
// Reload objects after the call which may trigger GC.
function = Function::RawCast(call_top[2]);
ASSERT(Function::HasCode(function) || Function::HasBytecode(function));
}
}
DART_FORCE_INLINE bool Interpreter::InstanceCall(Thread* thread,
StringPtr target_name,
ObjectPtr* call_base,
ObjectPtr* top,
const KBCInstr** pc,
ObjectPtr** FP,
ObjectPtr** SP) {
ObjectPtr null_value = Object::null();
const intptr_t type_args_len =
InterpreterHelpers::ArgDescTypeArgsLen(argdesc_);
const intptr_t receiver_idx = type_args_len > 0 ? 1 : 0;
intptr_t receiver_cid =
InterpreterHelpers::GetClassId(call_base[receiver_idx]);
FunctionPtr target;
if (UNLIKELY(!lookup_cache_.Lookup(receiver_cid, target_name, argdesc_,
&target))) {
// Table lookup miss.
top[0] = null_value; // Clean up slot as it may be visited by GC.
top[1] = call_base[receiver_idx];
top[2] = target_name;
top[3] = argdesc_;
top[4] = null_value; // Result slot.
Exit(thread, *FP, top + 5, *pc);
NativeArguments native_args(thread, 3, /* argv */ top + 1,
/* result */ top + 4);
if (!InvokeRuntime(thread, this, DRT_InterpretedInstanceCallMissHandler,
native_args)) {
return false;
}
target = static_cast<FunctionPtr>(top[4]);
target_name = static_cast<StringPtr>(top[2]);
argdesc_ = static_cast<ArrayPtr>(top[3]);
}
if (target != Function::null()) {
lookup_cache_.Insert(receiver_cid, target_name, argdesc_, target);
top[0] = target;
return Invoke(thread, call_base, top, pc, FP, SP);
}
// The miss handler should only fail to return a function if lazy dispatchers
// are disabled, in which case we need to call DRT_InvokeNoSuchMethod, which
// walks the receiver appropriately in this case.
ASSERT(!FLAG_lazy_dispatchers);
// The receiver, name, and argument descriptor are already in the appropriate
// places on the stack from the previous call.
ASSERT(top[4] == null_value);
// Allocate array of arguments.
{
const intptr_t argc =
InterpreterHelpers::ArgDescArgCount(argdesc_) + receiver_idx;
ASSERT_EQUAL(top - call_base, argc);
top[5] = Smi::New(argc); // length
top[6] = null_value; // type
Exit(thread, *FP, top + 7, *pc);
NativeArguments native_args(thread, 2, /* argv */ top + 5,
/* result */ top + 4);
if (!InvokeRuntime(thread, this, DRT_AllocateArray, native_args)) {
return false;
}
// Copy arguments into the newly allocated array.
ArrayPtr array = Array::RawCast(top[4]);
for (intptr_t i = 0; i < argc; i++) {
array->ptr()->data()[i] = call_base[i];
}
}
{
Exit(thread, *FP, top + 5, *pc);
NativeArguments native_args(thread, 4, /* argv */ top + 1,
/* result */ top);
if (!InvokeRuntime(thread, this, DRT_InvokeNoSuchMethod, native_args)) {
return false;
}
// Pop the call args and push the result.
ObjectPtr result = top[0];
*SP = call_base;
**SP = result;
pp_ = InterpreterHelpers::FrameBytecode(*FP)->ptr()->object_pool_;
}
return true;
}
// Note:
// All macro helpers are intended to be used only inside Interpreter::Call.
// Counts and prints executed bytecode instructions (in DEBUG mode).
#if defined(DEBUG)
#define TRACE_INSTRUCTION \
if (IsTracingExecution()) { \
TraceInstruction(pc); \
} \
if (IsWritingTraceFile()) { \
WriteInstructionToTrace(pc); \
} \
icount_++;
#else
#define TRACE_INSTRUCTION
#endif // defined(DEBUG)
// Decode opcode and A part of the given value and dispatch to the
// corresponding bytecode handler.
#ifdef DART_HAS_COMPUTED_GOTO
#define DISPATCH_OP(val) \
do { \
op = (val); \
TRACE_INSTRUCTION \
goto* dispatch[op]; \
} while (0)
#else
#define DISPATCH_OP(val) \
do { \
op = (val); \
TRACE_INSTRUCTION \
goto SwitchDispatch; \
} while (0)
#endif
// Fetch next operation from PC and dispatch.
#define DISPATCH() DISPATCH_OP(*pc)
// Load target of a jump instruction into PC.
#define LOAD_JUMP_TARGET() pc = rT
#define BYTECODE_ENTRY_LABEL(Name) bc##Name:
#define BYTECODE_WIDE_ENTRY_LABEL(Name) bc##Name##_Wide:
#define BYTECODE_IMPL_LABEL(Name) bc##Name##Impl:
#define GOTO_BYTECODE_IMPL(Name) goto bc##Name##Impl;
// Define entry point that handles bytecode Name with the given operand format.
#define BYTECODE(Name, Operands) BYTECODE_HEADER_##Operands(Name)
// Helpers to decode common instruction formats. Used in conjunction with
// BYTECODE() macro.
#define BYTECODE_HEADER_0(Name) \
BYTECODE_ENTRY_LABEL(Name) \
pc += 1;
#define BYTECODE_HEADER_A(Name) \
uint32_t rA; \
USE(rA); \
BYTECODE_ENTRY_LABEL(Name) \
rA = pc[1]; \
pc += 2;
#define BYTECODE_HEADER_D(Name) \
uint32_t rD; \
USE(rD); \
BYTECODE_WIDE_ENTRY_LABEL(Name) \
rD = static_cast<uint32_t>(pc[1]) | (static_cast<uint32_t>(pc[2]) << 8) | \
(static_cast<uint32_t>(pc[3]) << 16) | \
(static_cast<uint32_t>(pc[4]) << 24); \
pc += 5; \
GOTO_BYTECODE_IMPL(Name); \
BYTECODE_ENTRY_LABEL(Name) \
rD = pc[1]; \
pc += 2; \
BYTECODE_IMPL_LABEL(Name)
#define BYTECODE_HEADER_X(Name) \
int32_t rX; \
USE(rX); \
BYTECODE_WIDE_ENTRY_LABEL(Name) \
rX = static_cast<int32_t>(static_cast<uint32_t>(pc[1]) | \
(static_cast<uint32_t>(pc[2]) << 8) | \
(static_cast<uint32_t>(pc[3]) << 16) | \
(static_cast<uint32_t>(pc[4]) << 24)); \
pc += 5; \
GOTO_BYTECODE_IMPL(Name); \
BYTECODE_ENTRY_LABEL(Name) \
rX = static_cast<int8_t>(pc[1]); \
pc += 2; \
BYTECODE_IMPL_LABEL(Name)
#define BYTECODE_HEADER_T(Name) \
const KBCInstr* rT; \
USE(rT); \
BYTECODE_WIDE_ENTRY_LABEL(Name) \
rT = pc + (static_cast<int32_t>((static_cast<uint32_t>(pc[1]) << 8) | \
(static_cast<uint32_t>(pc[2]) << 16) | \
(static_cast<uint32_t>(pc[3]) << 24)) >> \
8); \
pc += 4; \
GOTO_BYTECODE_IMPL(Name); \
BYTECODE_ENTRY_LABEL(Name) \
rT = pc + static_cast<int8_t>(pc[1]); \
pc += 2; \
BYTECODE_IMPL_LABEL(Name)
#define BYTECODE_HEADER_A_E(Name) \
uint32_t rA, rE; \
USE(rA); \
USE(rE); \
BYTECODE_WIDE_ENTRY_LABEL(Name) \
rA = pc[1]; \
rE = static_cast<uint32_t>(pc[2]) | (static_cast<uint32_t>(pc[3]) << 8) | \
(static_cast<uint32_t>(pc[4]) << 16) | \
(static_cast<uint32_t>(pc[5]) << 24); \
pc += 6; \
GOTO_BYTECODE_IMPL(Name); \
BYTECODE_ENTRY_LABEL(Name) \
rA = pc[1]; \
rE = pc[2]; \
pc += 3; \
BYTECODE_IMPL_LABEL(Name)
#define BYTECODE_HEADER_A_Y(Name) \
uint32_t rA; \
int32_t rY; \
USE(rA); \
USE(rY); \
BYTECODE_WIDE_ENTRY_LABEL(Name) \
rA = pc[1]; \
rY = static_cast<int32_t>(static_cast<uint32_t>(pc[2]) | \
(static_cast<uint32_t>(pc[3]) << 8) | \
(static_cast<uint32_t>(pc[4]) << 16) | \
(static_cast<uint32_t>(pc[5]) << 24)); \
pc += 6; \
GOTO_BYTECODE_IMPL(Name); \
BYTECODE_ENTRY_LABEL(Name) \
rA = pc[1]; \
rY = static_cast<int8_t>(pc[2]); \
pc += 3; \
BYTECODE_IMPL_LABEL(Name)
#define BYTECODE_HEADER_D_F(Name) \
uint32_t rD, rF; \
USE(rD); \
USE(rF); \
BYTECODE_WIDE_ENTRY_LABEL(Name) \
rD = static_cast<uint32_t>(pc[1]) | (static_cast<uint32_t>(pc[2]) << 8) | \
(static_cast<uint32_t>(pc[3]) << 16) | \
(static_cast<uint32_t>(pc[4]) << 24); \
rF = pc[5]; \
pc += 6; \
GOTO_BYTECODE_IMPL(Name); \
BYTECODE_ENTRY_LABEL(Name) \
rD = pc[1]; \
rF = pc[2]; \
pc += 3; \
BYTECODE_IMPL_LABEL(Name)
#define BYTECODE_HEADER_A_B_C(Name) \
uint32_t rA, rB, rC; \
USE(rA); \
USE(rB); \
USE(rC); \
BYTECODE_ENTRY_LABEL(Name) \
rA = pc[1]; \
rB = pc[2]; \
rC = pc[3]; \
pc += 4;
#define HANDLE_EXCEPTION \
do { \
goto HandleException; \
} while (0)
#define HANDLE_RETURN \
do { \
pp_ = InterpreterHelpers::FrameBytecode(FP)->ptr()->object_pool_; \
} while (0)
// Runtime call helpers: handle invocation and potential exception after return.
