| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/compiler/backend/flow_graph.h" |
| |
| #include "vm/bit_vector.h" |
| #include "vm/compiler/backend/flow_graph_compiler.h" |
| #include "vm/compiler/backend/il.h" |
| #include "vm/compiler/backend/il_printer.h" |
| #include "vm/compiler/backend/loops.h" |
| #include "vm/compiler/backend/range_analysis.h" |
| #include "vm/compiler/cha.h" |
| #include "vm/compiler/compiler_state.h" |
| #include "vm/compiler/frontend/flow_graph_builder.h" |
| #include "vm/growable_array.h" |
| #include "vm/object_store.h" |
| #include "vm/resolver.h" |
| |
| namespace dart { |
| |
| #if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_IA32) |
| // Smi->Int32 widening pass is disabled due to dartbug.com/32619. |
| DEFINE_FLAG(bool, use_smi_widening, false, "Enable Smi->Int32 widening pass."); |
| DEFINE_FLAG(bool, trace_smi_widening, false, "Trace Smi->Int32 widening pass."); |
| #endif |
| DEFINE_FLAG(bool, prune_dead_locals, true, "optimize dead locals away"); |
| |
| // Quick access to the current zone. |
| #define Z (zone()) |
| |
| FlowGraph::FlowGraph(const ParsedFunction& parsed_function, |
| GraphEntryInstr* graph_entry, |
| intptr_t max_block_id, |
| PrologueInfo prologue_info) |
| : thread_(Thread::Current()), |
| parent_(), |
| current_ssa_temp_index_(0), |
| max_block_id_(max_block_id), |
| parsed_function_(parsed_function), |
| num_direct_parameters_(parsed_function.function().HasOptionalParameters() |
| ? 0 |
| : parsed_function.function().NumParameters()), |
| direct_parameters_size_(0), |
| graph_entry_(graph_entry), |
| preorder_(), |
| postorder_(), |
| reverse_postorder_(), |
| optimized_block_order_(), |
| constant_null_(nullptr), |
| constant_dead_(nullptr), |
| licm_allowed_(true), |
| prologue_info_(prologue_info), |
| loop_hierarchy_(nullptr), |
| loop_invariant_loads_(nullptr), |
| captured_parameters_(new (zone()) BitVector(zone(), variable_count())), |
| inlining_id_(-1), |
| should_print_(FlowGraphPrinter::ShouldPrint(parsed_function.function())) { |
| direct_parameters_size_ = ParameterOffsetAt( |
| function(), num_direct_parameters_, /*last_slot*/ false); |
| DiscoverBlocks(); |
| } |
| |
| void FlowGraph::EnsureSSATempIndex(Definition* defn, Definition* replacement) { |
| if ((replacement->ssa_temp_index() == -1) && (defn->ssa_temp_index() != -1)) { |
| AllocateSSAIndexes(replacement); |
| } |
| } |
| |
| intptr_t FlowGraph::ParameterOffsetAt(const Function& function, |
| intptr_t index, |
| bool last_slot /*=true*/) { |
| ASSERT(index <= function.NumParameters()); |
| intptr_t param_offset = 0; |
| for (intptr_t i = 0; i < index; i++) { |
| if (function.is_unboxed_integer_parameter_at(i)) { |
| param_offset += compiler::target::kIntSpillFactor; |
| } else if (function.is_unboxed_double_parameter_at(i)) { |
| param_offset += compiler::target::kDoubleSpillFactor; |
| } else { |
| ASSERT(!function.is_unboxed_parameter_at(i)); |
| // Unboxed parameters always occupy one word |
| param_offset++; |
| } |
| } |
| if (last_slot) { |
| ASSERT(index < function.NumParameters()); |
| if (function.is_unboxed_double_parameter_at(index) && |
| compiler::target::kDoubleSpillFactor > 1) { |
| ASSERT(compiler::target::kDoubleSpillFactor == 2); |
| param_offset++; |
| } else if (function.is_unboxed_integer_parameter_at(index) && |
| compiler::target::kIntSpillFactor > 1) { |
| ASSERT(compiler::target::kIntSpillFactor == 2); |
| param_offset++; |
| } |
| } |
| return param_offset; |
| } |
| |
| Representation FlowGraph::ParameterRepresentationAt(const Function& function, |
| intptr_t index) { |
| if (function.IsNull()) { |
| return kTagged; |
| } |
