blob: da8bb08f3a33e99c85db67235d7a0a2da8bb9ee2 [file] [log] [blame]
// Copyright (c) 2017, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/dwarf.h"
#include "vm/code_descriptors.h"
#include "vm/elf.h"
#include "vm/image_snapshot.h"
#include "vm/object_store.h"
namespace dart {
#if defined(DART_PRECOMPILER)
class DwarfPosition {
public:
// The DWARF standard uses 0 to denote missing line or column information.
DwarfPosition(intptr_t line, intptr_t column)
: line_(line > 0 ? line : 0), column_(column > 0 ? column : 0) {
// Should only have no line information if also no column information.
ASSERT(line_ > 0 || column_ == 0);
}
explicit DwarfPosition(intptr_t line) : DwarfPosition(line, 0) {}
constexpr DwarfPosition() : line_(0), column_(0) {}
intptr_t line() const { return line_; }
intptr_t column() const { return column_; }
private:
intptr_t line_;
intptr_t column_;
};
static constexpr auto kNoDwarfPositionInfo = DwarfPosition();
class InliningNode : public ZoneAllocated {
public:
InliningNode(const Function& function,
const DwarfPosition& position,
int32_t start_pc_offset)
: function(function),
position(position),
start_pc_offset(start_pc_offset),
end_pc_offset(-1),
children_head(NULL),
children_tail(NULL),
children_next(NULL) {
RELEASE_ASSERT(!function.IsNull());
RELEASE_ASSERT(function.IsNotTemporaryScopedHandle());
}
void AppendChild(InliningNode* child) {
if (children_tail == NULL) {
children_head = children_tail = child;
} else {
children_tail->children_next = child;
children_tail = child;
}
}
const Function& function;
DwarfPosition position;
int32_t start_pc_offset;
int32_t end_pc_offset;
InliningNode* children_head;
InliningNode* children_tail;
InliningNode* children_next;
};
template <typename T>
Trie<T>* Trie<T>::AddString(Zone* zone,
Trie<T>* trie,
const char* key,
const T* value) {
ASSERT(key != nullptr);
if (trie == nullptr) {
trie = new (zone) Trie<T>();
}
if (*key == '\0') {
ASSERT(trie->value_ == nullptr);
trie->value_ = value;
} else {
auto const index = ChildIndex(*key);
ASSERT(index >= 0 && index < kNumValidChars);
trie->children_[index] =
AddString(zone, trie->children_[index], key + 1, value);
}
return trie;
}
template <typename T>
const T* Trie<T>::Lookup(const Trie<T>* trie, const char* key, intptr_t* end) {
intptr_t i = 0;
for (; key[i] != '\0'; i++) {
auto const index = ChildIndex(key[i]);
ASSERT(index < kNumValidChars);
if (index < 0) {
if (end == nullptr) return nullptr;
break;
}
// Still find the longest valid trie prefix when no stored value.
if (trie == nullptr) continue;
trie = trie->children_[index];
}
if (end != nullptr) {
*end = i;
}
if (trie == nullptr) return nullptr;
return trie->value_;
}
Dwarf::Dwarf(Zone* zone)
: zone_(zone),
reverse_obfuscation_trie_(CreateReverseObfuscationTrie(zone)),
codes_(zone, 1024),
code_to_address_(zone),
functions_(zone, 1024),
function_to_index_(zone),
scripts_(zone, 1024),
script_to_index_(zone),
temp_(0) {}
SegmentRelativeOffset Dwarf::CodeAddress(const Code& code) const {
const auto& pair = code_to_address_.LookupValue(&code);
// This is only used by Elf::Finalize(), and the image writers always give a
// text offset when calling AddCode() for an Elf object's Dwarf object. Thus,
// we should have known code offsets for each code object in the map.
ASSERT(pair.offset != SegmentRelativeOffset::kUnknownOffset);
return pair;
}
intptr_t Dwarf::AddCode(const Code& orig_code,
const SegmentRelativeOffset& offset) {
ASSERT(!orig_code.IsNull());
// We should never get the no-argument constructed version here.
