| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/elf.h" |
| |
| #include "platform/elf.h" |
| #include "vm/cpu.h" |
| #include "vm/dwarf.h" |
| #include "vm/hash_map.h" |
| #include "vm/image_snapshot.h" |
| #include "vm/thread.h" |
| #include "vm/zone_text_buffer.h" |
| |
| namespace dart { |
| |
| // A wrapper around StreamingWriteStream that provides methods useful for |
| // writing ELF files (e.g., using ELF definitions of data sizes). |
| class ElfWriteStream : public ValueObject { |
| public: |
| explicit ElfWriteStream(StreamingWriteStream* stream) |
| : stream_(ASSERT_NOTNULL(stream)) {} |
| |
| intptr_t position() const { return stream_->position(); } |
| void Align(const intptr_t alignment) { |
| ASSERT(Utils::IsPowerOfTwo(alignment)); |
| stream_->Align(alignment); |
| } |
| void WriteBytes(const uint8_t* b, intptr_t size) { |
| stream_->WriteBytes(b, size); |
| } |
| void WriteByte(uint8_t value) { |
| stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| } |
| void WriteHalf(uint16_t value) { |
| stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| } |
| void WriteWord(uint32_t value) { |
| stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| } |
| void WriteAddr(compiler::target::uword value) { |
| stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| } |
| void WriteOff(compiler::target::uword value) { |
| stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| } |
| #if defined(TARGET_ARCH_IS_64_BIT) |
| void WriteXWord(uint64_t value) { |
| stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| } |
| #endif |
| |
| private: |
| StreamingWriteStream* const stream_; |
| }; |
| |
| static constexpr intptr_t kLinearInitValue = -1; |
| |
| #define DEFINE_LINEAR_FIELD_METHODS(name) \ |
| intptr_t name() const { \ |
| ASSERT(name##_ != kLinearInitValue); \ |
| return name##_; \ |
| } \ |
| bool name##_is_set() const { return name##_ != kLinearInitValue; } \ |
| void set_##name(intptr_t value) { \ |
| ASSERT(value != kLinearInitValue); \ |
| ASSERT_EQUAL(name##_, kLinearInitValue); \ |
| name##_ = value; \ |
| } |
| |
| #define DEFINE_LINEAR_FIELD(name) intptr_t name##_ = kLinearInitValue; |
| |
| class BitsContainer; |
| class Segment; |
| |
| static constexpr intptr_t kDefaultAlignment = -1; |
| // Align note sections and segments to 4 byte boundries. |
| static constexpr intptr_t kNoteAlignment = 4; |
| |
| class Section : public ZoneAllocated { |
| public: |
| Section(elf::SectionHeaderType t, |
| bool allocate, |
| bool executable, |
| bool writable, |
| intptr_t align = kDefaultAlignment) |
| : type(t), |
| flags(EncodeFlags(allocate, executable, writable)), |
| alignment(align == kDefaultAlignment ? DefaultAlignment(t) : align), |
| // Non-segments will never have a memory offset, here represented by 0. |
| memory_offset_(allocate ? kLinearInitValue : 0) { |
| // Only sections with type SHT_NULL are allowed to have an alignment of 0. |
| ASSERT(type == elf::SectionHeaderType::SHT_NULL || alignment > 0); |
| // Non-zero alignments must be a power of 2. |
| ASSERT(alignment == 0 || Utils::IsPowerOfTwo(alignment)); |
| } |
| |
| virtual ~Section() {} |
| |
| // Linker view. |
| const elf::SectionHeaderType type; |
| const intptr_t flags; |
| const intptr_t alignment; |
| |
| // These are fields that only are not set for most kinds of sections and so we |
| // set them to a reasonable default. |
| intptr_t link = elf::SHN_UNDEF; |
| intptr_t info = 0; |
| intptr_t entry_size = 0; |
| |
| // Stores the name for the symbol that should be created in the dynamic (and |
| // static, if unstripped) tables for this section. |
| const char* symbol_name = nullptr; |
| |
| #define FOR_EACH_SECTION_LINEAR_FIELD(M) \ |
| M(name) \ |
| M(index) \ |
| M(file_offset) |
| |
| FOR_EACH_SECTION_LINEAR_FIELD(DEFINE_LINEAR_FIELD_METHODS); |
| |
| virtual intptr_t FileSize() const = 0; |
| |
| // Loader view. |
| #define FOR_EACH_SEGMENT_LINEAR_FIELD(M) M(memory_offset) |
| |
| FOR_EACH_SEGMENT_LINEAR_FIELD(DEFINE_LINEAR_FIELD_METHODS); |
| |
| // Each section belongs to at most one PT_LOAD segment. |
| const Segment* load_segment = nullptr; |
| |
| virtual intptr_t MemorySize() const = 0; |
| |
| // Other methods. |
| |
| bool IsAllocated() const { |
| return (flags & elf::SHF_ALLOC) == elf::SHF_ALLOC; |
| } |
| bool IsExecutable() const { |
| return (flags & elf::SHF_EXECINSTR) == elf::SHF_EXECINSTR; |
| } |
| bool IsWritable() const { return (flags & elf::SHF_WRITE) == elf::SHF_WRITE; } |
| |
| // Returns whether new content can be added to a section. |
| bool HasBeenFinalized() const { |
| if (IsAllocated()) { |
| // The contents of a section that is allocated (part of a segment) must |
| // not change after the section is added. |
| return memory_offset_is_set(); |
| } else { |
| // Unallocated sections can have new content added until we calculate |
| // file offsets. |
| return file_offset_is_set(); |
| } |
| } |
| |
| virtual const BitsContainer* AsBitsContainer() const { return nullptr; } |
| |
| // Writes the file contents of the section. |
| virtual void Write(ElfWriteStream* stream) = 0; |
| |
| virtual void WriteSectionHeader(ElfWriteStream* stream) { |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| stream->WriteWord(name()); |
| stream->WriteWord(static_cast<uint32_t>(type)); |
| stream->WriteWord(flags); |
| stream->WriteAddr(memory_offset()); |
| stream->WriteOff(file_offset()); |
| stream->WriteWord(FileSize()); // Has different meaning for BSS. |
| stream->WriteWord(link); |
| stream->WriteWord(info); |
| stream->WriteWord(alignment); |
| stream->WriteWord(entry_size); |
| #else |
| stream->WriteWord(name()); |
| stream->WriteWord(static_cast<uint32_t>(type)); |
| stream->WriteXWord(flags); |
| stream->WriteAddr(memory_offset()); |
| stream->WriteOff(file_offset()); |
| stream->WriteXWord(FileSize()); // Has different meaning for BSS. |
| stream->WriteWord(link); |
| stream->WriteWord(info); |
| stream->WriteXWord(alignment); |
| stream->WriteXWord(entry_size); |
| #endif |
| } |
| |
| private: |
| static intptr_t EncodeFlags(bool allocate, bool executable, bool writable) { |
| if (!allocate) return 0; |
| intptr_t flags = elf::SHF_ALLOC; |
| if (executable) flags |= elf::SHF_EXECINSTR; |
| if (writable) flags |= elf::SHF_WRITE; |
| return flags; |
| } |
| |
| static intptr_t DefaultAlignment(elf::SectionHeaderType type) { |
| switch (type) { |
| case elf::SectionHeaderType::SHT_SYMTAB: |
| case elf::SectionHeaderType::SHT_DYNSYM: |
| case elf::SectionHeaderType::SHT_HASH: |
| case elf::SectionHeaderType::SHT_DYNAMIC: |
| return compiler::target::kWordSize; |
| default: |
| return 1; |
| } |
| } |
| |
| FOR_EACH_SECTION_LINEAR_FIELD(DEFINE_LINEAR_FIELD); |
| FOR_EACH_SEGMENT_LINEAR_FIELD(DEFINE_LINEAR_FIELD); |
| |
| #undef FOR_EACH_SECTION_LINEAR_FIELD |