| ASSERT(index < function.NumParameters()); |
| if (function.is_unboxed_integer_parameter_at(index)) { |
| return kUnboxedInt64; |
| } else if (function.is_unboxed_double_parameter_at(index)) { |
| return kUnboxedDouble; |
| } else { |
| ASSERT(!function.is_unboxed_parameter_at(index)); |
| return kTagged; |
| } |
| } |
| |
| Representation FlowGraph::ReturnRepresentationOf(const Function& function) { |
| if (function.IsNull()) { |
| return kTagged; |
| } |
| if (function.has_unboxed_integer_return()) { |
| return kUnboxedInt64; |
| } else if (function.has_unboxed_double_return()) { |
| return kUnboxedDouble; |
| } else { |
| ASSERT(!function.has_unboxed_return()); |
| return kTagged; |
| } |
| } |
| |
| void FlowGraph::ReplaceCurrentInstruction(ForwardInstructionIterator* iterator, |
| Instruction* current, |
| Instruction* replacement) { |
| Definition* current_defn = current->AsDefinition(); |
| if ((replacement != NULL) && (current_defn != NULL)) { |
| Definition* replacement_defn = replacement->AsDefinition(); |
| ASSERT(replacement_defn != NULL); |
| current_defn->ReplaceUsesWith(replacement_defn); |
| EnsureSSATempIndex(current_defn, replacement_defn); |
| |
| if (FLAG_trace_optimization) { |
| THR_Print("Replacing v%" Pd " with v%" Pd "\n", |
| current_defn->ssa_temp_index(), |
| replacement_defn->ssa_temp_index()); |
| } |
| } else if (FLAG_trace_optimization) { |
| if (current_defn == NULL) { |
| THR_Print("Removing %s\n", current->DebugName()); |
| } else { |
| ASSERT(!current_defn->HasUses()); |
| THR_Print("Removing v%" Pd ".\n", current_defn->ssa_temp_index()); |
| } |
| } |
| if (current->ArgumentCount() != 0) { |
| ASSERT(!current->HasPushArguments()); |
| } |
| iterator->RemoveCurrentFromGraph(); |
| } |
| |
| bool FlowGraph::ShouldReorderBlocks(const Function& function, |
| bool is_optimized) { |
| return is_optimized && FLAG_reorder_basic_blocks && |
| !function.is_intrinsic() && !function.IsFfiTrampoline(); |
| } |
| |
| GrowableArray<BlockEntryInstr*>* FlowGraph::CodegenBlockOrder( |
| bool is_optimized) { |
| return ShouldReorderBlocks(function(), is_optimized) ? &optimized_block_order_ |
| : &reverse_postorder_; |
| } |
| |
| ConstantInstr* FlowGraph::GetExistingConstant(const Object& object) const { |
| return constant_instr_pool_.LookupValue(object); |
| } |
| |
| ConstantInstr* FlowGraph::GetConstant(const Object& object) { |
| ConstantInstr* constant = GetExistingConstant(object); |
| if (constant == nullptr) { |
| // Otherwise, allocate and add it to the pool. |
| constant = |
| new (zone()) ConstantInstr(Object::ZoneHandle(zone(), object.raw())); |
| constant->set_ssa_temp_index(alloc_ssa_temp_index()); |
| if (NeedsPairLocation(constant->representation())) { |
| alloc_ssa_temp_index(); |
| } |
| AddToGraphInitialDefinitions(constant); |
| constant_instr_pool_.Insert(constant); |
| } |
| return constant; |
| } |
| |
| bool FlowGraph::IsConstantRepresentable(const Object& value, |
| Representation target_rep, |
| bool tagged_value_must_be_smi) { |
| switch (target_rep) { |
| case kTagged: |
| return !tagged_value_must_be_smi || value.IsSmi(); |
| |
| case kUnboxedInt32: |
| if (value.IsInteger()) { |
| return Utils::IsInt(32, Integer::Cast(value).AsInt64Value()); |
| } |
| return false; |
| |
| case kUnboxedUint32: |
| if (value.IsInteger()) { |
| return Utils::IsUint(32, Integer::Cast(value).AsInt64Value()); |
| } |
| return false; |
| |
| case kUnboxedInt64: |
| return value.IsInteger(); |
| |
| case kUnboxedDouble: |
| return value.IsInteger() || value.IsDouble(); |
| |
| default: |
| return false; |
| } |
| } |
| |
| Definition* FlowGraph::TryCreateConstantReplacementFor(Definition* op, |