#define INVOKE_RUNTIME(Func, Args) \
if (!InvokeRuntime(thread, this, Func, Args)) { \
HANDLE_EXCEPTION; \
} else { \
HANDLE_RETURN; \
}
#define INVOKE_NATIVE(Wrapper, Func, Args) \
if (!InvokeNative(thread, this, Wrapper, Func, Args)) { \
HANDLE_EXCEPTION; \
} else { \
HANDLE_RETURN; \
}
#define LOAD_CONSTANT(index) (pp_->ptr()->data()[(index)].raw_obj_)
#define UNBOX_INT64(value, obj, selector) \
int64_t value; \
{ \
word raw_value = static_cast<word>(obj); \
if (LIKELY((raw_value & kSmiTagMask) == kSmiTag)) { \
value = raw_value >> kSmiTagShift; \
} else { \
if (UNLIKELY(obj == null_value)) { \
SP[0] = selector.raw(); \
goto ThrowNullError; \
} \
value = Integer::GetInt64Value(RAW_CAST(Integer, obj)); \
} \
}
#define BOX_INT64_RESULT(result) \
if (LIKELY(Smi::IsValid(result))) { \
SP[0] = Smi::New(static_cast<intptr_t>(result)); \
} else if (!AllocateMint(thread, result, pc, FP, SP)) { \
HANDLE_EXCEPTION; \
} \
ASSERT(Integer::GetInt64Value(RAW_CAST(Integer, SP[0])) == result);
#define UNBOX_DOUBLE(value, obj, selector) \
double value; \
{ \
if (UNLIKELY(obj == null_value)) { \
SP[0] = selector.raw(); \
goto ThrowNullError; \
} \
value = Double::RawCast(obj)->ptr()->value_; \
}
#define BOX_DOUBLE_RESULT(result) \
if (!AllocateDouble(thread, result, pc, FP, SP)) { \
HANDLE_EXCEPTION; \
} \
ASSERT(Utils::DoublesBitEqual(Double::RawCast(SP[0])->ptr()->value_, result));
#define BUMP_USAGE_COUNTER_ON_ENTRY(function) \
{ \
int32_t counter = ++(function->ptr()->usage_counter_); \
if (UNLIKELY(FLAG_compilation_counter_threshold >= 0 && \
counter >= FLAG_compilation_counter_threshold && \
!Function::HasCode(function))) { \
SP[1] = 0; /* Unused result. */ \
SP[2] = function; \
Exit(thread, FP, SP + 3, pc); \
INVOKE_RUNTIME(DRT_CompileInterpretedFunction, \
NativeArguments(thread, 1, SP + 2, SP + 1)); \
function = FrameFunction(FP); \
} \
}
#ifdef PRODUCT
#define DEBUG_CHECK
#else
// The DEBUG_CHECK macro must only be called from bytecodes listed in
// KernelBytecode::IsDebugCheckedOpcode.
#define DEBUG_CHECK \
if (is_debugging()) { \
/* Check for debug breakpoint or if single stepping. */ \
if (thread->isolate()->debugger()->HasBytecodeBreakpointAt(pc)) { \
SP[1] = null_value; \
Exit(thread, FP, SP + 2, pc); \
INVOKE_RUNTIME(DRT_BreakpointRuntimeHandler, \
NativeArguments(thread, 0, nullptr, SP + 1)) \
} \
/* The debugger expects to see the same pc again when single-stepping */ \
if (thread->isolate()->single_step()) { \
Exit(thread, FP, SP + 1, pc); \
INVOKE_RUNTIME(DRT_SingleStepHandler, \
NativeArguments(thread, 0, nullptr, nullptr)); \
} \
}
#endif // PRODUCT
bool Interpreter::CopyParameters(Thread* thread,
const KBCInstr** pc,
ObjectPtr** FP,
ObjectPtr** SP,
const intptr_t num_fixed_params,
const intptr_t num_opt_pos_params,
const intptr_t num_opt_named_params) {
const intptr_t min_num_pos_args = num_fixed_params;
const intptr_t max_num_pos_args = num_fixed_params + num_opt_pos_params;
// Decode arguments descriptor.
const intptr_t arg_count = InterpreterHelpers::ArgDescArgCount(argdesc_);
const intptr_t pos_count = InterpreterHelpers::ArgDescPosCount(argdesc_);
const intptr_t named_count = (arg_count - pos_count);
// Check that got the right number of positional parameters.
if ((min_num_pos_args > pos_count) || (pos_count > max_num_pos_args)) {
return false;
}
// Copy all passed position arguments.
ObjectPtr* first_arg = FrameArguments(*FP, arg_count);
memmove(*FP, first_arg, pos_count * kWordSize);
if (num_opt_named_params != 0) {
// This is a function with named parameters.
// Walk the list of named parameters and their
// default values encoded as pairs of LoadConstant instructions that
// follows the entry point and find matching values via arguments
// descriptor.
ObjectPtr* argdesc_data = argdesc_->ptr()->data();
intptr_t i = 0; // argument position
intptr_t j = 0; // parameter position
while ((j < num_opt_named_params) && (i < named_count)) {
// Fetch formal parameter information: name, default value, target slot.
const KBCInstr* load_name = *pc;
const KBCInstr* load_value = KernelBytecode::Next(load_name);
*pc = KernelBytecode::Next(load_value);
ASSERT(KernelBytecode::IsLoadConstantOpcode(load_name));
ASSERT(KernelBytecode::IsLoadConstantOpcode(load_value));
const uint8_t reg = KernelBytecode::DecodeA(load_name);
ASSERT(reg == KernelBytecode::DecodeA(load_value));
StringPtr name = static_cast<StringPtr>(
LOAD_CONSTANT(KernelBytecode::DecodeE(load_name)));
if (name == argdesc_data[ArgumentsDescriptor::name_index(i)]) {
// Parameter was passed. Fetch passed value.
const intptr_t arg_index = Smi::Value(static_cast<SmiPtr>(
argdesc_data[ArgumentsDescriptor::position_index(i)]));
(*FP)[reg] = first_arg[arg_index];
++i; // Consume passed argument.
} else {
// Parameter was not passed. Fetch default value.
(*FP)[reg] = LOAD_CONSTANT(KernelBytecode::DecodeE(load_value));
}
++j; // Next formal parameter.
}
// If we have unprocessed formal parameters then initialize them all
// using default values.
while (j < num_opt_named_params) {
const KBCInstr* load_name = *pc;
const KBCInstr* load_value = KernelBytecode::Next(load_name);
*pc = KernelBytecode::Next(load_value);
ASSERT(KernelBytecode::IsLoadConstantOpcode(load_name));
ASSERT(KernelBytecode::IsLoadConstantOpcode(load_value));
const uint8_t reg = KernelBytecode::DecodeA(load_name);
ASSERT(reg == KernelBytecode::DecodeA(load_value));
(*FP)[reg] = LOAD_CONSTANT(KernelBytecode::DecodeE(load_value));
++j;
}
// If we have unprocessed passed arguments that means we have mismatch
// between formal parameters and concrete arguments. This can only
// occur if the current function is a closure.
if (i < named_count) {
return false;
}
// SP points past copied arguments.
*SP = *FP + num_fixed_params + num_opt_named_params - 1;
} else {
ASSERT(num_opt_pos_params != 0);
if (named_count != 0) {
// Function can't have both named and optional positional parameters.
// This kind of mismatch can only occur if the current function
// is a closure.
return false;
}
// Process the list of default values encoded as a sequence of
// LoadConstant instructions after EntryOpt bytecode.