ASSERT(offset.offset != SegmentRelativeOffset::kInvalidOffset);
// Generate an appropriately zoned ZoneHandle for storing.
const auto& code = Code::ZoneHandle(zone_, orig_code.raw());
// For now, we assume one of two flows for a given code object:
// ELF: Calls to AddCode(code, vm, offset), vm and offset are the same over
// all calls.
// Assembly: An initial call to AddCode(code, vm) (assembly), possibly
// followed by a later call to AddCode(code, vm, offset)
// (separate debugging info ELF)
if (offset.offset == SegmentRelativeOffset::kUnknownOffset) {
// A call without an address should always come before any calls with
// addresses.
ASSERT(code_to_address_.Lookup(&code) == nullptr);
// Insert a marker so on later calls, we know we've already added to codes_.
code_to_address_.Insert(CodeAddressPair(&code, offset));
} else {
const auto& old_value = code_to_address_.LookupValue(&code);
// ELF does not need to know the index. If we've already added this Code
// object to codes_ in a previous call, don't bother scanning codes_ to find
// the corresponding index, just return -1 instead.
switch (old_value.offset) {
case SegmentRelativeOffset::kInvalidOffset:
code_to_address_.Insert(CodeAddressPair(&code, offset));
break; // Still need to add to codes_.
case SegmentRelativeOffset::kUnknownOffset:
// Code objects should only be associated with either the VM or isolate.
ASSERT_EQUAL(old_value.vm, offset.vm);
code_to_address_.Update(CodeAddressPair(&code, offset));
return -1;
default:
// The information for the code object shouldn't have changed since the
// previous update.
ASSERT(old_value == offset);
return -1;
}
}
const intptr_t index = codes_.length();
codes_.Add(&code);
if (code.IsFunctionCode()) {
const Function& function = Function::Handle(zone_, code.function());
AddFunction(function);
}
const Array& inline_functions =
Array::Handle(zone_, code.inlined_id_to_function());
if (!inline_functions.IsNull()) {
Function& function = Function::Handle(zone_);
for (intptr_t i = 0; i < inline_functions.Length(); i++) {
function ^= inline_functions.At(i);
AddFunction(function);
}
}
return index;
}
intptr_t Dwarf::AddFunction(const Function& function) {
RELEASE_ASSERT(!function.IsNull());
FunctionIndexPair* pair = function_to_index_.Lookup(&function);
if (pair != NULL) {
return pair->index_;
}
intptr_t index = functions_.length();
const Function& zone_func = Function::ZoneHandle(zone_, function.raw());
function_to_index_.Insert(FunctionIndexPair(&zone_func, index));
functions_.Add(&zone_func);
const Script& script = Script::Handle(zone_, function.script());
AddScript(script);
return index;
}
intptr_t Dwarf::AddScript(const Script& script) {
RELEASE_ASSERT(!script.IsNull());
ScriptIndexPair* pair = script_to_index_.Lookup(&script);
if (pair != NULL) {
return pair->index_;
}
// DWARF file numbers start from 1.
intptr_t index = scripts_.length() + 1;
const Script& zone_script = Script::ZoneHandle(zone_, script.raw());
script_to_index_.Insert(ScriptIndexPair(&zone_script, index));
scripts_.Add(&zone_script);
return index;
}
intptr_t Dwarf::LookupFunction(const Function& function) {
RELEASE_ASSERT(!function.IsNull());
FunctionIndexPair* pair = function_to_index_.Lookup(&function);
if (pair == NULL) {
FATAL1("Function detected too late during DWARF generation: %s",
function.ToCString());
}
return pair->index_;
}
intptr_t Dwarf::LookupScript(const Script& script) {
RELEASE_ASSERT(!script.IsNull());
ScriptIndexPair* pair = script_to_index_.Lookup(&script);
if (pair == NULL) {
FATAL1("Script detected too late during DWARF generation: %s",
script.ToCString());
}
return pair->index_;
}
void Dwarf::WriteAbbreviations(DwarfWriteStream* stream) {
// Dwarf data mostly takes the form of a tree, whose nodes are called
// DIEs. Each DIE begins with an abbreviation code, and the abbreviation
// describes the attributes of that DIE and their representation.
stream->uleb128(kCompilationUnit); // Abbrev code.