| #undef FOR_EACH_SEGMENT_LINEAR_FIELD |
| }; |
| |
| #undef DEFINE_LINEAR_FIELD |
| #undef DEFINE_LINEAR_FIELD_METHODS |
| |
| class Segment : public ZoneAllocated { |
| public: |
| Segment(Zone* zone, |
| Section* initial_section, |
| elf::ProgramHeaderType segment_type) |
| : type(segment_type), |
| // Flags for the segment are the same as the initial section. |
| flags(EncodeFlags(ASSERT_NOTNULL(initial_section)->IsExecutable(), |
| ASSERT_NOTNULL(initial_section)->IsWritable())), |
| sections_(zone, 0) { |
| // Unlike sections, we don't have a reserved segment with the null type, |
| // so we never should pass this value. |
| ASSERT(segment_type != elf::ProgramHeaderType::PT_NULL); |
| // All segments should have at least one section. The first one is added |
| // during initialization. Unlike others added later, it should already have |
| // a memory offset since we use it to determine the segment memory offset. |
| ASSERT(initial_section->IsAllocated()); |
| ASSERT(initial_section->memory_offset_is_set()); |
| sections_.Add(initial_section); |
| if (type == elf::ProgramHeaderType::PT_LOAD) { |
| ASSERT(initial_section->load_segment == nullptr); |
| initial_section->load_segment = this; |
| } |
| } |
| |
| virtual ~Segment() {} |
| |
| static intptr_t Alignment(elf::ProgramHeaderType segment_type) { |
| switch (segment_type) { |
| case elf::ProgramHeaderType::PT_DYNAMIC: |
| return compiler::target::kWordSize; |
| case elf::ProgramHeaderType::PT_NOTE: |
| return kNoteAlignment; |
| default: |
| return Elf::kPageSize; |
| } |
| } |
| |
| bool IsExecutable() const { return (flags & elf::PF_X) == elf::PF_X; } |
| bool IsWritable() const { return (flags & elf::PF_W) == elf::PF_W; } |
| |
| void WriteProgramHeader(ElfWriteStream* stream) { |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| stream->WriteWord(static_cast<uint32_t>(type)); |
| stream->WriteOff(FileOffset()); |
| stream->WriteAddr(MemoryOffset()); // Virtual address. |
| stream->WriteAddr(MemoryOffset()); // Physical address, not used. |
| stream->WriteWord(FileSize()); |
| stream->WriteWord(MemorySize()); |
| stream->WriteWord(flags); |
| stream->WriteWord(Alignment(type)); |
| #else |
| stream->WriteWord(static_cast<uint32_t>(type)); |
| stream->WriteWord(flags); |
| stream->WriteOff(FileOffset()); |
| stream->WriteAddr(MemoryOffset()); // Virtual address. |
| stream->WriteAddr(MemoryOffset()); // Physical address, not used. |
| stream->WriteXWord(FileSize()); |
| stream->WriteXWord(MemorySize()); |
| stream->WriteXWord(Alignment(type)); |
| #endif |
| } |
| |
| // Adds the given section to this segment. |
| // |
| // Returns whether the Section could be added to the segment. If not, a |
| // new segment will need to be created for this section. |
| // |
| // Sets the memory offset of the section if added. |
| bool Add(Section* section) { |
| // We only add additional sections to load segments. |
| ASSERT(type == elf::ProgramHeaderType::PT_LOAD); |
| ASSERT(section != nullptr); |
| // Only sections with the allocate flag set should be added to segments, |
| // and sections with already-set memory offsets cannot be added. |
| ASSERT(section->IsAllocated()); |
| ASSERT(!section->memory_offset_is_set()); |
| ASSERT(section->load_segment == nullptr); |
| switch (sections_.Last()->type) { |
| // We only use SHT_NULL sections as pseudo sections that will not appear |
| // in the final ELF file. Don't pack sections into these segments, as we |
| // may remove/replace the segments during finalization. |
| case elf::SectionHeaderType::SHT_NULL: |
| // If the last section in the segments is NOBITS, then we don't add it, |
| // as otherwise we'll be guaranteed the file offset and memory offset |
| // won't be page aligned without padding. |
| case elf::SectionHeaderType::SHT_NOBITS: |
| return false; |
| default: |
| break; |
| } |
| // We don't add if the W or X bits don't match. |
| if (IsExecutable() != section->IsExecutable() || |
| IsWritable() != section->IsWritable()) { |
| return false; |
| } |
| auto const start_address = Utils::RoundUp(MemoryEnd(), section->alignment); |
| section->set_memory_offset(start_address); |
| sections_.Add(section); |
| section->load_segment = this; |
| return true; |
| } |
| |
| intptr_t FileOffset() const { return sections_[0]->file_offset(); } |
| |
| intptr_t FileSize() const { |
| auto const last = sections_.Last(); |
| const intptr_t end = last->file_offset() + last->FileSize(); |
| return end - FileOffset(); |
| } |
| |
| intptr_t MemoryOffset() const { return sections_[0]->memory_offset(); } |
| |
| intptr_t MemorySize() const { |
| auto const last = sections_.Last(); |
| const intptr_t end = last->memory_offset() + last->MemorySize(); |
| return end - MemoryOffset(); |
| } |
| |
| intptr_t MemoryEnd() const { return MemoryOffset() + MemorySize(); } |
| |
| private: |
| static constexpr intptr_t kInitValue = -1; |
| static_assert(kInitValue < 0, "init value must be negative"); |
| |
| static intptr_t EncodeFlags(bool executable, bool writable) { |
| intptr_t flags = elf::PF_R; |
| if (executable) flags |= elf::PF_X; |
| if (writable) flags |= elf::PF_W; |
| return flags; |
| } |
| |
| public: |
| const elf::ProgramHeaderType type; |
| const intptr_t flags; |
| |
| private: |
| GrowableArray<const Section*> sections_; |
| }; |
| |
| // Represents the first entry in the section table, which should only contain |
| // zero values and does not correspond to a memory segment. |
| class ReservedSection : public Section { |
| public: |
| ReservedSection() |
| : Section(elf::SectionHeaderType::SHT_NULL, |
| /*allocate=*/false, |
| /*executable=*/false, |
| /*writable=*/false, |
| /*alignment=*/0) { |
| set_name(0); |
| set_index(0); |
| set_file_offset(0); |
| } |
| |
| intptr_t FileSize() const { return 0; } |
| intptr_t MemorySize() const { return 0; } |
| void Write(ElfWriteStream* stream) {} |
| }; |
| |
| // Represents portions of the file/memory space which do not correspond to |
| // actual sections. Should never be added to sections_. |
| class PseudoSection : public Section { |
| public: |
| PseudoSection(bool executable, |
| bool writable, |
| intptr_t file_offset, |
| intptr_t file_size, |
| intptr_t memory_offset, |
| intptr_t memory_size) |
| : Section(elf::SectionHeaderType::SHT_NULL, |
| /*allocate=*/true, |
| executable, |
| writable, |
| /*alignment=*/0), |
| file_size_(file_size), |
| memory_size_(memory_size) { |
| set_file_offset(file_offset); |
| set_memory_offset(memory_offset); |
| } |
| |
| intptr_t FileSize() const { return file_size_; } |
| intptr_t MemorySize() const { return memory_size_; } |
| void WriteSectionHeader(ElfWriteStream* stream) { UNREACHABLE(); } |
| void Write(ElfWriteStream* stream) { UNREACHABLE(); } |
| |
| private: |
| const intptr_t file_size_; |