// Execute only those that correspond to parameters that were not passed.
for (intptr_t i = num_fixed_params; i < pos_count; ++i) {
ASSERT(KernelBytecode::IsLoadConstantOpcode(*pc));
*pc = KernelBytecode::Next(*pc);
}
for (intptr_t i = pos_count; i < max_num_pos_args; ++i) {
const KBCInstr* load_value = *pc;
*pc = KernelBytecode::Next(load_value);
ASSERT(KernelBytecode::IsLoadConstantOpcode(load_value));
ASSERT(KernelBytecode::DecodeA(load_value) == i);
(*FP)[i] = LOAD_CONSTANT(KernelBytecode::DecodeE(load_value));
}
// SP points past the last copied parameter.
*SP = *FP + max_num_pos_args - 1;
}
return true;
}
bool Interpreter::AssertAssignable(Thread* thread,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* call_top,
ObjectPtr* args,
SubtypeTestCachePtr cache) {
ObjectPtr null_value = Object::null();
if (cache != null_value) {
InstancePtr instance = static_cast<InstancePtr>(args[0]);
TypeArgumentsPtr instantiator_type_arguments =
static_cast<TypeArgumentsPtr>(args[2]);
TypeArgumentsPtr function_type_arguments =
static_cast<TypeArgumentsPtr>(args[3]);
const intptr_t cid = InterpreterHelpers::GetClassId(instance);
TypeArgumentsPtr instance_type_arguments =
static_cast<TypeArgumentsPtr>(null_value);
ObjectPtr instance_cid_or_function;
TypeArgumentsPtr parent_function_type_arguments;
TypeArgumentsPtr delayed_function_type_arguments;
if (cid == kClosureCid) {
ClosurePtr closure = static_cast<ClosurePtr>(instance);
instance_type_arguments = closure->ptr()->instantiator_type_arguments_;
parent_function_type_arguments = closure->ptr()->function_type_arguments_;
delayed_function_type_arguments = closure->ptr()->delayed_type_arguments_;
instance_cid_or_function = closure->ptr()->function_;
} else {
instance_cid_or_function = Smi::New(cid);
ClassPtr instance_class = thread->isolate()->class_table()->At(cid);
if (instance_class->ptr()->num_type_arguments_ < 0) {
goto AssertAssignableCallRuntime;
} else if (instance_class->ptr()->num_type_arguments_ > 0) {
instance_type_arguments = reinterpret_cast<TypeArgumentsPtr*>(
instance->ptr())[instance_class->ptr()
->host_type_arguments_field_offset_in_words_];
}
parent_function_type_arguments =
static_cast<TypeArgumentsPtr>(null_value);
delayed_function_type_arguments =
static_cast<TypeArgumentsPtr>(null_value);
}
for (ObjectPtr* entries = cache->ptr()->cache_->ptr()->data();
entries[0] != null_value;
entries += SubtypeTestCache::kTestEntryLength) {
if ((entries[SubtypeTestCache::kInstanceClassIdOrFunction] ==
instance_cid_or_function) &&
(entries[SubtypeTestCache::kInstanceTypeArguments] ==
instance_type_arguments) &&
(entries[SubtypeTestCache::kInstantiatorTypeArguments] ==
instantiator_type_arguments) &&
(entries[SubtypeTestCache::kFunctionTypeArguments] ==
function_type_arguments) &&
(entries[SubtypeTestCache::kInstanceParentFunctionTypeArguments] ==
parent_function_type_arguments) &&
(entries[SubtypeTestCache::kInstanceDelayedFunctionTypeArguments] ==
delayed_function_type_arguments)) {
if (Bool::True().raw() == entries[SubtypeTestCache::kTestResult]) {
return true;
} else {
break;
}
}
}
}
AssertAssignableCallRuntime:
// args[0]: Instance.
// args[1]: Type.
// args[2]: Instantiator type args.
// args[3]: Function type args.
// args[4]: Name.
args[5] = cache;
args[6] = Smi::New(kTypeCheckFromInline);
args[7] = 0; // Unused result.
Exit(thread, FP, args + 8, pc);
NativeArguments native_args(thread, 7, args, args + 7);
return InvokeRuntime(thread, this, DRT_TypeCheck, native_args);
}
template <bool is_getter>
bool Interpreter::AssertAssignableField(Thread* thread,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* SP,
InstancePtr instance,
FieldPtr field,
InstancePtr value) {
AbstractTypePtr field_type = field->ptr()->type_;
// Perform type test of value if field type is not one of dynamic, object,
// or void, and if the value is not null.
if (field_type->GetClassId() == kTypeCid) {
classid_t cid = Smi::Value(
static_cast<SmiPtr>(Type::RawCast(field_type)->ptr()->type_class_id_));
// TODO(regis): Revisit shortcut for NNBD.
if (cid == kDynamicCid || cid == kInstanceCid || cid == kVoidCid) {
return true;
}
}
ObjectPtr null_value = Object::null();
if (value == null_value) {
// TODO(regis): Revisit null shortcut for NNBD.
return true;
}
SubtypeTestCachePtr cache = field->ptr()->type_test_cache_;
if (UNLIKELY(cache == null_value)) {
// Allocate new cache.
SP[1] = instance; // Preserve.
SP[2] = field; // Preserve.
SP[3] = value; // Preserve.
SP[4] = null_value; // Result slot.
Exit(thread, FP, SP + 5, pc);
if (!InvokeRuntime(thread, this, DRT_AllocateSubtypeTestCache,
NativeArguments(thread, 0, /* argv */ SP + 4,
/* retval */ SP + 4))) {
return false;
}
// Reload objects after the call which may trigger GC.
instance = static_cast<InstancePtr>(SP[1]);
field = static_cast<FieldPtr>(SP[2]);
value = static_cast<InstancePtr>(SP[3]);
cache = static_cast<SubtypeTestCachePtr>(SP[4]);
field_type = field->ptr()->type_;
field->ptr()->type_test_cache_ = cache;
}
// Push arguments of type test.
SP[1] = value;
SP[2] = field_type;
// Provide type arguments of instance as instantiator.
SP[3] = InterpreterHelpers::GetTypeArguments(thread, instance);
SP[4] = null_value; // Implicit setters cannot be generic.
SP[5] = is_getter ? Symbols::FunctionResult().raw() : field->ptr()->name_;
return AssertAssignable(thread, pc, FP, /* call_top */ SP + 5,
/* args */ SP + 1, cache);
}
ObjectPtr Interpreter::Call(const Function& function,
const Array& arguments_descriptor,
const Array& arguments,
Thread* thread) {
return Call(function.raw(), arguments_descriptor.raw(), arguments.Length(),
arguments.raw_ptr()->data(), thread);
}
// Allocate a _Mint for the given int64_t value and puts it into SP[0].
// Returns false on exception.
DART_NOINLINE bool Interpreter::AllocateMint(Thread* thread,
int64_t value,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* SP) {
ASSERT(!Smi::IsValid(value));
MintPtr result;
if (TryAllocate(thread, kMintCid, Mint::InstanceSize(),
reinterpret_cast<ObjectPtr*>(&result))) {
result->ptr()->value_ = value;
SP[0] = result;
return true;
} else {
SP[0] = 0; // Space for the result.
SP[1] = thread->isolate()->object_store()->mint_class(); // Class object.
SP[2] = Object::null(); // Type arguments.
Exit(thread, FP, SP + 3, pc);
NativeArguments args(thread, 2, SP + 1, SP);
if (!InvokeRuntime(thread, this, DRT_AllocateObject, args)) {
return false;
}
static_cast<MintPtr>(SP[0])->ptr()->value_ = value;
return true;
}
}
// Allocate a _Double for the given double value and put it into SP[0].
// Returns false on exception.
DART_NOINLINE bool Interpreter::AllocateDouble(Thread* thread,
double value,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* SP) {
DoublePtr result;
if (TryAllocate(thread, kDoubleCid, Double::InstanceSize(),
reinterpret_cast<ObjectPtr*>(&result))) {
result->ptr()->value_ = value;
SP[0] = result;
return true;
} else {
SP[0] = 0; // Space for the result.
SP[1] = thread->isolate()->object_store()->double_class();
SP[2] = Object::null(); // Type arguments.
Exit(thread, FP, SP + 3, pc);
NativeArguments args(thread, 2, SP + 1, SP);
if (!InvokeRuntime(thread, this, DRT_AllocateObject, args)) {
return false;
}
Double::RawCast(SP[0])->ptr()->value_ = value;
return true;
}
}
// Allocate a _Float32x4 for the given simd value and put it into SP[0].
// Returns false on exception.
DART_NOINLINE bool Interpreter::AllocateFloat32x4(Thread* thread,
simd128_value_t value,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* SP) {
Float32x4Ptr result;
if (TryAllocate(thread, kFloat32x4Cid, Float32x4::InstanceSize(),
reinterpret_cast<ObjectPtr*>(&result))) {
value.writeTo(result->ptr()->value_);
SP[0] = result;
return true;
} else {
SP[0] = 0; // Space for the result.
SP[1] = thread->isolate()->object_store()->float32x4_class();
SP[2] = Object::null(); // Type arguments.
Exit(thread, FP, SP + 3, pc);
NativeArguments args(thread, 2, SP + 1, SP);
if (!InvokeRuntime(thread, this, DRT_AllocateObject, args)) {
return false;
}
value.writeTo(Float32x4::RawCast(SP[0])->ptr()->value_);
return true;
}
}
// Allocate _Float64x2 box for the given simd value and put it into SP[0].