stream->uleb128(DW_TAG_compile_unit); // Type.
stream->u1(DW_CHILDREN_yes);
stream->uleb128(DW_AT_name); // Start of attributes.
stream->uleb128(DW_FORM_string);
stream->uleb128(DW_AT_producer);
stream->uleb128(DW_FORM_string);
stream->uleb128(DW_AT_comp_dir);
stream->uleb128(DW_FORM_string);
stream->uleb128(DW_AT_low_pc);
stream->uleb128(DW_FORM_addr);
stream->uleb128(DW_AT_high_pc);
stream->uleb128(DW_FORM_addr);
stream->uleb128(DW_AT_stmt_list);
stream->uleb128(DW_FORM_sec_offset);
stream->uleb128(0);
stream->uleb128(0); // End of attributes.
stream->uleb128(kAbstractFunction); // Abbrev code.
stream->uleb128(DW_TAG_subprogram); // Type.
stream->u1(DW_CHILDREN_yes);
stream->uleb128(DW_AT_name); // Start of attributes.
stream->uleb128(DW_FORM_string);
stream->uleb128(DW_AT_decl_file);
stream->uleb128(DW_FORM_udata);
stream->uleb128(DW_AT_inline);
stream->uleb128(DW_FORM_udata);
stream->uleb128(0);
stream->uleb128(0); // End of attributes.
stream->uleb128(kConcreteFunction); // Abbrev code.
stream->uleb128(DW_TAG_subprogram); // Type.
stream->u1(DW_CHILDREN_yes);
stream->uleb128(DW_AT_abstract_origin); // Start of attributes.
stream->uleb128(DW_FORM_ref4);
stream->uleb128(DW_AT_low_pc);
stream->uleb128(DW_FORM_addr);
stream->uleb128(DW_AT_high_pc);
stream->uleb128(DW_FORM_addr);
stream->uleb128(0);
stream->uleb128(0); // End of attributes.
stream->uleb128(kInlinedFunction); // Abbrev code.
stream->uleb128(DW_TAG_inlined_subroutine); // Type.
stream->u1(DW_CHILDREN_yes);
stream->uleb128(DW_AT_abstract_origin); // Start of attributes.
stream->uleb128(DW_FORM_ref4);
stream->uleb128(DW_AT_low_pc);
stream->uleb128(DW_FORM_addr);
stream->uleb128(DW_AT_high_pc);
stream->uleb128(DW_FORM_addr);
stream->uleb128(DW_AT_call_file);
stream->uleb128(DW_FORM_udata);
stream->uleb128(DW_AT_call_line);
stream->uleb128(DW_FORM_udata);
stream->uleb128(DW_AT_call_column);
stream->uleb128(DW_FORM_udata);
stream->uleb128(0);
stream->uleb128(0); // End of attributes.
stream->uleb128(0); // End of abbreviations.
}
void Dwarf::WriteDebugInfo(DwarfWriteStream* stream) {
SnapshotTextObjectNamer namer(zone_);
// 7.5.1.1 Compilation Unit Header
// Unit length.
auto const cu_prefix = "cu";
intptr_t cu_start;
intptr_t cu_size_fixup = stream->ReserveSize(cu_prefix, &cu_start);
stream->u2(2); // DWARF version 2
stream->u4(0); // debug_abbrev_offset
stream->u1(compiler::target::kWordSize); // address_size
// Compilation Unit DIE. We describe the entire Dart program as a single
// compilation unit. Note we write attributes in the same order we declared
// them in our abbreviation above in WriteAbbreviations.
stream->uleb128(kCompilationUnit);
const Library& root_library = Library::Handle(
zone_, Isolate::Current()->object_store()->root_library());
const String& root_uri = String::Handle(zone_, root_library.url());
stream->string(root_uri.ToCString()); // DW_AT_name
stream->string("Dart VM"); // DW_AT_producer
stream->string(""); // DW_AT_comp_dir
// DW_AT_low_pc
// The lowest instruction address in this object file that is part of our
// compilation unit. Dwarf consumers use this to quickly decide which
// compilation unit DIE to consult for a given pc.