| const intptr_t memory_size_; |
| }; |
| |
| // A segment for representing the program header table self-reference in the |
| // program header table. |
| class ProgramTableSelfSegment : public Segment { |
| public: |
| ProgramTableSelfSegment(Zone* zone, intptr_t offset, intptr_t size) |
| : Segment(zone, |
| new (zone) PseudoSection(/*executable=*/false, |
| /*writable=*/false, |
| offset, |
| size, |
| offset, |
| size), |
| elf::ProgramHeaderType::PT_PHDR) {} |
| }; |
| |
| // A segment for representing the program header table load segment in the |
| // program header table. |
| class ProgramTableLoadSegment : public Segment { |
| public: |
| // The Android dynamic linker in Jelly Bean incorrectly assumes that all |
| // non-writable segments are continguous. Since the BSS segment comes directly |
| // after the program header segment, we must make this segment writable so |
| // later non-writable segments does not cause the BSS to be also marked as |
| // read-only. |
| // |
| // The bug is here: |
| // https://github.com/aosp-mirror/platform_bionic/blob/94963af28e445384e19775a838a29e6a71708179/linker/linker.c#L1991-L2001 |
| explicit ProgramTableLoadSegment(Zone* zone, intptr_t size) |
| : Segment(zone, |
| // This segment should always start at address 0. |
| new (zone) PseudoSection(/*executable=*/false, |
| /*writable=*/true, |
| 0, |
| size, |
| 0, |
| size), |
| elf::ProgramHeaderType::PT_LOAD) {} |
| }; |
| |
| class BitsContainer : public Section { |
| public: |
| // Fully specified BitsContainer information. |
| BitsContainer(elf::SectionHeaderType type, |
| bool allocate, |
| bool executable, |
| bool writable, |
| intptr_t size, |
| const uint8_t* bytes, |
| int alignment = kDefaultAlignment) |
| : Section(type, allocate, executable, writable, alignment), |
| file_size_(type == elf::SectionHeaderType::SHT_NOBITS ? 0 : size), |
| memory_size_(allocate ? size : 0), |
| bytes_(bytes) { |
| ASSERT(type == elf::SectionHeaderType::SHT_NOBITS || bytes != nullptr); |
| } |
| |
| // For BitsContainers used only as sections. |
| BitsContainer(elf::SectionHeaderType type, |
| intptr_t size, |
| const uint8_t* bytes, |
| intptr_t alignment = kDefaultAlignment) |
| : BitsContainer(type, |
| /*allocate=*/false, |
| /*executable=*/false, |
| /*writable=*/false, |
| size, |
| bytes, |
| alignment) {} |
| |
| // For BitsContainers used as segments whose type differ on the type of the |
| // ELF file. Creates an elf::SHT_NOBITS section if type is DebugInfo, |
| // otherwise creates an elf::SHT_PROGBITS section. |
| BitsContainer(Elf::Type t, |
| bool executable, |
| bool writable, |
| intptr_t size, |
| const uint8_t* bytes, |
| intptr_t alignment = kDefaultAlignment) |
| : BitsContainer(t == Elf::Type::DebugInfo |
| ? elf::SectionHeaderType::SHT_NOBITS |
| : elf::SectionHeaderType::SHT_PROGBITS, |
| /*allocate=*/true, |
| executable, |
| writable, |
| size, |
| bytes, |
| alignment) {} |
| |
| const BitsContainer* AsBitsContainer() const { return this; } |
| |
| void Write(ElfWriteStream* stream) { |
| if (type != elf::SectionHeaderType::SHT_NOBITS) { |
| stream->WriteBytes(bytes_, FileSize()); |
| } |
| } |
| |
| intptr_t FileSize() const { return file_size_; } |
| intptr_t MemorySize() const { return memory_size_; } |
| const uint8_t* bytes() const { return bytes_; } |
| |
| private: |
| const intptr_t file_size_; |
| const intptr_t memory_size_; |
| const uint8_t* const bytes_; |
| }; |
| |
| class StringTable : public Section { |
| public: |
| explicit StringTable(Zone* zone, bool allocate) |
| : Section(elf::SectionHeaderType::SHT_STRTAB, |
| allocate, |
| /*executable=*/false, |
| /*writable=*/false), |
| dynamic_(allocate), |
| text_(zone, 128), |
| text_indices_(zone) { |
| text_.AddChar('\0'); |
| text_indices_.Insert({"", 1}); |
| } |
| |
| intptr_t FileSize() const { return text_.length(); } |
| intptr_t MemorySize() const { return dynamic_ ? FileSize() : 0; } |
| |
| void Write(ElfWriteStream* stream) { |
| stream->WriteBytes(reinterpret_cast<const uint8_t*>(text_.buffer()), |
| text_.length()); |
| } |
| |
| intptr_t AddString(const char* str) { |
| if (auto const kv = text_indices_.Lookup(str)) return kv->value - 1; |
| intptr_t offset = text_.length(); |
| text_.AddString(str); |
| text_.AddChar('\0'); |
| text_indices_.Insert({str, offset + 1}); |
| return offset; |
| } |
| |
| const char* At(intptr_t index) { |
| ASSERT(index < text_.length()); |
| return text_.buffer() + index; |
| } |
| intptr_t Lookup(const char* str) const { |
| return text_indices_.LookupValue(str) - 1; |
| } |
| |
| const bool dynamic_; |
| ZoneTextBuffer text_; |
| // To avoid kNoValue for intptr_t (0), we store an index n as n + 1. |
| CStringMap<intptr_t> text_indices_; |
| }; |
| |
| class Symbol : public ZoneAllocated { |
| public: |
| Symbol(const char* cstr, |
| intptr_t name, |
| intptr_t info, |
| intptr_t section, |
| intptr_t offset, |
| intptr_t size) |
| : name_index(name), |
| info(info), |
| section_index(section), |
| offset(offset), |
| size(size), |
| cstr_(cstr) {} |
| |
| void Write(ElfWriteStream* stream) const { |
| const intptr_t start = stream->position(); |
| stream->WriteWord(name_index); |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| stream->WriteAddr(offset); |
| stream->WriteWord(size); |
| stream->WriteByte(info); |
| stream->WriteByte(0); |
| stream->WriteHalf(section_index); |
| #else |
| stream->WriteByte(info); |
| stream->WriteByte(0); |
| stream->WriteHalf(section_index); |
| stream->WriteAddr(offset); |
| stream->WriteXWord(size); |
| #endif |
| ASSERT_EQUAL(stream->position() - start, sizeof(elf::Symbol)); |
| } |
| |
| const intptr_t name_index; |
| const intptr_t info; |
| const intptr_t section_index; |
| const intptr_t offset; |
| const intptr_t size; |
| |
| private: |
| friend class SymbolHashTable; // For cstr_ access. |
| |
| const char* const cstr_; |
| }; |
| |
| class SymbolTable : public Section { |
| public: |
| SymbolTable(Zone* zone, bool dynamic) |
| : Section(dynamic ? elf::SectionHeaderType::SHT_DYNSYM |
| : elf::SectionHeaderType::SHT_SYMTAB, |
| dynamic, |
| /*executable=*/false, |
| /*writable=*/false), |
| dynamic_(dynamic), |
| reserved_("", 0, 0, 0, 0, 0), |
| symbols_(zone, 1) { |
| entry_size = sizeof(elf::Symbol); |
| // The first symbol table entry is reserved and must be all zeros. |
| symbols_.Add(&reserved_); |
| info = 1; // One "local" symbol, the reserved first entry. |
| } |
| |
| intptr_t FileSize() const { return Length() * entry_size; } |
| intptr_t MemorySize() const { return dynamic_ ? FileSize() : 0; } |
| |
| void Write(ElfWriteStream* stream) { |
| for (intptr_t i = 0; i < Length(); i++) { |
| auto const symbol = At(i); |
| const intptr_t start = stream->position(); |
| symbol->Write(stream); |