// Returns false on exception.
DART_NOINLINE bool Interpreter::AllocateFloat64x2(Thread* thread,
simd128_value_t value,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* SP) {
Float64x2Ptr result;
if (TryAllocate(thread, kFloat64x2Cid, Float64x2::InstanceSize(),
reinterpret_cast<ObjectPtr*>(&result))) {
value.writeTo(result->ptr()->value_);
SP[0] = result;
return true;
} else {
SP[0] = 0; // Space for the result.
SP[1] = thread->isolate()->object_store()->float64x2_class();
SP[2] = Object::null(); // Type arguments.
Exit(thread, FP, SP + 3, pc);
NativeArguments args(thread, 2, SP + 1, SP);
if (!InvokeRuntime(thread, this, DRT_AllocateObject, args)) {
return false;
}
value.writeTo(Float64x2::RawCast(SP[0])->ptr()->value_);
return true;
}
}
// Allocate a _List with the given type arguments and length and put it into
// SP[0]. Returns false on exception.
bool Interpreter::AllocateArray(Thread* thread,
TypeArgumentsPtr type_args,
ObjectPtr length_object,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* SP) {
if (LIKELY(!length_object->IsHeapObject())) {
const intptr_t length = Smi::Value(Smi::RawCast(length_object));
if (LIKELY(Array::IsValidLength(length))) {
ArrayPtr result;
if (TryAllocate(thread, kArrayCid, Array::InstanceSize(length),
reinterpret_cast<ObjectPtr*>(&result))) {
result->ptr()->type_arguments_ = type_args;
result->ptr()->length_ = Smi::New(length);
for (intptr_t i = 0; i < length; i++) {
result->ptr()->data()[i] = Object::null();
}
SP[0] = result;
return true;
}
}
}
SP[0] = 0; // Space for the result;
SP[1] = length_object;
SP[2] = type_args;
Exit(thread, FP, SP + 3, pc);
NativeArguments args(thread, 2, SP + 1, SP);
return InvokeRuntime(thread, this, DRT_AllocateArray, args);
}
// Allocate a _Context with the given length and put it into SP[0].
// Returns false on exception.
bool Interpreter::AllocateContext(Thread* thread,
intptr_t num_context_variables,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* SP) {
ContextPtr result;
if (TryAllocate(thread, kContextCid,
Context::InstanceSize(num_context_variables),
reinterpret_cast<ObjectPtr*>(&result))) {
result->ptr()->num_variables_ = num_context_variables;
ObjectPtr null_value = Object::null();
result->ptr()->parent_ = static_cast<ContextPtr>(null_value);
for (intptr_t i = 0; i < num_context_variables; i++) {
result->ptr()->data()[i] = null_value;
}
SP[0] = result;
return true;
} else {
SP[0] = 0; // Space for the result.
SP[1] = Smi::New(num_context_variables);
Exit(thread, FP, SP + 2, pc);
NativeArguments args(thread, 1, SP + 1, SP);
return InvokeRuntime(thread, this, DRT_AllocateContext, args);
}
}
// Allocate a _Closure and put it into SP[0].
// Returns false on exception.
bool Interpreter::AllocateClosure(Thread* thread,
const KBCInstr* pc,
ObjectPtr* FP,
ObjectPtr* SP) {
const intptr_t instance_size = Closure::InstanceSize();
ClosurePtr result;
if (TryAllocate(thread, kClosureCid, instance_size,
reinterpret_cast<ObjectPtr*>(&result))) {
uword start = ObjectLayout::ToAddr(result);
ObjectPtr null_value = Object::null();
for (intptr_t offset = sizeof(InstanceLayout); offset < instance_size;
offset += kWordSize) {
*reinterpret_cast<ObjectPtr*>(start + offset) = null_value;
}
SP[0] = result;
return true;
} else {
SP[0] = 0; // Space for the result.
SP[1] = thread->isolate()->object_store()->closure_class();
SP[2] = Object::null(); // Type arguments.
Exit(thread, FP, SP + 3, pc);
NativeArguments args(thread, 2, SP + 1, SP);
return InvokeRuntime(thread, this, DRT_AllocateObject, args);
}
}
ObjectPtr Interpreter::Call(FunctionPtr function,
ArrayPtr argdesc,
intptr_t argc,
ObjectPtr const* argv,
Thread* thread) {
// Interpreter state (see constants_kbc.h for high-level overview).
const KBCInstr* pc; // Program Counter: points to the next op to execute.
ObjectPtr* FP; // Frame Pointer.
ObjectPtr* SP; // Stack Pointer.
uint32_t op; // Currently executing op.
bool reentering = fp_ != NULL;
if (!reentering) {
fp_ = reinterpret_cast<ObjectPtr*>(stack_base_);
}
#if defined(DEBUG)
if (IsTracingExecution()) {
THR_Print("%" Pu64 " ", icount_);
THR_Print("%s interpreter 0x%" Px " at fp_ 0x%" Px " exit 0x%" Px " %s\n",
reentering ? "Re-entering" : "Entering",
reinterpret_cast<uword>(this), reinterpret_cast<uword>(fp_),
thread->top_exit_frame_info(),
Function::Handle(function).ToFullyQualifiedCString());
}
#endif
// Setup entry frame:
//
// ^
// | previous Dart frames
// |
// | ........... | -+
// fp_ > | exit fp_ | saved top_exit_frame_info
// | argdesc_ | saved argdesc_ (for reentering interpreter)
// | pp_ | saved pp_ (for reentering interpreter)
// | arg 0 | -+
// | arg 1 | |
// ... |
// > incoming arguments
// |
// | arg argc-1 | -+
// | function | -+
// | code | |
// | caller PC | ---> special fake PC marking an entry frame
// SP > | fp_ | |
// FP > | ........... | > normal Dart frame (see stack_frame_kbc.h)
// |
// v
//
// A negative argc indicates reverse memory order of arguments.
const intptr_t arg_count = argc < 0 ? -argc : argc;
FP = fp_ + kKBCEntrySavedSlots + arg_count + kKBCDartFrameFixedSize;
SP = FP - 1;
// Save outer top_exit_frame_info, current argdesc, and current pp.
fp_[kKBCExitLinkSlotFromEntryFp] =
static_cast<ObjectPtr>(thread->top_exit_frame_info());
thread->set_top_exit_frame_info(0);
fp_[kKBCSavedArgDescSlotFromEntryFp] = static_cast<ObjectPtr>(argdesc_);
fp_[kKBCSavedPpSlotFromEntryFp] = static_cast<ObjectPtr>(pp_);
// Copy arguments and setup the Dart frame.
for (intptr_t i = 0; i < arg_count; i++) {
fp_[kKBCEntrySavedSlots + i] = argv[argc < 0 ? -i : i];
}
BytecodePtr bytecode = function->ptr()->bytecode_;
FP[kKBCFunctionSlotFromFp] = function;
FP[kKBCPcMarkerSlotFromFp] = bytecode;
FP[kKBCSavedCallerPcSlotFromFp] = static_cast<ObjectPtr>(kEntryFramePcMarker);
FP[kKBCSavedCallerFpSlotFromFp] =
static_cast<ObjectPtr>(reinterpret_cast<uword>(fp_));
// Load argument descriptor.
argdesc_ = argdesc;
// Ready to start executing bytecode. Load entry point and corresponding
// object pool.
pc = reinterpret_cast<const KBCInstr*>(bytecode->ptr()->instructions_);
NOT_IN_PRODUCT(pc_ = pc); // For the profiler.
NOT_IN_PRODUCT(fp_ = FP); // For the profiler.
pp_ = bytecode->ptr()->object_pool_;
// Save current VM tag and mark thread as executing Dart code. For the
// profiler, do this *after* setting up the entry frame (compare the machine
// code entry stubs).
const uword vm_tag = thread->vm_tag();
thread->set_vm_tag(VMTag::kDartInterpretedTagId);
// Save current top stack resource and reset the list.
StackResource* top_resource = thread->top_resource();
thread->set_top_resource(NULL);
// Cache some frequently used values in the frame.
BoolPtr true_value = Bool::True().raw();
BoolPtr false_value = Bool::False().raw();
ObjectPtr null_value = Object::null();
#ifdef DART_HAS_COMPUTED_GOTO
static const void* dispatch[] = {
#define TARGET(name, fmt, kind, fmta, fmtb, fmtc) &&bc##name,
KERNEL_BYTECODES_LIST(TARGET)
#undef TARGET
};
DISPATCH(); // Enter the dispatch loop.
#else
DISPATCH(); // Enter the dispatch loop.
SwitchDispatch:
switch (op & 0xFF) {
#define TARGET(name, fmt, kind, fmta, fmtb, fmtc) \
case KernelBytecode::k##name: \
goto bc##name;
KERNEL_BYTECODES_LIST(TARGET)
#undef TARGET
default:
FATAL1("Undefined opcode: %d\n", op);
}
#endif
// KernelBytecode handlers (see constants_kbc.h for bytecode descriptions).