stream->OffsetFromSymbol(kIsolateSnapshotInstructionsAsmSymbol, 0);
// DW_AT_high_pc
// The highest instruction address in this object file that is part of our
// compilation unit. Dwarf consumers use this to quickly decide which
// compilation unit DIE to consult for a given pc.
intptr_t last_code_index = codes_.length() - 1;
const Code& last_code = *(codes_[last_code_index]);
auto const last_code_name = namer.SnapshotNameFor(last_code_index, last_code);
stream->OffsetFromSymbol(last_code_name, last_code.Size());
// DW_AT_stmt_list (offset into .debug_line)
// Indicates which line number program is associated with this compilation
// unit. We only emit a single line number program.
stream->u4(0);
WriteAbstractFunctions(stream);
WriteConcreteFunctions(stream);
stream->uleb128(0); // End of children.
stream->uleb128(0); // End of entries.
stream->SetSize(cu_size_fixup, cu_prefix, cu_start);
}
void Dwarf::WriteAbstractFunctions(DwarfWriteStream* stream) {
Script& script = Script::Handle(zone_);
String& name = String::Handle(zone_);
stream->InitializeAbstractOrigins(functions_.length());
// By the point we're creating DWARF information, scripts have already lost
// their token stream and we can't look up their line number or column
// information, hence the lack of DW_AT_decl_line and DW_AT_decl_column.
for (intptr_t i = 0; i < functions_.length(); i++) {
const Function& function = *(functions_[i]);
name = function.QualifiedUserVisibleName();
script = function.script();
const intptr_t file = LookupScript(script);
auto const name_cstr = Deobfuscate(name.ToCString());
stream->RegisterAbstractOrigin(i);
stream->uleb128(kAbstractFunction);
stream->string(name_cstr); // DW_AT_name
stream->uleb128(file); // DW_AT_decl_file
stream->uleb128(DW_INL_inlined); // DW_AT_inline
stream->uleb128(0); // End of children.
}
}
void Dwarf::WriteConcreteFunctions(DwarfWriteStream* stream) {
Function& function = Function::Handle(zone_);
Script& script = Script::Handle(zone_);
SnapshotTextObjectNamer namer(zone_);
for (intptr_t i = 0; i < codes_.length(); i++) {
const Code& code = *(codes_[i]);
RELEASE_ASSERT(!code.IsNull());
if (!code.IsFunctionCode()) {
continue;
}
function = code.function();
intptr_t function_index = LookupFunction(function);
script = function.script();
const char* asm_name = namer.SnapshotNameFor(i, code);
stream->uleb128(kConcreteFunction);
// DW_AT_abstract_origin
// References a node written above in WriteAbstractFunctions.
stream->AbstractOrigin(function_index);
// DW_AT_low_pc
stream->OffsetFromSymbol(asm_name, 0);
// DW_AT_high_pc
stream->OffsetFromSymbol(asm_name, code.Size());
InliningNode* node = ExpandInliningTree(code);
if (node != NULL) {
for (InliningNode* child = node->children_head; child != NULL;
child = child->children_next) {
WriteInliningNode(stream, child, asm_name, script, &namer);
}
}
stream->uleb128(0); // End of children.
}
}
static DwarfPosition ReadPosition(ReadStream* stream) {
const intptr_t line = stream->Read<int32_t>();
if (!FLAG_dwarf_stack_traces_mode) {
return DwarfPosition(line);
}
const intptr_t column = stream->Read<int32_t>();
return DwarfPosition(line, column);
}
// Our state machine encodes position metadata such that we don't know the
// end pc for an inlined function until it is popped, but DWARF DIEs encode
// it where the function is pushed. We expand the state transitions into
// an in-memory tree to do the conversion.