| const Object& value) { |
| // Check that representation of the constant matches expected representation. |
| if (!IsConstantRepresentable( |
| value, op->representation(), |
| /*tagged_value_must_be_smi=*/op->Type()->IsNullableSmi())) { |
| return op; |
| } |
| |
| Definition* result = GetConstant(value); |
| if (op->representation() != kTagged) { |
| // We checked above that constant can be safely unboxed. |
| result = UnboxInstr::Create(op->representation(), new Value(result), |
| DeoptId::kNone, Instruction::kNotSpeculative); |
| // If the current instruction is a phi we need to insert the replacement |
| // into the block which contains this phi - because phis exist separately |
| // from all other instructions. |
| if (auto phi = op->AsPhi()) { |
| InsertAfter(phi->GetBlock(), result, nullptr, FlowGraph::kValue); |
| } else { |
| InsertBefore(op, result, nullptr, FlowGraph::kValue); |
| } |
| } |
| |
| return result; |
| } |
| |
| void FlowGraph::AddToGraphInitialDefinitions(Definition* defn) { |
| defn->set_previous(graph_entry_); |
| graph_entry_->initial_definitions()->Add(defn); |
| } |
| |
| void FlowGraph::AddToInitialDefinitions(BlockEntryWithInitialDefs* entry, |
| Definition* defn) { |
| defn->set_previous(entry); |
| if (auto par = defn->AsParameter()) { |
| par->set_block(entry); // set cached block |
| } |
| entry->initial_definitions()->Add(defn); |
| } |
| |
| void FlowGraph::InsertBefore(Instruction* next, |
| Instruction* instr, |
| Environment* env, |
| UseKind use_kind) { |
| InsertAfter(next->previous(), instr, env, use_kind); |
| } |
| |
| void FlowGraph::InsertAfter(Instruction* prev, |
| Instruction* instr, |
| Environment* env, |
| UseKind use_kind) { |
| if (use_kind == kValue) { |
| ASSERT(instr->IsDefinition()); |
| AllocateSSAIndexes(instr->AsDefinition()); |
| } |
| instr->InsertAfter(prev); |
| ASSERT(instr->env() == NULL); |
| if (env != NULL) { |
| env->DeepCopyTo(zone(), instr); |
| } |
| } |
| |
| Instruction* FlowGraph::AppendTo(Instruction* prev, |
| Instruction* instr, |
| Environment* env, |
| UseKind use_kind) { |
| if (use_kind == kValue) { |
| ASSERT(instr->IsDefinition()); |
| AllocateSSAIndexes(instr->AsDefinition()); |
| } |
| ASSERT(instr->env() == NULL); |
| if (env != NULL) { |
| env->DeepCopyTo(zone(), instr); |
| } |
| return prev->AppendInstruction(instr); |
| } |
| |
| // A wrapper around block entries including an index of the next successor to |
| // be read. |
| class BlockTraversalState { |
| public: |
| explicit BlockTraversalState(BlockEntryInstr* block) |
| : block_(block), |
| next_successor_ix_(block->last_instruction()->SuccessorCount() - 1) {} |
| |
| bool HasNextSuccessor() const { return next_successor_ix_ >= 0; } |
| BlockEntryInstr* NextSuccessor() { |
| ASSERT(HasNextSuccessor()); |
| return block_->last_instruction()->SuccessorAt(next_successor_ix_--); |
| } |
| |
| BlockEntryInstr* block() const { return block_; } |
| |
| private: |
| BlockEntryInstr* block_; |
| intptr_t next_successor_ix_; |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| void FlowGraph::DiscoverBlocks() { |
| StackZone zone(thread()); |
| |
| // Initialize state. |
| preorder_.Clear(); |
| postorder_.Clear(); |
| reverse_postorder_.Clear(); |
| parent_.Clear(); |
| |
| GrowableArray<BlockTraversalState> block_stack; |
| graph_entry_->DiscoverBlock(NULL, &preorder_, &parent_); |
| block_stack.Add(BlockTraversalState(graph_entry_)); |
| while (!block_stack.is_empty()) { |
| BlockTraversalState& state = block_stack.Last(); |
| BlockEntryInstr* block = state.block(); |
| if (state.HasNextSuccessor()) { |
| // Process successors one-by-one. |