{
BYTECODE(Entry, D);
const intptr_t num_locals = rD;
// Initialize locals with null & set SP.
for (intptr_t i = 0; i < num_locals; i++) {
FP[i] = null_value;
}
SP = FP + num_locals - 1;
DISPATCH();
}
{
BYTECODE(EntryFixed, A_E);
const intptr_t num_fixed_params = rA;
const intptr_t num_locals = rE;
const intptr_t arg_count = InterpreterHelpers::ArgDescArgCount(argdesc_);
const intptr_t pos_count = InterpreterHelpers::ArgDescPosCount(argdesc_);
if ((arg_count != num_fixed_params) || (pos_count != num_fixed_params)) {
SP[1] = FrameFunction(FP);
goto NoSuchMethodFromPrologue;
}
// Initialize locals with null & set SP.
for (intptr_t i = 0; i < num_locals; i++) {
FP[i] = null_value;
}
SP = FP + num_locals - 1;
DISPATCH();
}
{
BYTECODE(EntryOptional, A_B_C);
if (CopyParameters(thread, &pc, &FP, &SP, rA, rB, rC)) {
DISPATCH();
} else {
SP[1] = FrameFunction(FP);
goto NoSuchMethodFromPrologue;
}
}
{
BYTECODE(Frame, D);
// Initialize locals with null and increment SP.
const intptr_t num_locals = rD;
for (intptr_t i = 1; i <= num_locals; i++) {
SP[i] = null_value;
}
SP += num_locals;
DISPATCH();
}
{
BYTECODE(SetFrame, A);
SP = FP + rA - 1;
DISPATCH();
}
{
BYTECODE(CheckStack, A);
{
// Check the interpreter's own stack limit for actual interpreter's stack
// overflows, and also the thread's stack limit for scheduled interrupts.
if (reinterpret_cast<uword>(SP) >= overflow_stack_limit() ||
thread->HasScheduledInterrupts()) {
Exit(thread, FP, SP + 1, pc);
INVOKE_RUNTIME(DRT_StackOverflow,
NativeArguments(thread, 0, nullptr, nullptr));
}
}
FunctionPtr function = FrameFunction(FP);
int32_t counter = ++(function->ptr()->usage_counter_);
if (UNLIKELY(FLAG_compilation_counter_threshold >= 0 &&
counter >= FLAG_compilation_counter_threshold &&
!Function::HasCode(function))) {
SP[1] = 0; // Unused result.
SP[2] = function;
Exit(thread, FP, SP + 3, pc);
INVOKE_RUNTIME(DRT_CompileInterpretedFunction,
NativeArguments(thread, 1, SP + 2, SP + 1));
}
DISPATCH();
}
{
BYTECODE(DebugCheck, 0);
DEBUG_CHECK;
DISPATCH();
}
{
BYTECODE(CheckFunctionTypeArgs, A_E);
const intptr_t declared_type_args_len = rA;
const intptr_t first_stack_local_index = rE;
// Decode arguments descriptor's type args len.
const intptr_t type_args_len =
InterpreterHelpers::ArgDescTypeArgsLen(argdesc_);
if ((type_args_len != declared_type_args_len) && (type_args_len != 0)) {
SP[1] = FrameFunction(FP);
goto NoSuchMethodFromPrologue;
}
if (type_args_len > 0) {
// Decode arguments descriptor's argument count (excluding type args).
const intptr_t arg_count = InterpreterHelpers::ArgDescArgCount(argdesc_);
// Copy passed-in type args to first local slot.
FP[first_stack_local_index] = *FrameArguments(FP, arg_count + 1);
} else if (declared_type_args_len > 0) {
FP[first_stack_local_index] = Object::null();
}
DISPATCH();
}
{
BYTECODE(InstantiateType, D);
// Stack: instantiator type args, function type args
ObjectPtr type = LOAD_CONSTANT(rD);
SP[1] = type;
SP[2] = SP[-1];
SP[3] = SP[0];
Exit(thread, FP, SP + 4, pc);
{
INVOKE_RUNTIME(DRT_InstantiateType,
NativeArguments(thread, 3, SP + 1, SP - 1));
}
SP -= 1;
DISPATCH();
}
{
BYTECODE(InstantiateTypeArgumentsTOS, A_E);
// Stack: instantiator type args, function type args
TypeArgumentsPtr type_arguments =
static_cast<TypeArgumentsPtr>(LOAD_CONSTANT(rE));
ObjectPtr instantiator_type_args = SP[-1];
ObjectPtr function_type_args = SP[0];
// If both instantiators are null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
if ((rA == 0) || (null_value != instantiator_type_args) ||
(null_value != function_type_args)) {
// First lookup in the cache.
ArrayPtr instantiations = type_arguments->ptr()->instantiations_;
for (intptr_t i = 0;
instantiations->ptr()->data()[i] !=
static_cast<ObjectPtr>(TypeArguments::kNoInstantiator);
i += TypeArguments::Instantiation::kSizeInWords) {
if ((instantiations->ptr()->data()
[i +
TypeArguments::Instantiation::kInstantiatorTypeArgsIndex] ==
instantiator_type_args) &&
(instantiations->ptr()->data()
[i + TypeArguments::Instantiation::kFunctionTypeArgsIndex] ==
function_type_args)) {
// Found in the cache.
SP[-1] =
instantiations->ptr()->data()[i + TypeArguments::Instantiation::
kInstantiatedTypeArgsIndex];
goto InstantiateTypeArgumentsTOSDone;
}
}
// Cache lookup failed, call runtime.
SP[1] = type_arguments;
SP[2] = instantiator_type_args;
SP[3] = function_type_args;
Exit(thread, FP, SP + 4, pc);
INVOKE_RUNTIME(DRT_InstantiateTypeArguments,
NativeArguments(thread, 3, SP + 1, SP - 1));
}
InstantiateTypeArgumentsTOSDone:
SP -= 1;
DISPATCH();
}
{
BYTECODE(Throw, A);
{
SP[1] = 0; // Space for result.
Exit(thread, FP, SP + 2, pc);
if (rA == 0) { // Throw
INVOKE_RUNTIME(DRT_Throw, NativeArguments(thread, 1, SP, SP + 1));
} else { // ReThrow
INVOKE_RUNTIME(DRT_ReThrow, NativeArguments(thread, 2, SP - 1, SP + 1));
}
}
DISPATCH();
}
{
BYTECODE(Drop1, 0);
SP--;
DISPATCH();
}
{
BYTECODE(LoadConstant, A_E);
FP[rA] = LOAD_CONSTANT(rE);
DISPATCH();
}
{
BYTECODE(PushConstant, D);
*++SP = LOAD_CONSTANT(rD);
DISPATCH();
}
{
BYTECODE(PushNull, 0);
*++SP = null_value;
DISPATCH();
}
{
BYTECODE(PushTrue, 0);
*++SP = true_value;
DISPATCH();
}
{
BYTECODE(PushFalse, 0);
*++SP = false_value;
DISPATCH();
}
{
BYTECODE(PushInt, X);
*++SP = Smi::New(rX);
DISPATCH();
}
{
BYTECODE(Push, X);
*++SP = FP[rX];
DISPATCH();
}
{
BYTECODE(StoreLocal, X);
FP[rX] = *SP;
DISPATCH();
}
{
BYTECODE(PopLocal, X);
FP[rX] = *SP--;
DISPATCH();
}
{
BYTECODE(MoveSpecial, A_Y);
ASSERT(rA < KernelBytecode::kSpecialIndexCount);
FP[rY] = special_[rA];
DISPATCH();
}
{
BYTECODE(BooleanNegateTOS, 0);
SP[0] = (SP[0] == true_value) ? false_value : true_value;
DISPATCH();
}
{
BYTECODE(DirectCall, D_F);
DEBUG_CHECK;
// Invoke target function.
{
const uint32_t argc = rF;
const uint32_t kidx = rD;
InterpreterHelpers::IncrementUsageCounter(FrameFunction(FP));
*++SP = LOAD_CONSTANT(kidx);
ObjectPtr* call_base = SP - argc;
ObjectPtr* call_top = SP;
argdesc_ = static_cast<ArrayPtr>(LOAD_CONSTANT(kidx + 1));
if (!Invoke(thread, call_base, call_top, &pc, &FP, &SP)) {
HANDLE_EXCEPTION;
}
}
DISPATCH();
}
{
BYTECODE(UncheckedDirectCall, D_F);
DEBUG_CHECK;
// Invoke target function.