| ASSERT_EQUAL(stream->position() - start, entry_size); |
| } |
| } |
| |
| void AddSymbol(const Symbol* symbol) { symbols_.Add(symbol); } |
| intptr_t Length() const { return symbols_.length(); } |
| const Symbol* At(intptr_t i) const { return symbols_[i]; } |
| |
| const Symbol* FindSymbolWithNameIndex(intptr_t name_index) const { |
| for (intptr_t i = 0; i < Length(); i++) { |
| auto const symbol = At(i); |
| if (symbol->name_index == name_index) return symbol; |
| } |
| return nullptr; |
| } |
| |
| private: |
| const bool dynamic_; |
| const Symbol reserved_; |
| GrowableArray<const Symbol*> symbols_; |
| }; |
| |
| static uint32_t ElfHash(const unsigned char* name) { |
| uint32_t h = 0; |
| while (*name != '\0') { |
| h = (h << 4) + *name++; |
| uint32_t g = h & 0xf0000000; |
| h ^= g; |
| h ^= g >> 24; |
| } |
| return h; |
| } |
| |
| class SymbolHashTable : public Section { |
| public: |
| SymbolHashTable(Zone* zone, StringTable* strtab, SymbolTable* symtab) |
| : Section(elf::SectionHeaderType::SHT_HASH, |
| /*allocate=*/true, |
| /*executable=*/false, |
| /*writable=*/false) { |
| link = symtab->index(); |
| entry_size = sizeof(int32_t); |
| |
| nchain_ = symtab->Length(); |
| nbucket_ = symtab->Length(); |
| |
| bucket_ = zone->Alloc<int32_t>(nbucket_); |
| for (intptr_t i = 0; i < nbucket_; i++) { |
| bucket_[i] = elf::STN_UNDEF; |
| } |
| |
| chain_ = zone->Alloc<int32_t>(nchain_); |
| for (intptr_t i = 0; i < nchain_; i++) { |
| chain_[i] = elf::STN_UNDEF; |
| } |
| |
| for (intptr_t i = 1; i < symtab->Length(); i++) { |
| auto const symbol = symtab->At(i); |
| uint32_t hash = ElfHash((const unsigned char*)symbol->cstr_); |
| uint32_t probe = hash % nbucket_; |
| chain_[i] = bucket_[probe]; // next = head |
| bucket_[probe] = i; // head = symbol |
| } |
| } |
| |
| intptr_t FileSize() const { return entry_size * (nbucket_ + nchain_ + 2); } |
| intptr_t MemorySize() const { return FileSize(); } |
| |
| void Write(ElfWriteStream* stream) { |
| stream->WriteWord(nbucket_); |
| stream->WriteWord(nchain_); |
| for (intptr_t i = 0; i < nbucket_; i++) { |
| stream->WriteWord(bucket_[i]); |
| } |
| for (intptr_t i = 0; i < nchain_; i++) { |
| stream->WriteWord(chain_[i]); |
| } |
| } |
| |
| private: |
| int32_t nbucket_; |
| int32_t nchain_; |
| int32_t* bucket_; // "Head" |
| int32_t* chain_; // "Next" |
| }; |
| |
| class DynamicTable : public Section { |
| public: |
| DynamicTable(Zone* zone, |
| StringTable* strtab, |
| SymbolTable* symtab, |
| SymbolHashTable* hash) |
| : Section(elf::SectionHeaderType::SHT_DYNAMIC, |
| /*allocate=*/true, |
| /*executable=*/false, |
| /*writable=*/true) { |
| link = strtab->index(); |
| entry_size = sizeof(elf::DynamicEntry); |
| |
| AddEntry(zone, elf::DynamicEntryType::DT_HASH, hash->memory_offset()); |
| AddEntry(zone, elf::DynamicEntryType::DT_STRTAB, strtab->memory_offset()); |
| AddEntry(zone, elf::DynamicEntryType::DT_STRSZ, strtab->MemorySize()); |
| AddEntry(zone, elf::DynamicEntryType::DT_SYMTAB, symtab->memory_offset()); |
| AddEntry(zone, elf::DynamicEntryType::DT_SYMENT, sizeof(elf::Symbol)); |
| AddEntry(zone, elf::DynamicEntryType::DT_NULL, 0); |
| } |
| |
| intptr_t FileSize() const { return entries_.length() * entry_size; } |
| intptr_t MemorySize() const { return FileSize(); } |
| |
| void Write(ElfWriteStream* stream) { |
| for (intptr_t i = 0; i < entries_.length(); i++) { |
| entries_[i]->Write(stream); |
| } |
| } |
| |
| struct Entry : public ZoneAllocated { |
| Entry(elf::DynamicEntryType tag, intptr_t value) : tag(tag), value(value) {} |
| |
| void Write(ElfWriteStream* stream) { |
| const intptr_t start = stream->position(); |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| stream->WriteWord(static_cast<uint32_t>(tag)); |
| stream->WriteAddr(value); |
| #else |
| stream->WriteXWord(static_cast<uint64_t>(tag)); |
| stream->WriteAddr(value); |
| #endif |
| ASSERT_EQUAL(stream->position() - start, sizeof(elf::DynamicEntry)); |
| } |
| |
| elf::DynamicEntryType tag; |
| intptr_t value; |
| }; |
| |
| void AddEntry(Zone* zone, elf::DynamicEntryType tag, intptr_t value) { |
| auto const entry = new (zone) Entry(tag, value); |
| entries_.Add(entry); |
| } |
| |
| private: |
| GrowableArray<Entry*> entries_; |
| }; |
| |
| // A segment for representing the dynamic table segment in the program header |
| // table. There is no corresponding section for this segment. |
| class DynamicSegment : public Segment { |
| public: |
| explicit DynamicSegment(Zone* zone, DynamicTable* dynamic) |
| : Segment(zone, dynamic, elf::ProgramHeaderType::PT_DYNAMIC) {} |
| }; |
| |
| // A segment for representing the dynamic table segment in the program header |
| // table. There is no corresponding section for this segment. |
| class NoteSegment : public Segment { |
| public: |
| NoteSegment(Zone* zone, Section* note) |
| : Segment(zone, note, elf::ProgramHeaderType::PT_NOTE) { |
| ASSERT_EQUAL(static_cast<uint32_t>(note->type), |
| static_cast<uint32_t>(elf::SectionHeaderType::SHT_NOTE)); |
| } |
| }; |
| |
| static const intptr_t kProgramTableSegmentSize = Elf::kPageSize; |
| |
| // Here, both VM and isolate will be compiled into a single snapshot. |
| // In assembly generation, each serialized text section gets a separate |
| // pointer into the BSS segment and BSS slots are created for each, since |
| // we may not serialize both VM and isolate. Here, we always serialize both, |
| // so make a BSS segment large enough for both, with the VM entries coming |
| // first. |
| static constexpr const char* kSnapshotBssAsmSymbol = "_kDartBSSData"; |
| static const intptr_t kBssIsolateOffset = |
| BSS::kVmEntryCount * compiler::target::kWordSize; |
| static const intptr_t kBssSize = |
| kBssIsolateOffset + BSS::kIsolateEntryCount * compiler::target::kWordSize; |
| |
| Elf::Elf(Zone* zone, StreamingWriteStream* stream, Type type, Dwarf* dwarf) |
| : zone_(zone), |
| unwrapped_stream_(stream), |
| type_(type), |
| dwarf_(dwarf), |
| bss_(CreateBSS(zone, type, kBssSize)), |
| shstrtab_(new (zone) StringTable(zone, /*allocate=*/false)), |
| dynstrtab_(new (zone) StringTable(zone, /*allocate=*/true)), |
| dynsym_(new (zone) SymbolTable(zone, /*dynamic=*/true)) { |
| // Separate debugging information should always have a Dwarf object. |
| ASSERT(type_ == Type::Snapshot || dwarf_ != nullptr); |
| // Assumed by various offset logic in this file. |
| ASSERT_EQUAL(unwrapped_stream_->position(), 0); |
| // The first section in the section header table is always a reserved |
| // entry containing only 0 values. |
| sections_.Add(new (zone_) ReservedSection()); |
| if (!IsStripped()) { |
| // Not a stripped ELF file, so allocate static string and symbol tables. |
| strtab_ = new (zone_) StringTable(zone_, /* allocate= */ false); |
| symtab_ = new (zone_) SymbolTable(zone, /*dynamic=*/false); |