| BlockEntryInstr* succ = state.NextSuccessor(); |
| if (succ->DiscoverBlock(block, &preorder_, &parent_)) { |
| block_stack.Add(BlockTraversalState(succ)); |
| } |
| } else { |
| // All successors have been processed, pop the current block entry node |
| // and add it to the postorder list. |
| block_stack.RemoveLast(); |
| block->set_postorder_number(postorder_.length()); |
| postorder_.Add(block); |
| } |
| } |
| |
| ASSERT(postorder_.length() == preorder_.length()); |
| |
| // Create an array of blocks in reverse postorder. |
| intptr_t block_count = postorder_.length(); |
| for (intptr_t i = 0; i < block_count; ++i) { |
| reverse_postorder_.Add(postorder_[block_count - i - 1]); |
| } |
| |
| ResetLoopHierarchy(); |
| } |
| |
| void FlowGraph::MergeBlocks() { |
| bool changed = false; |
| BitVector* merged = new (zone()) BitVector(zone(), postorder().length()); |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| BlockEntryInstr* block = block_it.Current(); |
| if (block->IsGraphEntry()) continue; |
| if (merged->Contains(block->postorder_number())) continue; |
| |
| Instruction* last = block->last_instruction(); |
| BlockEntryInstr* last_merged_block = nullptr; |
| while (auto goto_instr = last->AsGoto()) { |
| JoinEntryInstr* successor = goto_instr->successor(); |
| if (successor->PredecessorCount() > 1) break; |
| if (block->try_index() != successor->try_index()) break; |
| |
| // Replace all phis with their arguments prior to removing successor. |
| for (PhiIterator it(successor); !it.Done(); it.Advance()) { |
| PhiInstr* phi = it.Current(); |
| Value* input = phi->InputAt(0); |
| phi->ReplaceUsesWith(input->definition()); |
| input->RemoveFromUseList(); |
| } |
| |
| // Remove environment uses and unlink goto and block entry. |
| successor->UnuseAllInputs(); |
| last->previous()->LinkTo(successor->next()); |
| last->UnuseAllInputs(); |
| |
| last = successor->last_instruction(); |
| merged->Add(successor->postorder_number()); |
| last_merged_block = successor; |
| changed = true; |
| if (FLAG_trace_optimization) { |
| THR_Print("Merged blocks B%" Pd " and B%" Pd "\n", block->block_id(), |
| successor->block_id()); |
| } |
| } |
| // The new block inherits the block id of the last successor to maintain |
| // the order of phi inputs at its successors consistent with block ids. |
| if (last_merged_block != nullptr) { |
| block->set_block_id(last_merged_block->block_id()); |
| } |
| } |
| // Recompute block order after changes were made. |
| if (changed) DiscoverBlocks(); |
| } |
| |
| void FlowGraph::ComputeIsReceiverRecursive( |
| PhiInstr* phi, |
| GrowableArray<PhiInstr*>* unmark) const { |
| if (phi->is_receiver() != PhiInstr::kUnknownReceiver) return; |
| phi->set_is_receiver(PhiInstr::kReceiver); |
| for (intptr_t i = 0; i < phi->InputCount(); ++i) { |
| Definition* def = phi->InputAt(i)->definition(); |
| if (def->IsParameter() && (def->AsParameter()->index() == 0)) continue; |
| if (!def->IsPhi()) { |
| phi->set_is_receiver(PhiInstr::kNotReceiver); |
| break; |
| } |
| ComputeIsReceiverRecursive(def->AsPhi(), unmark); |
| if (def->AsPhi()->is_receiver() == PhiInstr::kNotReceiver) { |
| phi->set_is_receiver(PhiInstr::kNotReceiver); |
| break; |
| } |
| } |
| |
| if (phi->is_receiver() == PhiInstr::kNotReceiver) { |
| unmark->Add(phi); |
| } |
| } |
| |
| void FlowGraph::ComputeIsReceiver(PhiInstr* phi) const { |
| GrowableArray<PhiInstr*> unmark; |
| ComputeIsReceiverRecursive(phi, &unmark); |
| |
| // Now drain unmark. |
| while (!unmark.is_empty()) { |
| PhiInstr* phi = unmark.RemoveLast(); |
| for (Value::Iterator it(phi->input_use_list()); !it.Done(); it.Advance()) { |