InliningNode* Dwarf::ExpandInliningTree(const Code& code) {
const CodeSourceMap& map =
CodeSourceMap::Handle(zone_, code.code_source_map());
if (map.IsNull()) {
return NULL;
}
const Array& functions = Array::Handle(zone_, code.inlined_id_to_function());
const Function& root_function = Function::ZoneHandle(zone_, code.function());
if (root_function.IsNull()) {
FATAL1("Wherefore art thou functionless code, %s?\n", code.ToCString());
}
GrowableArray<InliningNode*> node_stack(zone_, 4);
GrowableArray<DwarfPosition> token_positions(zone_, 4);
NoSafepointScope no_safepoint;
ReadStream stream(map.Data(), map.Length());
int32_t current_pc_offset = 0;
token_positions.Add(kNoDwarfPositionInfo);
InliningNode* root_node =
new (zone_) InliningNode(root_function, token_positions.Last(), 0);
root_node->end_pc_offset = code.Size();
node_stack.Add(root_node);
while (stream.PendingBytes() > 0) {
uint8_t opcode = stream.Read<uint8_t>();
switch (opcode) {
case CodeSourceMapBuilder::kChangePosition: {
token_positions[token_positions.length() - 1] = ReadPosition(&stream);
break;
}
case CodeSourceMapBuilder::kAdvancePC: {
int32_t delta = stream.Read<int32_t>();
current_pc_offset += delta;
break;
}
case CodeSourceMapBuilder::kPushFunction: {
int32_t func = stream.Read<int32_t>();
const Function& child_func =
Function::ZoneHandle(zone_, Function::RawCast(functions.At(func)));
InliningNode* child_node = new (zone_)
InliningNode(child_func, token_positions.Last(), current_pc_offset);
node_stack.Last()->AppendChild(child_node);
node_stack.Add(child_node);
token_positions.Add(kNoDwarfPositionInfo);
break;
}
case CodeSourceMapBuilder::kPopFunction: {
// We never pop the root function.
ASSERT(node_stack.length() > 1);
ASSERT(token_positions.length() > 1);
node_stack.Last()->end_pc_offset = current_pc_offset;
node_stack.RemoveLast();
token_positions.RemoveLast();
break;
}
case CodeSourceMapBuilder::kNullCheck: {
stream.Read<int32_t>();
break;
}
default:
UNREACHABLE();
}
}
while (node_stack.length() > 1) {
node_stack.Last()->end_pc_offset = current_pc_offset;
node_stack.RemoveLast();
token_positions.RemoveLast();
}
ASSERT(node_stack[0] == root_node);
return root_node;
}
void Dwarf::WriteInliningNode(DwarfWriteStream* stream,
InliningNode* node,
const char* root_asm_name,
const Script& parent_script,
SnapshotTextObjectNamer* namer) {
intptr_t file = LookupScript(parent_script);
intptr_t function_index = LookupFunction(node->function);
const Script& script = Script::Handle(zone_, node->function.script());
stream->uleb128(kInlinedFunction);
// DW_AT_abstract_origin
// References a node written above in WriteAbstractFunctions.
stream->AbstractOrigin(function_index);
// DW_AT_low_pc
stream->OffsetFromSymbol(root_asm_name, node->start_pc_offset);
// DW_AT_high_pc
stream->OffsetFromSymbol(root_asm_name, node->end_pc_offset);
// DW_AT_call_file
stream->uleb128(file);
// DW_AT_call_line
stream->uleb128(node->position.line());
// DW_at_call_column
stream->uleb128(node->position.column());
for (InliningNode* child = node->children_head; child != NULL;
child = child->children_next) {
WriteInliningNode(stream, child, root_asm_name, script, namer);
}
stream->uleb128(0); // End of children.
}
void Dwarf::WriteLineNumberProgram(DwarfWriteStream* stream) {
// 6.2.4 The Line Number Program Header
// 1. unit_length. This encoding implies 32-bit DWARF.
auto const line_prefix = "line";
intptr_t line_start;
intptr_t line_size_fixup = stream->ReserveSize(line_prefix, &line_start);
stream->u2(2); // 2. DWARF version 2
// 3. header_length
auto const lineheader_prefix = "lineheader";
intptr_t lineheader_start;
intptr_t lineheader_size_fixup =
stream->ReserveSize(lineheader_prefix, &lineheader_start);
stream->u1(1); // 4. minimum_instruction_length
stream->u1(1); // 5. default_is_stmt (true for compatibility with dsymutil).