| } |
| // We add an initial segment to represent reserved space for the program |
| // header, and so we can always assume there's at least one segment in the |
| // segments_ array. We later remove this and replace it with appropriately |
| // calculated segments in Elf::FinalizeProgramTable(). |
| auto const start_segment = |
| new (zone_) ProgramTableLoadSegment(zone_, kProgramTableSegmentSize); |
| segments_.Add(start_segment); |
| // Note that the BSS segment must be the first user-defined segment because |
| // it cannot be placed in between any two non-writable segments, due to a bug |
| // in Jelly Bean's ELF loader. See also Elf::WriteProgramTable(). |
| // |
| // We add it in all cases, even to the separate debugging information ELF, |
| // to ensure that relocated addresses are consistent between ELF snapshots |
| // and ELF separate debugging information. |
| AddSection(bss_, ".bss", kSnapshotBssAsmSymbol); |
| } |
| |
| intptr_t Elf::NextMemoryOffset() const { |
| return Utils::RoundUp(LastLoadSegment()->MemoryEnd(), Elf::kPageSize); |
| } |
| |
| uword Elf::BssStart(bool vm) const { |
| return bss_->memory_offset() + (vm ? 0 : kBssIsolateOffset); |
| } |
| |
| intptr_t Elf::AddSection(Section* section, |
| const char* name, |
| const char* symbol_name) { |
| ASSERT(section_table_file_size_ < 0); |
| ASSERT(!shstrtab_->HasBeenFinalized()); |
| section->set_name(shstrtab_->AddString(name)); |
| section->set_index(sections_.length()); |
| sections_.Add(section); |
| |
| // No memory offset, so just return -1. |
| if (!section->IsAllocated()) return -1; |
| |
| ASSERT(program_table_file_size_ < 0); |
| auto const last_load = LastLoadSegment(); |
| if (!last_load->Add(section)) { |
| // We can't add this section to the last load segment, so create a new one. |
| // The new segment starts at the next aligned address. |
| auto const type = elf::ProgramHeaderType::PT_LOAD; |
| auto const start_address = |
| Utils::RoundUp(last_load->MemoryEnd(), Segment::Alignment(type)); |
| section->set_memory_offset(start_address); |
| auto const segment = new (zone_) Segment(zone_, section, type); |
| segments_.Add(segment); |
| } |
| if (symbol_name != nullptr) { |
| section->symbol_name = symbol_name; |
| } |
| return section->memory_offset(); |
| } |
| |
| intptr_t Elf::AddText(const char* name, const uint8_t* bytes, intptr_t size) { |
| // When making a separate debugging info file for assembly, we don't have |
| // the binary text segment contents. |
| ASSERT(type_ == Type::DebugInfo || bytes != nullptr); |
| auto const image = new (zone_) |
| BitsContainer(type_, /*executable=*/true, |
| /*writable=*/false, size, bytes, Elf::kPageSize); |
| return AddSection(image, ".text", name); |
| } |
| |
| Section* Elf::CreateBSS(Zone* zone, Type type, intptr_t size) { |
| uint8_t* bytes = nullptr; |
| if (type != Type::DebugInfo) { |
| // Ideally the BSS segment would take no space in the object, but Android's |
| // "strip" utility truncates the memory-size of our segments to their |
| // file-size. |
| // |
| // Therefore we must insert zero-filled pages for the BSS. |
| bytes = zone->Alloc<uint8_t>(size); |
| memset(bytes, 0, size); |
| } |
| return new (zone) BitsContainer(type, /*executable=*/false, /*writable=*/true, |
| kBssSize, bytes, Image::kBssAlignment); |
| } |
| |
| intptr_t Elf::AddROData(const char* name, const uint8_t* bytes, intptr_t size) { |
| ASSERT(bytes != nullptr); |
| auto const image = new (zone_) |
| BitsContainer(type_, /*executable=*/false, |
| /*writable=*/false, size, bytes, kMaxObjectAlignment); |
| return AddSection(image, ".rodata", name); |
| } |
| |
| void Elf::AddDebug(const char* name, const uint8_t* bytes, intptr_t size) { |
| ASSERT(!IsStripped()); |
| ASSERT(bytes != nullptr); |
| auto const image = new (zone_) |
| BitsContainer(elf::SectionHeaderType::SHT_PROGBITS, size, bytes); |
| AddSection(image, name); |
| } |
| |
| void Elf::AddDynamicSymbol(const char* name, |
| intptr_t info, |
| intptr_t section_index, |
| intptr_t address, |
| intptr_t size) { |
| ASSERT(!dynstrtab_->HasBeenFinalized() && !dynsym_->HasBeenFinalized()); |
| auto const name_index = dynstrtab_->AddString(name); |
| auto const symbol = |
| new (zone_) Symbol(name, name_index, info, section_index, address, size); |
| dynsym_->AddSymbol(symbol); |
| |
| // Some tools assume the static symbol table is a superset of the dynamic |
| // symbol table when it exists (see dartbug.com/41783). |
| AddStaticSymbol(name, info, section_index, address, size); |
| } |
| |
| void Elf::AddStaticSymbol(const char* name, |
| intptr_t info, |
| intptr_t section_index, |
| intptr_t address, |
| intptr_t size) { |
| if (IsStripped()) return; // No static info kept in stripped ELF files. |
| ASSERT(!symtab_->HasBeenFinalized() && !strtab_->HasBeenFinalized()); |
| auto const name_index = strtab_->AddString(name); |
| auto const symbol = |
| new (zone_) Symbol(name, name_index, info, section_index, address, size); |
| symtab_->AddSymbol(symbol); |
| } |
| |
| #if defined(DART_PRECOMPILER) |
| class DwarfElfStream : public DwarfWriteStream { |
| public: |
| explicit DwarfElfStream(Zone* zone, |
| WriteStream* stream, |
| const CStringMap<intptr_t>& address_map) |
| : zone_(zone), |
| stream_(ASSERT_NOTNULL(stream)), |
| address_map_(address_map) {} |
| |
| void sleb128(intptr_t value) { |
| bool is_last_part = false; |
| while (!is_last_part) { |
| uint8_t part = value & 0x7F; |
| value >>= 7; |
| if ((value == 0 && (part & 0x40) == 0) || |
| (value == static_cast<intptr_t>(-1) && (part & 0x40) != 0)) { |
| is_last_part = true; |
| } else { |
| part |= 0x80; |
| } |
| stream_->WriteFixed(part); |
| } |
| } |
| |
| void uleb128(uintptr_t value) { |
| bool is_last_part = false; |
| while (!is_last_part) { |
| uint8_t part = value & 0x7F; |
| value >>= 7; |
| if (value == 0) { |
| is_last_part = true; |
| } else { |
| part |= 0x80; |
| } |
| stream_->WriteFixed(part); |
| } |
| } |
| |
| void u1(uint8_t value) { stream_->WriteFixed(value); } |
| // Can't use WriteFixed for these, as we may not be at aligned positions. |
| void u2(uint16_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
| void u4(uint32_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
| void u8(uint64_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
| void string(const char* cstr) { // NOLINT |
| stream_->WriteBytes(reinterpret_cast<const uint8_t*>(cstr), |
| strlen(cstr) + 1); |
| } |
| intptr_t position() { return stream_->Position(); } |
| intptr_t ReserveSize(const char* prefix, intptr_t* start) { |
| ASSERT(start != nullptr); |
| intptr_t fixup = position(); |
| // We assume DWARF v2, so all sizes are 32-bit. |
| u4(0); |
| // All sizes for DWARF sections measure the size of the section data _after_ |