{
const uint32_t argc = rF;
const uint32_t kidx = rD;
InterpreterHelpers::IncrementUsageCounter(FrameFunction(FP));
*++SP = LOAD_CONSTANT(kidx);
ObjectPtr* call_base = SP - argc;
ObjectPtr* call_top = SP;
argdesc_ = static_cast<ArrayPtr>(LOAD_CONSTANT(kidx + 1));
if (!Invoke(thread, call_base, call_top, &pc, &FP, &SP)) {
HANDLE_EXCEPTION;
}
}
DISPATCH();
}
{
BYTECODE(InterfaceCall, D_F);
DEBUG_CHECK;
{
const uint32_t argc = rF;
const uint32_t kidx = rD;
ObjectPtr* call_base = SP - argc + 1;
ObjectPtr* call_top = SP + 1;
InterpreterHelpers::IncrementUsageCounter(FrameFunction(FP));
StringPtr target_name =
static_cast<FunctionPtr>(LOAD_CONSTANT(kidx))->ptr()->name_;
argdesc_ = static_cast<ArrayPtr>(LOAD_CONSTANT(kidx + 1));
if (!InstanceCall(thread, target_name, call_base, call_top, &pc, &FP,
&SP)) {
HANDLE_EXCEPTION;
}
}
DISPATCH();
}
{
BYTECODE(InstantiatedInterfaceCall, D_F);
DEBUG_CHECK;
{
const uint32_t argc = rF;
const uint32_t kidx = rD;
ObjectPtr* call_base = SP - argc + 1;
ObjectPtr* call_top = SP + 1;
InterpreterHelpers::IncrementUsageCounter(FrameFunction(FP));
StringPtr target_name =
static_cast<FunctionPtr>(LOAD_CONSTANT(kidx))->ptr()->name_;
argdesc_ = static_cast<ArrayPtr>(LOAD_CONSTANT(kidx + 1));
if (!InstanceCall(thread, target_name, call_base, call_top, &pc, &FP,
&SP)) {
HANDLE_EXCEPTION;
}
}
DISPATCH();
}
{
BYTECODE(UncheckedClosureCall, D_F);
DEBUG_CHECK;
{
const uint32_t argc = rF;
const uint32_t kidx = rD;
ClosurePtr receiver = Closure::RawCast(*SP--);
ObjectPtr* call_base = SP - argc + 1;
ObjectPtr* call_top = SP + 1;
InterpreterHelpers::IncrementUsageCounter(FrameFunction(FP));
if (UNLIKELY(receiver == null_value)) {
SP[0] = Symbols::Call().raw();
goto ThrowNullError;
}
argdesc_ = static_cast<ArrayPtr>(LOAD_CONSTANT(kidx));
call_top[0] = receiver->ptr()->function_;
if (!Invoke(thread, call_base, call_top, &pc, &FP, &SP)) {
HANDLE_EXCEPTION;
}
}
DISPATCH();
}
{
BYTECODE(UncheckedInterfaceCall, D_F);
DEBUG_CHECK;
{
const uint32_t argc = rF;
const uint32_t kidx = rD;
ObjectPtr* call_base = SP - argc + 1;
ObjectPtr* call_top = SP + 1;
InterpreterHelpers::IncrementUsageCounter(FrameFunction(FP));
StringPtr target_name =
static_cast<FunctionPtr>(LOAD_CONSTANT(kidx))->ptr()->name_;
argdesc_ = static_cast<ArrayPtr>(LOAD_CONSTANT(kidx + 1));
if (!InstanceCall(thread, target_name, call_base, call_top, &pc, &FP,
&SP)) {
HANDLE_EXCEPTION;
}
}
DISPATCH();
}
{
BYTECODE(DynamicCall, D_F);
DEBUG_CHECK;
{
const uint32_t argc = rF;
const uint32_t kidx = rD;
ObjectPtr* call_base = SP - argc + 1;
ObjectPtr* call_top = SP + 1;
InterpreterHelpers::IncrementUsageCounter(FrameFunction(FP));
StringPtr target_name = String::RawCast(LOAD_CONSTANT(kidx));
argdesc_ = Array::RawCast(LOAD_CONSTANT(kidx + 1));
if (!InstanceCall(thread, target_name, call_base, call_top, &pc, &FP,
&SP)) {
HANDLE_EXCEPTION;
}
}
DISPATCH();
}
{
BYTECODE(NativeCall, D);
TypedDataPtr data = static_cast<TypedDataPtr>(LOAD_CONSTANT(rD));
MethodRecognizer::Kind kind = NativeEntryData::GetKind(data);
switch (kind) {
case MethodRecognizer::kObjectEquals: {
SP[-1] = SP[-1] == SP[0] ? Bool::True().raw() : Bool::False().raw();
SP--;
} break;
case MethodRecognizer::kStringBaseLength:
case MethodRecognizer::kStringBaseIsEmpty: {
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(
instance->ptr())[String::length_offset() / kWordSize];
if (kind == MethodRecognizer::kStringBaseIsEmpty) {
SP[0] =
SP[0] == Smi::New(0) ? Bool::True().raw() : Bool::False().raw();
}
} break;
case MethodRecognizer::kGrowableArrayLength: {
GrowableObjectArrayPtr instance =
static_cast<GrowableObjectArrayPtr>(SP[0]);
SP[0] = instance->ptr()->length_;
} break;
case MethodRecognizer::kObjectArrayLength:
case MethodRecognizer::kImmutableArrayLength: {
ArrayPtr instance = static_cast<ArrayPtr>(SP[0]);
SP[0] = instance->ptr()->length_;
} break;
case MethodRecognizer::kTypedListLength:
case MethodRecognizer::kTypedListViewLength:
case MethodRecognizer::kByteDataViewLength: {
TypedDataBasePtr instance = static_cast<TypedDataBasePtr>(SP[0]);
SP[0] = instance->ptr()->length_;
} break;
case MethodRecognizer::kByteDataViewOffsetInBytes:
case MethodRecognizer::kTypedDataViewOffsetInBytes: {
TypedDataViewPtr instance = static_cast<TypedDataViewPtr>(SP[0]);
SP[0] = instance->ptr()->offset_in_bytes_;
} break;
case MethodRecognizer::kByteDataViewTypedData:
case MethodRecognizer::kTypedDataViewTypedData: {
TypedDataViewPtr instance = static_cast<TypedDataViewPtr>(SP[0]);
SP[0] = instance->ptr()->typed_data_;
} break;
case MethodRecognizer::kClassIDgetID: {
SP[0] = InterpreterHelpers::GetClassIdAsSmi(SP[0]);
} break;
case MethodRecognizer::kAsyncStackTraceHelper: {
SP[0] = Object::null();
} break;
case MethodRecognizer::kGrowableArrayCapacity: {
GrowableObjectArrayPtr instance =
static_cast<GrowableObjectArrayPtr>(SP[0]);
SP[0] = instance->ptr()->data_->ptr()->length_;
} break;
case MethodRecognizer::kListFactory: {
// factory List<E>([int length]) {
// return (:arg_desc.positional_count == 2) ? new _List<E>(length)
// : new _GrowableList<E>(0);
// }
if (InterpreterHelpers::ArgDescPosCount(argdesc_) == 2) {
TypeArgumentsPtr type_args = TypeArguments::RawCast(SP[-1]);
ObjectPtr length = SP[0];
SP--;
if (!AllocateArray(thread, type_args, length, pc, FP, SP)) {
HANDLE_EXCEPTION;
}
} else {
ASSERT(InterpreterHelpers::ArgDescPosCount(argdesc_) == 1);
// SP[-1] is type.
// The native wrapper pushed null as the optional length argument.
ASSERT(SP[0] == null_value);
SP[0] = Smi::New(0); // Patch null length with zero length.
SP[1] = thread->isolate()->object_store()->growable_list_factory();
// Change the ArgumentsDescriptor of the call with a new cached one.
argdesc_ = ArgumentsDescriptor::NewBoxed(
0, KernelBytecode::kNativeCallToGrowableListArgc);
// Replace PC to the return trampoline so ReturnTOS would see
// a call bytecode at return address and will be able to get argc
// via DecodeArgc.