| PhiInstr* use = it.Current()->instruction()->AsPhi(); |
| if ((use != NULL) && (use->is_receiver() == PhiInstr::kReceiver)) { |
| use->set_is_receiver(PhiInstr::kNotReceiver); |
| unmark.Add(use); |
| } |
| } |
| } |
| } |
| |
| bool FlowGraph::IsReceiver(Definition* def) const { |
| def = def->OriginalDefinition(); // Could be redefined. |
| if (def->IsParameter()) return (def->AsParameter()->index() == 0); |
| if (!def->IsPhi() || graph_entry()->HasSingleEntryPoint()) { |
| return false; |
| } |
| PhiInstr* phi = def->AsPhi(); |
| if (phi->is_receiver() != PhiInstr::kUnknownReceiver) { |
| return (phi->is_receiver() == PhiInstr::kReceiver); |
| } |
| // Not known if this phi is the receiver yet. Compute it now. |
| ComputeIsReceiver(phi); |
| return (phi->is_receiver() == PhiInstr::kReceiver); |
| } |
| |
| FlowGraph::ToCheck FlowGraph::CheckForInstanceCall( |
| InstanceCallInstr* call, |
| FunctionLayout::Kind kind) const { |
| if (!FLAG_use_cha_deopt && !isolate()->all_classes_finalized()) { |
| // Even if class or function are private, lazy class finalization |
| // may later add overriding methods. |
| return ToCheck::kCheckCid; |
| } |
| |
| // Best effort to get the receiver class. |
| Value* receiver = call->Receiver(); |
| Class& receiver_class = Class::Handle(zone()); |
| bool receiver_maybe_null = false; |
| if (function().IsDynamicFunction() && IsReceiver(receiver->definition())) { |
| // Call receiver is callee receiver: calling "this.g()" in f(). |
| receiver_class = function().Owner(); |
| } else { |
| // Get the receiver's compile type. Note that |
| // we allow nullable types, which may result in just generating |
| // a null check rather than the more elaborate class check |
| CompileType* type = receiver->Type(); |
| const AbstractType* atype = type->ToAbstractType(); |
| if (atype->IsInstantiated() && atype->HasTypeClass() && |
| !atype->IsDynamicType()) { |
| if (type->is_nullable()) { |
| receiver_maybe_null = true; |
| } |
| receiver_class = atype->type_class(); |
| if (receiver_class.is_implemented()) { |
| receiver_class = Class::null(); |
| } |
| } |
| } |
| |
| // Useful receiver class information? |
| if (receiver_class.IsNull()) { |
| return ToCheck::kCheckCid; |
| } else if (call->HasICData()) { |
| // If the static class type does not match information found in ICData |
| // (which may be "guessed"), then bail, since subsequent code generation |
| // (AOT and JIT) for inlining uses the latter. |
| // TODO(ajcbik): improve this by using the static class. |
| const intptr_t cid = receiver_class.id(); |
| const ICData* data = call->ic_data(); |
| bool match = false; |
| Class& cls = Class::Handle(zone()); |
| Function& fun = Function::Handle(zone()); |
| for (intptr_t i = 0, len = data->NumberOfChecks(); i < len; i++) { |
| if (!data->IsUsedAt(i)) { |
| continue; // do not consider |
| } |
| fun = data->GetTargetAt(i); |
| cls = fun.Owner(); |
| if (data->GetReceiverClassIdAt(i) == cid || cls.id() == cid) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) { |
| return ToCheck::kCheckCid; |
| } |
| } |
| |
| const String& method_name = |
| (kind == FunctionLayout::kMethodExtractor) |
| ? String::Handle(zone(), Field::NameFromGetter(call->function_name())) |
| : call->function_name(); |
| |
| // If the receiver can have the null value, exclude any method |
| // that is actually valid on a null receiver. |
| if (receiver_maybe_null) { |
| const Class& null_class = |
| Class::Handle(zone(), isolate()->object_store()->null_class()); |
| Function& target = Function::Handle(zone()); |
| if (null_class.EnsureIsFinalized(thread()) == Error::null()) { |
| target = Resolver::ResolveDynamicAnyArgs(zone(), null_class, method_name); |