stream->u1(0); // 6. line_base
stream->u1(1); // 7. line_range
stream->u1(13); // 8. opcode_base (12 standard opcodes in Dwarf 2)
// 9. standard_opcode_lengths
stream->u1(0); // DW_LNS_copy, 0 operands
stream->u1(1); // DW_LNS_advance_pc, 1 operands
stream->u1(1); // DW_LNS_advance_list, 1 operands
stream->u1(1); // DW_LNS_set_file, 1 operands
stream->u1(1); // DW_LNS_set_column, 1 operands
stream->u1(0); // DW_LNS_negate_stmt, 0 operands
stream->u1(0); // DW_LNS_set_basic_block, 0 operands
stream->u1(0); // DW_LNS_const_add_pc, 0 operands
stream->u1(1); // DW_LNS_fixed_advance_pc, 1 operands
stream->u1(0); // DW_LNS_set_prolog_end, 0 operands
stream->u1(0); // DW_LNS_set_epligoue_begin, 0 operands
stream->u1(1); // DW_LNS_set_isa, 1 operands
// 10. include_directories (sequence of path names)
// We don't emit any because we use full paths below.
stream->u1(0);
// 11. file_names (sequence of file entries)
String& uri = String::Handle(zone_);
for (intptr_t i = 0; i < scripts_.length(); i++) {
const Script& script = *(scripts_[i]);
uri = script.url();
auto const uri_cstr = Deobfuscate(uri.ToCString());
RELEASE_ASSERT(strlen(uri_cstr) != 0);
stream->string(uri_cstr); // NOLINT
stream->uleb128(0); // Include directory index.
stream->uleb128(0); // File modification time.
stream->uleb128(0); // File length.
}
stream->u1(0); // End of file names.
stream->SetSize(lineheader_size_fixup, lineheader_prefix, lineheader_start);
// 6.2.5 The Line Number Program
// The initial values for the line number program state machine registers
// according to the DWARF standard.
intptr_t previous_pc_offset = 0;
intptr_t previous_file = 1;
intptr_t previous_line = 1;
intptr_t previous_column = 0;
// Other info not stored in the state machine registers.
const char* previous_asm_name = nullptr;
Function& root_function = Function::Handle(zone_);
Script& script = Script::Handle(zone_);
CodeSourceMap& map = CodeSourceMap::Handle(zone_);
Array& functions = Array::Handle(zone_);
GrowableArray<const Function*> function_stack(zone_, 8);
GrowableArray<DwarfPosition> token_positions(zone_, 8);
SnapshotTextObjectNamer namer(zone_);
for (intptr_t i = 0; i < codes_.length(); i++) {
const Code& code = *(codes_[i]);
auto const asm_name = namer.SnapshotNameFor(i, code);
map = code.code_source_map();
if (map.IsNull()) {
continue;
}
root_function = code.function();
functions = code.inlined_id_to_function();
NoSafepointScope no_safepoint;
ReadStream code_map_stream(map.Data(), map.Length());
function_stack.Clear();
token_positions.Clear();
int32_t current_pc_offset = 0;
function_stack.Add(&root_function);
token_positions.Add(kNoDwarfPositionInfo);
while (code_map_stream.PendingBytes() > 0) {
uint8_t opcode = code_map_stream.Read<uint8_t>();
switch (opcode) {
case CodeSourceMapBuilder::kChangePosition: {
token_positions[token_positions.length() - 1] =
ReadPosition(&code_map_stream);
break;
}
case CodeSourceMapBuilder::kAdvancePC: {
int32_t delta = code_map_stream.Read<int32_t>();
current_pc_offset += delta;
const Function& function = *(function_stack.Last());
script = function.script();
intptr_t file = LookupScript(script);
// 1. Update LNP file.
if (file != previous_file) {
stream->u1(DW_LNS_set_file);
stream->uleb128(file);
previous_file = file;
}
// 2. Update LNP line.
const intptr_t line = token_positions.Last().line();
const intptr_t column = token_positions.Last().column();
if (line != previous_line) {
stream->u1(DW_LNS_advance_line);
stream->sleb128(line - previous_line);
previous_line = line;
}
if (column != previous_column) {
stream->u1(DW_LNS_set_column);
stream->uleb128(column);
previous_column = column;
}
// 3. Emit LNP row if the address register has been updated to a
// non-zero value (dartbug.com/41756).