pc = KernelBytecode::GetNativeCallToGrowableListReturnTrampoline();
if (!Invoke(thread, SP - 1, SP + 1, &pc, &FP, &SP)) {
HANDLE_EXCEPTION;
}
}
} break;
case MethodRecognizer::kObjectArrayAllocate: {
TypeArgumentsPtr type_args = TypeArguments::RawCast(SP[-1]);
ObjectPtr length = SP[0];
SP--;
if (!AllocateArray(thread, type_args, length, pc, FP, SP)) {
HANDLE_EXCEPTION;
}
} break;
case MethodRecognizer::kLinkedHashMap_getIndex: {
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(
instance->ptr())[LinkedHashMap::index_offset() / kWordSize];
} break;
case MethodRecognizer::kLinkedHashMap_setIndex: {
InstancePtr instance = static_cast<InstancePtr>(SP[-1]);
instance->ptr()->StorePointer(
reinterpret_cast<ObjectPtr*>(instance->ptr()) +
LinkedHashMap::index_offset() / kWordSize,
SP[0]);
*--SP = null_value;
} break;
case MethodRecognizer::kLinkedHashMap_getData: {
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(
instance->ptr())[LinkedHashMap::data_offset() / kWordSize];
} break;
case MethodRecognizer::kLinkedHashMap_setData: {
InstancePtr instance = static_cast<InstancePtr>(SP[-1]);
instance->ptr()->StorePointer(
reinterpret_cast<ObjectPtr*>(instance->ptr()) +
LinkedHashMap::data_offset() / kWordSize,
SP[0]);
*--SP = null_value;
} break;
case MethodRecognizer::kLinkedHashMap_getHashMask: {
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(
instance->ptr())[LinkedHashMap::hash_mask_offset() / kWordSize];
} break;
case MethodRecognizer::kLinkedHashMap_setHashMask: {
InstancePtr instance = static_cast<InstancePtr>(SP[-1]);
ASSERT(!SP[0]->IsHeapObject());
reinterpret_cast<ObjectPtr*>(
instance->ptr())[LinkedHashMap::hash_mask_offset() / kWordSize] =
SP[0];
*--SP = null_value;
} break;
case MethodRecognizer::kLinkedHashMap_getUsedData: {
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(
instance->ptr())[LinkedHashMap::used_data_offset() / kWordSize];
} break;
case MethodRecognizer::kLinkedHashMap_setUsedData: {
InstancePtr instance = static_cast<InstancePtr>(SP[-1]);
ASSERT(!SP[0]->IsHeapObject());
reinterpret_cast<ObjectPtr*>(
instance->ptr())[LinkedHashMap::used_data_offset() / kWordSize] =
SP[0];
*--SP = null_value;
} break;
case MethodRecognizer::kLinkedHashMap_getDeletedKeys: {
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(
instance->ptr())[LinkedHashMap::deleted_keys_offset() / kWordSize];
} break;
case MethodRecognizer::kLinkedHashMap_setDeletedKeys: {
InstancePtr instance = static_cast<InstancePtr>(SP[-1]);
ASSERT(!SP[0]->IsHeapObject());
reinterpret_cast<ObjectPtr*>(
instance->ptr())[LinkedHashMap::deleted_keys_offset() / kWordSize] =
SP[0];
*--SP = null_value;
} break;
case MethodRecognizer::kFfiAbi: {
*++SP = Smi::New(static_cast<int64_t>(compiler::ffi::TargetAbi()));
} break;
default: {
NativeEntryData::Payload* payload =
NativeEntryData::FromTypedArray(data);
intptr_t argc_tag = NativeEntryData::GetArgcTag(data);
const intptr_t num_arguments =
NativeArguments::ArgcBits::decode(argc_tag);
if (payload->trampoline == NULL) {
ASSERT(payload->native_function == NULL);
payload->trampoline = &NativeEntry::BootstrapNativeCallWrapper;
payload->native_function =
reinterpret_cast<NativeFunction>(&NativeEntry::LinkNativeCall);
}
*++SP = null_value; // Result slot.
ObjectPtr* incoming_args = SP - num_arguments;
ObjectPtr* return_slot = SP;
Exit(thread, FP, SP + 1, pc);
NativeArguments native_args(thread, argc_tag, incoming_args,
return_slot);
INVOKE_NATIVE(
payload->trampoline,
reinterpret_cast<Dart_NativeFunction>(payload->native_function),
reinterpret_cast<Dart_NativeArguments>(&native_args));
*(SP - num_arguments) = *return_slot;
SP -= num_arguments;
}
}
DISPATCH();
}
{
BYTECODE(ReturnTOS, 0);
DEBUG_CHECK;
ObjectPtr result; // result to return to the caller.
result = *SP;
// Restore caller PC.
pc = SavedCallerPC(FP);
// Check if it is a fake PC marking the entry frame.
if (IsEntryFrameMarker(pc)) {
// Pop entry frame.
ObjectPtr* entry_fp = SavedCallerFP(FP);
// Restore exit frame info saved in entry frame.
pp_ = static_cast<ObjectPoolPtr>(entry_fp[kKBCSavedPpSlotFromEntryFp]);
argdesc_ =
static_cast<ArrayPtr>(entry_fp[kKBCSavedArgDescSlotFromEntryFp]);
uword exit_fp = static_cast<uword>(entry_fp[kKBCExitLinkSlotFromEntryFp]);
thread->set_top_exit_frame_info(exit_fp);
thread->set_top_resource(top_resource);
thread->set_vm_tag(vm_tag);
fp_ = entry_fp;
NOT_IN_PRODUCT(pc_ = pc); // For the profiler.
#if defined(DEBUG)
if (IsTracingExecution()) {
THR_Print("%" Pu64 " ", icount_);
THR_Print("Returning from interpreter 0x%" Px " at fp_ 0x%" Px
" exit 0x%" Px "\n",
reinterpret_cast<uword>(this), reinterpret_cast<uword>(fp_),
exit_fp);
}
ASSERT(HasFrame(reinterpret_cast<uword>(fp_)));
// Exception propagation should have been done.
ASSERT(!result->IsHeapObject() ||
result->GetClassId() != kUnhandledExceptionCid);
#endif
return result;
}
// Look at the caller to determine how many arguments to pop.
const uint8_t argc = KernelBytecode::DecodeArgc(pc);
// Restore SP, FP and PP. Push result and dispatch.
SP = FrameArguments(FP, argc);
FP = SavedCallerFP(FP);
NOT_IN_PRODUCT(fp_ = FP); // For the profiler.
NOT_IN_PRODUCT(pc_ = pc); // For the profiler.
pp_ = InterpreterHelpers::FrameBytecode(FP)->ptr()->object_pool_;
*SP = result;
#if defined(DEBUG)
if (IsTracingExecution()) {
THR_Print("%" Pu64 " ", icount_);
THR_Print("Returning to %s (argc %d)\n",
Function::Handle(FrameFunction(FP)).ToFullyQualifiedCString(),
static_cast<int>(argc));
}
#endif
DISPATCH();
}
{
BYTECODE(InitLateField, D);
FieldPtr field = RAW_CAST(Field, LOAD_CONSTANT(rD + 1));
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
intptr_t offset_in_words =
Smi::Value(field->ptr()->host_offset_or_field_id_);
instance->ptr()->StorePointer(
reinterpret_cast<ObjectPtr*>(instance->ptr()) + offset_in_words,
Object::RawCast(Object::sentinel().raw()), thread);
SP -= 1; // Drop instance.
DISPATCH();
}
{
BYTECODE(PushUninitializedSentinel, 0);
*++SP = Object::sentinel().raw();
DISPATCH();
}
{
BYTECODE(JumpIfInitialized, T);
SP -= 1;
if (SP[1] != Object::sentinel().raw()) {
LOAD_JUMP_TARGET();
}
DISPATCH();
}
{
BYTECODE(StoreStaticTOS, D);
FieldPtr field = static_cast<FieldPtr>(LOAD_CONSTANT(rD));
InstancePtr value = static_cast<InstancePtr>(*SP--);
intptr_t field_id = Smi::Value(field->ptr()->host_offset_or_field_id_);
thread->field_table_values()[field_id] = value;
DISPATCH();
}
{
BYTECODE(LoadStatic, D);
FieldPtr field = static_cast<FieldPtr>(LOAD_CONSTANT(rD));
intptr_t field_id = Smi::Value(field->ptr()->host_offset_or_field_id_);
InstancePtr value = thread->field_table_values()[field_id];
ASSERT((value != Object::sentinel().raw()) &&
(value != Object::transition_sentinel().raw()));
*++SP = value;
DISPATCH();
}
{
BYTECODE(StoreFieldTOS, D);
FieldPtr field = RAW_CAST(Field, LOAD_CONSTANT(rD + 1));
InstancePtr instance = static_cast<InstancePtr>(SP[-1]);
ObjectPtr value = static_cast<ObjectPtr>(SP[0]);
intptr_t offset_in_words =
Smi::Value(field->ptr()->host_offset_or_field_id_);
if (InterpreterHelpers::FieldNeedsGuardUpdate(field, value)) {
SP[1] = 0; // Unused result of runtime call.
SP[2] = field;
SP[3] = value;
Exit(thread, FP, SP + 4, pc);
if (!InvokeRuntime(thread, this, DRT_UpdateFieldCid,
NativeArguments(thread, 2, /* argv */ SP + 2,
/* retval */ SP + 1))) {
HANDLE_EXCEPTION;
}
// Reload objects after the call which may trigger GC.
field = RAW_CAST(Field, LOAD_CONSTANT(rD + 1));
instance = static_cast<InstancePtr>(SP[-1]);
value = SP[0];
}
const bool unboxing =
(field->ptr()->is_nullable_ != kNullCid) &&
Field::UnboxingCandidateBit::decode(field->ptr()->kind_bits_);
classid_t guarded_cid = field->ptr()->guarded_cid_;
if (unboxing && (guarded_cid == kDoubleCid) && supports_unboxed_doubles_) {
double raw_value = Double::RawCast(value)->ptr()->value_;
ASSERT(*(reinterpret_cast<DoublePtr*>(instance->ptr()) +
offset_in_words) == null_value); // Initializing store.
if (!AllocateDouble(thread, raw_value, pc, FP, SP)) {
HANDLE_EXCEPTION;
}
DoublePtr box = Double::RawCast(SP[0]);
instance = static_cast<InstancePtr>(SP[-1]);
instance->ptr()->StorePointer(
reinterpret_cast<DoublePtr*>(instance->ptr()) + offset_in_words, box,
thread);
} else if (unboxing && (guarded_cid == kFloat32x4Cid) &&
supports_unboxed_simd128_) {
simd128_value_t raw_value;
raw_value.readFrom(Float32x4::RawCast(value)->ptr()->value_);
ASSERT(*(reinterpret_cast<Float32x4Ptr*>(instance->ptr()) +
offset_in_words) == null_value); // Initializing store.