| // the size value. |
| *start = position(); |
| return fixup; |
| } |
| void SetSize(intptr_t fixup, const char* prefix, intptr_t start) { |
| const uint32_t value = position() - start; |
| memmove(stream_->buffer() + fixup, &value, sizeof(value)); |
| } |
| void OffsetFromSymbol(const char* symbol, intptr_t offset) { |
| auto const address = address_map_.LookupValue(symbol); |
| ASSERT(address != 0); |
| addr(address + offset); |
| } |
| void DistanceBetweenSymbolOffsets(const char* symbol1, |
| intptr_t offset1, |
| const char* symbol2, |
| intptr_t offset2) { |
| auto const address1 = address_map_.LookupValue(symbol1); |
| ASSERT(address1 != 0); |
| auto const address2 = address_map_.LookupValue(symbol2); |
| ASSERT(address2 != 0); |
| auto const delta = (address1 + offset1) - (address2 + offset2); |
| RELEASE_ASSERT(delta >= 0); |
| uleb128(delta); |
| } |
| void InitializeAbstractOrigins(intptr_t size) { |
| abstract_origins_size_ = size; |
| abstract_origins_ = zone_->Alloc<uint32_t>(abstract_origins_size_); |
| } |
| void RegisterAbstractOrigin(intptr_t index) { |
| ASSERT(abstract_origins_ != nullptr); |
| ASSERT(index < abstract_origins_size_); |
| abstract_origins_[index] = position(); |
| } |
| void AbstractOrigin(intptr_t index) { u4(abstract_origins_[index]); } |
| |
| private: |
| void addr(uword value) { |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| u4(value); |
| #else |
| u8(value); |
| #endif |
| } |
| |
| Zone* const zone_; |
| WriteStream* const stream_; |
| const CStringMap<intptr_t>& address_map_; |
| uint32_t* abstract_origins_ = nullptr; |
| intptr_t abstract_origins_size_ = -1; |
| |
| DISALLOW_COPY_AND_ASSIGN(DwarfElfStream); |
| }; |
| |
| static constexpr intptr_t kInitialDwarfBufferSize = 64 * KB; |
| #endif |
| |
| static uint8_t* ZoneReallocate(uint8_t* ptr, intptr_t len, intptr_t new_len) { |
| return Thread::Current()->zone()->Realloc<uint8_t>(ptr, len, new_len); |
| } |
| |
| Segment* Elf::LastLoadSegment() const { |
| for (intptr_t i = segments_.length() - 1; i >= 0; i--) { |
| auto const segment = segments_.At(i); |
| if (segment->type == elf::ProgramHeaderType::PT_LOAD) { |
| return segment; |
| } |
| } |
| // There should always be a load segment, since one is added in construction. |
| UNREACHABLE(); |
| } |
| |
| const Section* Elf::FindSectionForAddress(intptr_t address) const { |
| for (auto const section : sections_) { |
| if (!section->IsAllocated()) continue; |
| auto const start = section->memory_offset(); |
| auto const end = start + section->MemorySize(); |
| if (address >= start && address < end) { |
| return section; |
| } |
| } |
| return nullptr; |
| } |
| |
| void Elf::AddSectionSymbols() { |
| for (auto const section : sections_) { |
| if (section->symbol_name == nullptr) continue; |
| ASSERT(section->memory_offset_is_set()); |
| // While elf::STT_SECTION might seem more appropriate, those symbols are |
| // usually local and dlsym won't return them. |
| auto const info = (elf::STB_GLOBAL << 4) | elf::STT_FUNC; |
| AddDynamicSymbol(section->symbol_name, info, section->index(), |
| section->memory_offset(), section->MemorySize()); |
| } |
| } |
| |
| void Elf::FinalizeDwarfSections() { |
| if (dwarf_ == nullptr) return; |
| #if defined(DART_PRECOMPILER) |
| // Add all the static symbols for Code objects. We'll keep a table of |
| // symbol names to relocated addresses for use in the DwarfElfStream. |
| // The default kNoValue of 0 is okay here, as no symbols are defined for |
| // relocated address 0. |
| CStringMap<intptr_t> symbol_to_address_map; |
| // Prime the map with any existing static symbols. |
| if (symtab_ != nullptr) { |
| ASSERT(strtab_ != nullptr); |
| // Skip the initial reserved entry in the symbol table. |
| for (intptr_t i = 1; i < symtab_->Length(); i++) { |
| auto const symbol = symtab_->At(i); |
| auto const name = strtab_->At(symbol->name_index); |
| symbol_to_address_map.Insert({name, symbol->offset}); |
| } |
| } |
| |
| // Need these to turn offsets into relocated addresses. |
| auto const vm_start = |
| symbol_to_address_map.LookupValue(kVmSnapshotInstructionsAsmSymbol); |
| // vm_start is absent in deferred loading peices. |
| auto const isolate_start = |
| symbol_to_address_map.LookupValue(kIsolateSnapshotInstructionsAsmSymbol); |
| ASSERT(isolate_start > 0); |
| auto const vm_text = FindSectionForAddress(vm_start); |
| // vm_text is absent in deferred loading peices. |
| auto const isolate_text = FindSectionForAddress(isolate_start); |
| ASSERT(isolate_text != nullptr); |
| |
| SnapshotTextObjectNamer namer(zone_); |
| const auto& codes = dwarf_->codes(); |
| if (codes.length() == 0) { |
| return; |
| } |
| for (intptr_t i = 0; i < codes.length(); i++) { |
| const auto& code = *codes[i]; |
| auto const name = namer.SnapshotNameFor(i, code); |
| const auto& pair = dwarf_->CodeAddress(code); |
| ASSERT(pair.offset > 0); |
| auto const section = pair.vm ? vm_text : isolate_text; |
| const intptr_t address = section->memory_offset() + pair.offset; |
| auto const info = (elf::STB_GLOBAL << 4) | elf::STT_FUNC; |
| AddStaticSymbol(name, info, section->index(), address, code.Size()); |
| symbol_to_address_map.Insert({name, address}); |
| } |
| |
| // TODO(rmacnak): Generate .debug_frame / .eh_frame / .arm.exidx to |
| // provide unwinding information. |
| |
| { |
| uint8_t* buffer = nullptr; |
| WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
| DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
| dwarf_->WriteAbbreviations(&dwarf_stream); |
| AddDebug(".debug_abbrev", buffer, stream.bytes_written()); |
| } |
| |
| { |
| uint8_t* buffer = nullptr; |
| WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
| DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
| dwarf_->WriteDebugInfo(&dwarf_stream); |
| AddDebug(".debug_info", buffer, stream.bytes_written()); |
| } |
| |
| { |
| uint8_t* buffer = nullptr; |
| WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
| DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
| dwarf_->WriteLineNumberProgram(&dwarf_stream); |
| AddDebug(".debug_line", buffer, stream.bytes_written()); |
| } |
| #endif |
| } |
| |
| void Elf::Finalize() { |
| AddSectionSymbols(); |
| |
| // The Build ID depends on the symbols being in place, so must be run after |
| // AddSectionSymbols(). Unfortunately, it currently depends on the contents |
| // of the .text and .rodata sections, so it can't come earlier in the file |
| // without changing how we add the .text and .rodata sections (since we |
| // determine memory offsets for those sections when we add them, and the |
| // text sections must have the memory offsets to do BSS relocations). |
| if (auto const build_id = GenerateBuildId()) { |
| AddSection(build_id, ".note.gnu.build-id", kSnapshotBuildIdAsmSymbol); |
| |