| } |
| if (!target.IsNull()) { |
| return ToCheck::kCheckCid; |
| } |
| } |
| |
| // Use CHA to determine if the method is not overridden by any subclass |
| // of the receiver class. Any methods that are valid when the receiver |
| // has a null value are excluded above (to avoid throwing an exception |
| // on something valid, like null.hashCode). |
| intptr_t subclass_count = 0; |
| CHA& cha = thread()->compiler_state().cha(); |
| if (!cha.HasOverride(receiver_class, method_name, &subclass_count)) { |
| if (FLAG_trace_cha) { |
| THR_Print( |
| " **(CHA) Instance call needs no class check since there " |
| "are no overrides of method '%s' on '%s'\n", |
| method_name.ToCString(), receiver_class.ToCString()); |
| } |
| if (FLAG_use_cha_deopt) { |
| cha.AddToGuardedClasses(receiver_class, subclass_count); |
| } |
| return receiver_maybe_null ? ToCheck::kCheckNull : ToCheck::kNoCheck; |
| } |
| return ToCheck::kCheckCid; |
| } |
| |
| Instruction* FlowGraph::CreateCheckClass(Definition* to_check, |
| const Cids& cids, |
| intptr_t deopt_id, |
| TokenPosition token_pos) { |
| if (cids.IsMonomorphic() && cids.MonomorphicReceiverCid() == kSmiCid) { |
| return new (zone()) |
| CheckSmiInstr(new (zone()) Value(to_check), deopt_id, token_pos); |
| } |
| return new (zone()) |
| CheckClassInstr(new (zone()) Value(to_check), deopt_id, cids, token_pos); |
| } |
| |
| Definition* FlowGraph::CreateCheckBound(Definition* length, |
| Definition* index, |
| intptr_t deopt_id) { |
| Value* val1 = new (zone()) Value(length); |
| Value* val2 = new (zone()) Value(index); |
| if (CompilerState::Current().is_aot()) { |
| return new (zone()) GenericCheckBoundInstr(val1, val2, deopt_id); |
| } |
| return new (zone()) CheckArrayBoundInstr(val1, val2, deopt_id); |
| } |
| |
| void FlowGraph::AddExactnessGuard(InstanceCallInstr* call, |
| intptr_t receiver_cid) { |
| const Class& cls = Class::Handle( |
| zone(), Isolate::Current()->class_table()->At(receiver_cid)); |
| |
| Definition* load_type_args = new (zone()) LoadFieldInstr( |
| call->Receiver()->CopyWithType(), |
| Slot::GetTypeArgumentsSlotFor(thread(), cls), call->token_pos()); |
| InsertBefore(call, load_type_args, call->env(), FlowGraph::kValue); |
| |
| const AbstractType& type = |
| AbstractType::Handle(zone(), call->ic_data()->receivers_static_type()); |
| ASSERT(!type.IsNull()); |
| const TypeArguments& args = TypeArguments::Handle(zone(), type.arguments()); |
| Instruction* guard = new (zone()) CheckConditionInstr( |
| new StrictCompareInstr(call->token_pos(), Token::kEQ_STRICT, |
| new (zone()) Value(load_type_args), |
| new (zone()) Value(GetConstant(args)), |
| /*needs_number_check=*/false, call->deopt_id()), |
| call->deopt_id()); |
| InsertBefore(call, guard, call->env(), FlowGraph::kEffect); |
| } |
| |
| // Verify that a redefinition dominates all uses of the redefined value. |
| bool FlowGraph::VerifyRedefinitions() { |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| for (ForwardInstructionIterator instr_it(block_it.Current()); |
| !instr_it.Done(); instr_it.Advance()) { |
| RedefinitionInstr* redefinition = instr_it.Current()->AsRedefinition(); |
| if (redefinition != NULL) { |
| Definition* original = redefinition->value()->definition(); |
| for (Value::Iterator it(original->input_use_list()); !it.Done(); |
| it.Advance()) { |
| Value* original_use = it.Current(); |
| if (original_use->instruction() == redefinition) { |
| continue; |
| } |
| if (original_use->instruction()->IsDominatedBy(redefinition)) { |
| FlowGraphPrinter::PrintGraph("VerifyRedefinitions", this); |
| THR_Print("%s\n", redefinition->ToCString()); |