if (!AllocateFloat32x4(thread, raw_value, pc, FP, SP)) {
HANDLE_EXCEPTION;
}
Float32x4Ptr box = Float32x4::RawCast(SP[0]);
instance = static_cast<InstancePtr>(SP[-1]);
instance->ptr()->StorePointer(
reinterpret_cast<Float32x4Ptr*>(instance->ptr()) + offset_in_words,
box, thread);
} else if (unboxing && (guarded_cid == kFloat64x2Cid) &&
supports_unboxed_simd128_) {
simd128_value_t raw_value;
raw_value.readFrom(Float64x2::RawCast(value)->ptr()->value_);
ASSERT(*(reinterpret_cast<Float64x2Ptr*>(instance->ptr()) +
offset_in_words) == null_value); // Initializing store.
if (!AllocateFloat64x2(thread, raw_value, pc, FP, SP)) {
HANDLE_EXCEPTION;
}
Float64x2Ptr box = Float64x2::RawCast(SP[0]);
instance = static_cast<InstancePtr>(SP[-1]);
instance->ptr()->StorePointer(
reinterpret_cast<Float64x2Ptr*>(instance->ptr()) + offset_in_words,
box, thread);
} else {
instance->ptr()->StorePointer(
reinterpret_cast<ObjectPtr*>(instance->ptr()) + offset_in_words,
value, thread);
}
SP -= 2; // Drop instance and value.
DISPATCH();
}
{
BYTECODE(StoreContextParent, 0);
const uword offset_in_words =
static_cast<uword>(Context::parent_offset() / kWordSize);
ContextPtr instance = static_cast<ContextPtr>(SP[-1]);
ContextPtr value = static_cast<ContextPtr>(SP[0]);
SP -= 2; // Drop instance and value.
instance->ptr()->StorePointer(
reinterpret_cast<ContextPtr*>(instance->ptr()) + offset_in_words, value,
thread);
DISPATCH();
}
{
BYTECODE(StoreContextVar, A_E);
const uword offset_in_words =
static_cast<uword>(Context::variable_offset(rE) / kWordSize);
ContextPtr instance = static_cast<ContextPtr>(SP[-1]);
ObjectPtr value = static_cast<ContextPtr>(SP[0]);
SP -= 2; // Drop instance and value.
ASSERT(rE < static_cast<uint32_t>(instance->ptr()->num_variables_));
instance->ptr()->StorePointer(
reinterpret_cast<ObjectPtr*>(instance->ptr()) + offset_in_words, value,
thread);
DISPATCH();
}
{
BYTECODE(LoadFieldTOS, D);
#if defined(DEBUG)
// Currently only used to load closure fields, which are not unboxed.
// If used for general field, code for copying the mutable box must be
// added.
FieldPtr field = RAW_CAST(Field, LOAD_CONSTANT(rD + 1));
const bool unboxing =
(field->ptr()->is_nullable_ != kNullCid) &&
Field::UnboxingCandidateBit::decode(field->ptr()->kind_bits_);
ASSERT(!unboxing);
#endif
const uword offset_in_words =
static_cast<uword>(Smi::Value(RAW_CAST(Smi, LOAD_CONSTANT(rD))));
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(instance->ptr())[offset_in_words];
DISPATCH();
}
{
BYTECODE(LoadTypeArgumentsField, D);
const uword offset_in_words =
static_cast<uword>(Smi::Value(RAW_CAST(Smi, LOAD_CONSTANT(rD))));
InstancePtr instance = static_cast<InstancePtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(instance->ptr())[offset_in_words];
DISPATCH();
}
{
BYTECODE(LoadContextParent, 0);
const uword offset_in_words =
static_cast<uword>(Context::parent_offset() / kWordSize);
ContextPtr instance = static_cast<ContextPtr>(SP[0]);
SP[0] = reinterpret_cast<ObjectPtr*>(instance->ptr())[offset_in_words];
DISPATCH();
}
{
BYTECODE(LoadContextVar, A_E);
const uword offset_in_words =
static_cast<uword>(Context::variable_offset(rE) / kWordSize);
ContextPtr instance = static_cast<ContextPtr>(SP[0]);
ASSERT(rE < static_cast<uint32_t>(instance->ptr()->num_variables_));
SP[0] = reinterpret_cast<ObjectPtr*>(instance->ptr())[offset_in_words];
DISPATCH();
}
{
BYTECODE(AllocateContext, A_E);
++SP;
const uint32_t num_context_variables = rE;
if (!AllocateContext(thread, num_context_variables, pc, FP, SP)) {
HANDLE_EXCEPTION;
}
DISPATCH();
}
{
BYTECODE(CloneContext, A_E);
{
SP[1] = SP[0]; // Context to clone.
Exit(thread, FP, SP + 2, pc);
INVOKE_RUNTIME(DRT_CloneContext, NativeArguments(thread, 1, SP + 1, SP));
}
DISPATCH();
}
{
BYTECODE(Allocate, D);
ClassPtr cls = Class::RawCast(LOAD_CONSTANT(rD));
if (LIKELY(InterpreterHelpers::IsAllocateFinalized(cls))) {
const intptr_t class_id = cls->ptr()->id_;
const intptr_t instance_size = cls->ptr()->host_instance_size_in_words_
<< kWordSizeLog2;
ObjectPtr result;
if (TryAllocate(thread, class_id, instance_size, &result)) {
uword start = ObjectLayout::ToAddr(result);
for (intptr_t offset = sizeof(InstanceLayout); offset < instance_size;
offset += kWordSize) {
*reinterpret_cast<ObjectPtr*>(start + offset) = null_value;
}
*++SP = result;
DISPATCH();
}
}
SP[1] = 0; // Space for the result.
SP[2] = cls; // Class object.
SP[3] = null_value; // Type arguments.
Exit(thread, FP, SP + 4, pc);
INVOKE_RUNTIME(DRT_AllocateObject,
NativeArguments(thread, 2, SP + 2, SP + 1));
SP++; // Result is in SP[1].
DISPATCH();
}
{
BYTECODE(AllocateT, 0);
ClassPtr cls = Class::RawCast(SP[0]);
TypeArgumentsPtr type_args = TypeArguments::RawCast(SP[-1]);
if (LIKELY(InterpreterHelpers::IsAllocateFinalized(cls))) {
const intptr_t class_id = cls->ptr()->id_;
const intptr_t instance_size = cls->ptr()->host_instance_size_in_words_
<< kWordSizeLog2;
ObjectPtr result;
if (TryAllocate(thread, class_id, instance_size, &result)) {
uword start = ObjectLayout::ToAddr(result);
for (intptr_t offset = sizeof(InstanceLayout); offset < instance_size;
offset += kWordSize) {
*reinterpret_cast<ObjectPtr*>(start + offset) = null_value;
}
const intptr_t type_args_offset =
cls->ptr()->host_type_arguments_field_offset_in_words_
<< kWordSizeLog2;
*reinterpret_cast<ObjectPtr*>(start + type_args_offset) = type_args;
*--SP = result;
DISPATCH();
}
}
SP[1] = cls;
SP[2] = type_args;
Exit(thread, FP, SP + 3, pc);
INVOKE_RUNTIME(DRT_AllocateObject,
NativeArguments(thread, 2, SP + 1, SP - 1));
SP -= 1; // Result is in SP - 1.
DISPATCH();
}
{
BYTECODE(CreateArrayTOS, 0);
TypeArgumentsPtr type_args = TypeArguments::RawCast(SP[-1]);
ObjectPtr length = SP[0];
SP--;
if (!AllocateArray(thread, type_args, length, pc, FP, SP)) {
HANDLE_EXCEPTION;
}
DISPATCH();
}
{
BYTECODE(AssertAssignable, A_E);
// Stack: instance, type, instantiator type args, function type args, name
ObjectPtr* args = SP - 4;
const bool may_be_smi = (rA == 1);
const bool is_smi =
((static_cast<intptr_t>(args[0]) & kSmiTagMask) == kSmiTag);
const bool smi_ok = is_smi && may_be_smi;
if (!smi_ok && (args[0] != null_value)) {
SubtypeTestCachePtr cache =
static_cast<SubtypeTestCachePtr>(LOAD_CONSTANT(rE));
if (!AssertAssignable(thread, pc, FP, SP, args, cache)) {
HANDLE_EXCEPTION;
}
}
SP -= 4; // Instance remains on stack.
DISPATCH();
}
{
BYTECODE(AssertSubtype, 0);
ObjectPtr* args = SP - 4;
// TODO(kustermann): Implement fast case for common arguments.
// The arguments on the stack look like:
// args[0] instantiator type args
// args[1] function type args
// args[2] sub_type
// args[3] super_type
// args[4] name
// This is unused, since the negative case throws an exception.
SP++;
ObjectPtr* result_slot = SP;
Exit(thread, FP, SP + 1, pc);
INVOKE_RUNTIME(DRT_SubtypeCheck,
NativeArguments(thread, 5, args, result_slot));