if (previous_asm_name != nullptr) {
stream->u1(DW_LNS_copy);
}
// 4. Update LNP pc.
if (previous_asm_name == nullptr) {
auto const instr_size = 1 + compiler::target::kWordSize;
stream->u1(0); // This is an extended opcode
stream->u1(instr_size); // that is 5 or 9 bytes long
stream->u1(DW_LNE_set_address);
stream->OffsetFromSymbol(asm_name, current_pc_offset);
} else {
stream->u1(DW_LNS_advance_pc);
stream->DistanceBetweenSymbolOffsets(asm_name, current_pc_offset,
previous_asm_name,
previous_pc_offset);
}
previous_asm_name = asm_name;
previous_pc_offset = current_pc_offset;
break;
}
case CodeSourceMapBuilder::kPushFunction: {
int32_t func_index = code_map_stream.Read<int32_t>();
const Function& child_func = Function::Handle(
zone_, Function::RawCast(functions.At(func_index)));
function_stack.Add(&child_func);
token_positions.Add(kNoDwarfPositionInfo);
break;
}
case CodeSourceMapBuilder::kPopFunction: {
// We never pop the root function.
ASSERT(function_stack.length() > 1);
ASSERT(token_positions.length() > 1);
function_stack.RemoveLast();
token_positions.RemoveLast();
break;
}
case CodeSourceMapBuilder::kNullCheck: {
code_map_stream.Read<int32_t>();
break;
}
default:
UNREACHABLE();
}
}
}
// Advance pc to end of the compilation unit if not already there.
if (codes_.length() != 0) {
const intptr_t last_code_index = codes_.length() - 1;
const Code& last_code = *(codes_[last_code_index]);
const intptr_t last_pc_offset = last_code.Size();
const char* last_asm_name =
namer.SnapshotNameFor(last_code_index, last_code);
stream->u1(DW_LNS_advance_pc);
if (previous_asm_name != nullptr) {
stream->DistanceBetweenSymbolOffsets(
last_asm_name, last_pc_offset, previous_asm_name, previous_pc_offset);
} else {
// No LNP entries (e.g., only stub code).
ASSERT(previous_pc_offset == 0);
stream->uleb128(last_pc_offset);
}
}
// End of contiguous machine code.
stream->u1(0); // This is an extended opcode
stream->u1(1); // that is 1 byte long
stream->u1(DW_LNE_end_sequence);
stream->SetSize(line_size_fixup, line_prefix, line_start);
}
const char* Dwarf::Deobfuscate(const char* cstr) {
if (reverse_obfuscation_trie_ == nullptr) return cstr;
TextBuffer buffer(256);
// Used to avoid Zone-allocating strings if no deobfuscation was performed.
bool changed = false;
intptr_t i = 0;
while (cstr[i] != '\0') {
intptr_t offset;
auto const value = reverse_obfuscation_trie_->Lookup(cstr + i, &offset);
if (offset == 0) {
// The first character was an invalid key element (that isn't the null
// terminator due to the while condition), copy it and skip to the next.
buffer.AddChar(cstr[i++]);
} else if (value != nullptr) {
changed = true;
buffer.AddString(value);
} else {
buffer.AddRaw(reinterpret_cast<const uint8_t*>(cstr + i), offset);
}
i += offset;
}
if (!changed) return cstr;
return OS::SCreate(zone_, "%s", buffer.buffer());
}
Trie<const char>* Dwarf::CreateReverseObfuscationTrie(Zone* zone) {
auto const I = Thread::Current()->isolate();
auto const map_array = I->obfuscation_map();
if (map_array == nullptr) return nullptr;
Trie<const char>* trie = nullptr;
for (intptr_t i = 0; map_array[i] != nullptr; i += 2) {
auto const key = map_array[i];
auto const value = map_array[i + 1];
ASSERT(value != nullptr);
// Don't include identity mappings.
if (strcmp(key, value) == 0) continue;
// Otherwise, any value in the obfuscation map should be a valid key.
ASSERT(Trie<const char>::IsValidKey(value));
trie = Trie<const char>::AddString(zone, trie, value, key);
}
return trie;
}
#endif // DART_PRECOMPILER
} // namespace dart