| // Add a PT_NOTE segment for the build ID. |
| segments_.Add(new (zone_) NoteSegment(zone_, build_id)); |
| } |
| |
| // Adding the dynamic symbol table and associated sections. |
| AddSection(dynstrtab_, ".dynstr"); |
| AddSection(dynsym_, ".dynsym"); |
| dynsym_->link = dynstrtab_->index(); |
| |
| auto const hash = new (zone_) SymbolHashTable(zone_, dynstrtab_, dynsym_); |
| AddSection(hash, ".hash"); |
| |
| auto const dynamic = |
| new (zone_) DynamicTable(zone_, dynstrtab_, dynsym_, hash); |
| AddSection(dynamic, ".dynamic"); |
| |
| // Add a PT_DYNAMIC segment for the dynamic symbol table. |
| segments_.Add(new (zone_) DynamicSegment(zone_, dynamic)); |
| |
| // Currently, we add all (non-reserved) unallocated sections after all |
| // allocated sections. If we put unallocated sections between allocated |
| // sections, they would affect the file offset but not the memory offset |
| // of the later allocated sections. |
| // |
| // However, memory offsets must be page-aligned to the file offset for the |
| // ELF file to be successfully loaded. This means we'd either have to add |
| // extra padding _or_ determine file offsets before memory offsets. The |
| // latter would require us to handle BSS relocations during ELF finalization, |
| // instead of while writing the .text section content. |
| FinalizeDwarfSections(); |
| if (!IsStripped()) { |
| AddSection(strtab_, ".strtab"); |
| AddSection(symtab_, ".symtab"); |
| symtab_->link = strtab_->index(); |
| } |
| AddSection(shstrtab_, ".shstrtab"); |
| |
| // At this point, all non-programmatically calculated sections and segments |
| // have been added. Add any programatically calculated sections and segments |
| // and then calculate file offsets. |
| FinalizeProgramTable(); |
| ComputeFileOffsets(); |
| |
| // Finally, write the ELF file contents. |
| ElfWriteStream wrapped(unwrapped_stream_); |
| WriteHeader(&wrapped); |
| WriteProgramTable(&wrapped); |
| WriteSections(&wrapped); |
| WriteSectionTable(&wrapped); |
| } |
| |
| // Need to include the final \0 terminator in both byte count and byte output. |
| static const uint32_t kBuildIdNameLength = strlen(elf::ELF_NOTE_GNU) + 1; |
| // We generate a 128-bit hash, where each 32 bits is a hash of the contents of |
| // the following segments in order: |
| // |
| // .text(VM) | .text(Isolate) | .rodata(VM) | .rodata(Isolate) |
| static constexpr intptr_t kBuildIdSegmentNamesLength = 4; |
| static constexpr const char* kBuildIdSegmentNames[kBuildIdSegmentNamesLength]{ |
| kVmSnapshotInstructionsAsmSymbol, |
| kIsolateSnapshotInstructionsAsmSymbol, |
| kVmSnapshotDataAsmSymbol, |
| kIsolateSnapshotDataAsmSymbol, |
| }; |
| static constexpr uint32_t kBuildIdDescriptionLength = |
| kBuildIdSegmentNamesLength * sizeof(uint32_t); |
| static const intptr_t kBuildIdDescriptionOffset = |
| sizeof(elf::Note) + kBuildIdNameLength; |
| static const intptr_t kBuildIdSize = |
| kBuildIdDescriptionOffset + kBuildIdDescriptionLength; |
| |
| static const Symbol* LookupSymbol(StringTable* strings, |
| SymbolTable* symbols, |
| const char* name) { |
| ASSERT(strings != nullptr); |
| ASSERT(symbols != nullptr); |
| auto const name_index = strings->Lookup(name); |
| if (name_index < 0) return nullptr; |
| return symbols->FindSymbolWithNameIndex(name_index); |
| } |
| |
| static uint32_t HashBitsContainer(const BitsContainer* bits) { |
| uint32_t hash = 0; |
| auto const size = bits->MemorySize(); |
| auto const end = bits->bytes() + size; |
| auto const non_word_size = size % kWordSize; |
| auto const end_of_words = |
| reinterpret_cast<const uword*>(bits->bytes() + (size - non_word_size)); |
| for (auto cursor = reinterpret_cast<const uword*>(bits->bytes()); |
| cursor < end_of_words; cursor++) { |
| hash = CombineHashes(hash, *cursor); |
| } |
| for (auto cursor = reinterpret_cast<const uint8_t*>(end_of_words); |
| cursor < end; cursor++) { |
| hash = CombineHashes(hash, *cursor); |
| } |
| return FinalizeHash(hash, 32); |
| } |
| |
| Section* Elf::GenerateBuildId() { |
| uint8_t* notes_buffer = nullptr; |
| WriteStream stream(¬es_buffer, ZoneReallocate, kBuildIdSize); |
| stream.WriteFixed(kBuildIdNameLength); |
| stream.WriteFixed(kBuildIdDescriptionLength); |
| stream.WriteFixed(static_cast<uint32_t>(elf::NoteType::NT_GNU_BUILD_ID)); |
| stream.WriteBytes(elf::ELF_NOTE_GNU, kBuildIdNameLength); |
| const intptr_t description_start = stream.bytes_written(); |
| for (intptr_t i = 0; i < kBuildIdSegmentNamesLength; i++) { |
| auto const name = kBuildIdSegmentNames[i]; |
| auto const symbol = LookupSymbol(dynstrtab_, dynsym_, name); |
| if (symbol == nullptr) { |
| stream.WriteFixed(static_cast<uint32_t>(0)); |
| continue; |
| } |
| auto const bits = sections_[symbol->section_index]->AsBitsContainer(); |
| if (bits == nullptr) { |
| FATAL1("Section for symbol %s is not a BitsContainer", name); |
| } |
| ASSERT_EQUAL(bits->MemorySize(), symbol->size); |
| // We don't actually have the bytes (i.e., this is a separate debugging |
| // info file for an assembly snapshot), so we can't calculate the build ID. |
| if (bits->bytes() == nullptr) return nullptr; |
| |
| stream.WriteFixed(HashBitsContainer(bits)); |
| } |
| ASSERT_EQUAL(stream.bytes_written() - description_start, |
| kBuildIdDescriptionLength); |
| return new (zone_) BitsContainer( |
| elf::SectionHeaderType::SHT_NOTE, /*allocate=*/true, /*executable=*/false, |
| /*writable=*/false, stream.bytes_written(), notes_buffer, kNoteAlignment); |
| } |
| |
| void Elf::FinalizeProgramTable() { |
| ASSERT(program_table_file_size_ < 0); |
| |
| program_table_file_offset_ = sizeof(elf::ElfHeader); |
| |
| // There are two segments we need the size of the program table to create, so |
| // calculate it as if those two segments were already in place. |
| program_table_file_size_ = |
| (2 + segments_.length()) * sizeof(elf::ProgramHeader); |
| |
| // We pre-allocated the virtual memory space for the program table itself. |
| // Check that we didn't generate too many segments. Currently we generate a |
| // fixed num of segments based on the four pieces of a snapshot, but if we |
| // use more in the future we'll likely need to do something more compilated |
| // to generate DWARF without knowing a piece's virtual address in advance. |
| auto const program_table_segment_size = |
| program_table_file_offset_ + program_table_file_size_; |
| RELEASE_ASSERT(program_table_segment_size < kProgramTableSegmentSize); |
| |
| // Remove the original stand-in segment we added in the constructor. |
| segments_.EraseAt(0); |
| |
| // Self-reference to program header table. Required by Android but not by |
| // Linux. Must appear before any PT_LOAD entries. |
| segments_.InsertAt( |
| 0, new (zone_) ProgramTableSelfSegment(zone_, program_table_file_offset_, |
| program_table_file_size_)); |
| |
| // Segment for loading the initial part of the ELF file, including the |
| // program header table. Required by Android but not by Linux. |
| segments_.InsertAt(1, new (zone_) ProgramTableLoadSegment( |
| zone_, program_table_segment_size)); |
| } |
| |
| static const intptr_t kElfSectionTableAlignment = compiler::target::kWordSize; |
| |
| void Elf::ComputeFileOffsets() { |
| // We calculate the size and offset of the program header table during |
| // finalization. |
| ASSERT(program_table_file_offset_ > 0 && program_table_file_size_ > 0); |
| intptr_t file_offset = program_table_file_offset_ + program_table_file_size_; |
| // When calculating file offsets for sections, we'll need to know if we've |
| // changed segments. Start with the one for the program table. |
| const auto* current_segment = segments_[1]; |
| |
| // The non-reserved sections are output to the file in order after the program |
| // header table. If we're entering a new segment, then we need to align |
| // according to the PT_LOAD segment alignment as well to keep the file offsets |
| // aligned with the memory addresses. |
| auto const load_align = Segment::Alignment(elf::ProgramHeaderType::PT_LOAD); |
| for (intptr_t i = 1; i < sections_.length(); i++) { |
| auto const section = sections_[i]; |
| file_offset = Utils::RoundUp(file_offset, section->alignment); |
| if (section->IsAllocated() && section->load_segment != current_segment) { |
| file_offset = Utils::RoundUp(file_offset, load_align); |
| current_segment = section->load_segment; |
| } |
| section->set_file_offset(file_offset); |
| #if defined(DEBUG) |
| if (section->IsAllocated()) { |
| // For files that will be dynamically loaded, make sure the file offsets |
| // of allocated sections are page aligned to the memory offsets. |
| ASSERT_EQUAL(section->file_offset() % load_align, |
| section->memory_offset() % load_align); |
| } |
| #endif |
| file_offset += section->FileSize(); |
| } |
| |
| file_offset = Utils::RoundUp(file_offset, kElfSectionTableAlignment); |
| section_table_file_offset_ = file_offset; |
| section_table_file_size_ = sections_.length() * sizeof(elf::SectionHeader); |
| file_offset += section_table_file_size_; |
| } |
| |
| void Elf::WriteHeader(ElfWriteStream* stream) { |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| uint8_t size = elf::ELFCLASS32; |
| #else |
| uint8_t size = elf::ELFCLASS64; |
| #endif |
| uint8_t e_ident[16] = {0x7f, |
| 'E', |
| 'L', |
| 'F', |
| size, |
| elf::ELFDATA2LSB, |
| elf::EV_CURRENT, |
| elf::ELFOSABI_SYSV, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0}; |
| stream->WriteBytes(e_ident, 16); |
| |
| stream->WriteHalf(elf::ET_DYN); // Shared library. |
| |
| #if defined(TARGET_ARCH_IA32) |
| stream->WriteHalf(elf::EM_386); |
| #elif defined(TARGET_ARCH_X64) |
| stream->WriteHalf(elf::EM_X86_64); |
| #elif defined(TARGET_ARCH_ARM) |
| stream->WriteHalf(elf::EM_ARM); |
| #elif defined(TARGET_ARCH_ARM64) |
| stream->WriteHalf(elf::EM_AARCH64); |
| #else |
| FATAL("Unknown ELF architecture"); |
| #endif |
| |
| stream->WriteWord(elf::EV_CURRENT); // Version |
| stream->WriteAddr(0); // "Entry point" |
| stream->WriteOff(program_table_file_offset_); |
| stream->WriteOff(section_table_file_offset_); |
| |
| #if defined(TARGET_ARCH_ARM) |
| uword flags = elf::EF_ARM_ABI | (TargetCPUFeatures::hardfp_supported() |
| ? elf::EF_ARM_ABI_FLOAT_HARD |
| : elf::EF_ARM_ABI_FLOAT_SOFT); |
| #else |
| uword flags = 0; |
| #endif |
| stream->WriteWord(flags); |
| |
| stream->WriteHalf(sizeof(elf::ElfHeader)); |
| stream->WriteHalf(sizeof(elf::ProgramHeader)); |
| stream->WriteHalf(segments_.length()); |
| stream->WriteHalf(sizeof(elf::SectionHeader)); |
| stream->WriteHalf(sections_.length()); |
| stream->WriteHalf(shstrtab_->index()); |
| |
| ASSERT_EQUAL(stream->position(), sizeof(elf::ElfHeader)); |
| } |
| |
| void Elf::WriteProgramTable(ElfWriteStream* stream) { |
| ASSERT(program_table_file_size_ >= 0); // Check for finalization. |
| ASSERT(stream->position() == program_table_file_offset_); |
| #if defined(DEBUG) |
| // Here, we count the number of times that a PT_LOAD writable segment is |
| // followed by a non-writable segment. We initialize last_writable to true so |
| // that we catch the case where the first segment is non-writable. |
| bool last_writable = true; |
| int non_writable_groups = 0; |
| #endif |
| for (auto const segment : segments_) { |
| #if defined(DEBUG) |
| if (segment->type == elf::ProgramHeaderType::PT_LOAD) { |
| if (last_writable && !segment->IsWritable()) { |
| non_writable_groups++; |
| } |
| last_writable = segment->IsWritable(); |
| } |
| #endif |
| const intptr_t start = stream->position(); |
| segment->WriteProgramHeader(stream); |
| const intptr_t end = stream->position(); |
| ASSERT_EQUAL(end - start, sizeof(elf::ProgramHeader)); |
| } |
| #if defined(DEBUG) |
| // All PT_LOAD non-writable segments must be contiguous. If not, some older |
| // Android dynamic linkers fail to handle writable segments between |
| // non-writable ones. See https://github.com/flutter/flutter/issues/43259. |
| ASSERT(non_writable_groups <= 1); |
| #endif |
| } |
| |
| void Elf::WriteSectionTable(ElfWriteStream* stream) { |
| ASSERT(section_table_file_size_ >= 0); // Check for finalization. |
| stream->Align(kElfSectionTableAlignment); |
| ASSERT_EQUAL(stream->position(), section_table_file_offset_); |
| |
| for (auto const section : sections_) { |
| const intptr_t start = stream->position(); |
| section->WriteSectionHeader(stream); |
| const intptr_t end = stream->position(); |
| ASSERT_EQUAL(end - start, sizeof(elf::SectionHeader)); |
| } |
| } |
| |
| void Elf::WriteSections(ElfWriteStream* stream) { |
| ASSERT(section_table_file_size_ >= 0); // Check for finalization. |
| |
| // Skip the reserved first section, as its alignment is 0 (which will cause |
| // stream->Align() to fail) and it never contains file contents anyway. |
| ASSERT_EQUAL(static_cast<uint32_t>(sections_[0]->type), |
| static_cast<uint32_t>(elf::SectionHeaderType::SHT_NULL)); |
| ASSERT_EQUAL(sections_[0]->alignment, 0); |
| auto const load_align = Segment::Alignment(elf::ProgramHeaderType::PT_LOAD); |
| const Segment* current_segment = segments_[1]; |
| for (intptr_t i = 1; i < sections_.length(); i++) { |
| Section* section = sections_[i]; |
| stream->Align(section->alignment); |
| if (section->IsAllocated() && section->load_segment != current_segment) { |
| // Changing segments, so align accordingly. |
| stream->Align(load_align); |
| current_segment = section->load_segment; |
| } |
| ASSERT_EQUAL(stream->position(), section->file_offset()); |
| section->Write(stream); |
| ASSERT_EQUAL(stream->position(), |
| section->file_offset() + section->FileSize()); |
| } |
| } |
| |
| } // namespace dart |