| THR_Print("use=%s\n", original_use->instruction()->ToCString()); |
| return false; |
| } |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| LivenessAnalysis::LivenessAnalysis( |
| intptr_t variable_count, |
| const GrowableArray<BlockEntryInstr*>& postorder) |
| : zone_(Thread::Current()->zone()), |
| variable_count_(variable_count), |
| postorder_(postorder), |
| live_out_(postorder.length()), |
| kill_(postorder.length()), |
| live_in_(postorder.length()) {} |
| |
| bool LivenessAnalysis::UpdateLiveOut(const BlockEntryInstr& block) { |
| BitVector* live_out = live_out_[block.postorder_number()]; |
| bool changed = false; |
| Instruction* last = block.last_instruction(); |
| ASSERT(last != NULL); |
| for (intptr_t i = 0; i < last->SuccessorCount(); i++) { |
| BlockEntryInstr* succ = last->SuccessorAt(i); |
| ASSERT(succ != NULL); |
| if (live_out->AddAll(live_in_[succ->postorder_number()])) { |
| changed = true; |
| } |
| } |
| return changed; |
| } |
| |
| bool LivenessAnalysis::UpdateLiveIn(const BlockEntryInstr& block) { |
| BitVector* live_out = live_out_[block.postorder_number()]; |
| BitVector* kill = kill_[block.postorder_number()]; |
| BitVector* live_in = live_in_[block.postorder_number()]; |
| return live_in->KillAndAdd(kill, live_out); |
| } |
| |
| void LivenessAnalysis::ComputeLiveInAndLiveOutSets() { |
| const intptr_t block_count = postorder_.length(); |
| bool changed; |
| do { |
| changed = false; |
| |
| for (intptr_t i = 0; i < block_count; i++) { |
| const BlockEntryInstr& block = *postorder_[i]; |
| |
| // Live-in set depends only on kill set which does not |
| // change in this loop and live-out set. If live-out |
| // set does not change there is no need to recompute |
| // live-in set. |
| if (UpdateLiveOut(block) && UpdateLiveIn(block)) { |
| changed = true; |
| } |
| } |
| } while (changed); |
| } |
| |
| void LivenessAnalysis::Analyze() { |
| const intptr_t block_count = postorder_.length(); |
| for (intptr_t i = 0; i < block_count; i++) { |
| live_out_.Add(new (zone()) BitVector(zone(), variable_count_)); |
| kill_.Add(new (zone()) BitVector(zone(), variable_count_)); |
| live_in_.Add(new (zone()) BitVector(zone(), variable_count_)); |
| } |
| |
| ComputeInitialSets(); |
| ComputeLiveInAndLiveOutSets(); |
| } |
| |
| static void PrintBitVector(const char* tag, BitVector* v) { |
| THR_Print("%s:", tag); |
| for (BitVector::Iterator it(v); !it.Done(); it.Advance()) { |
| THR_Print(" %" Pd "", it.Current()); |
| } |
| THR_Print("\n"); |
| } |
| |
| void LivenessAnalysis::Dump() { |
| const intptr_t block_count = postorder_.length(); |
| for (intptr_t i = 0; i < block_count; i++) { |
| BlockEntryInstr* block = postorder_[i]; |
| THR_Print("block @%" Pd " -> ", block->block_id()); |
| |
| Instruction* last = block->last_instruction(); |
| for (intptr_t j = 0; j < last->SuccessorCount(); j++) { |
| BlockEntryInstr* succ = last->SuccessorAt(j); |
| THR_Print(" @%" Pd "", succ->block_id()); |
| } |
| THR_Print("\n"); |
| |
| PrintBitVector(" live out", live_out_[i]); |
| PrintBitVector(" kill", kill_[i]); |
| PrintBitVector(" live in", live_in_[i]); |
| } |
| } |
| |
| // Computes liveness information for local variables. |
| class VariableLivenessAnalysis : public LivenessAnalysis { |
| public: |
| explicit VariableLivenessAnalysis(FlowGraph* flow_graph) |
| : LivenessAnalysis(flow_graph->variable_count(), flow_graph->postorder()), |
| flow_graph_(flow_graph), |
| assigned_vars_() {} |
| |
| // For every block (in preorder) compute and return set of variables that |
| // have new assigned values flowing out of that block. |
| const GrowableArray<BitVector*>& ComputeAssignedVars() { |
| // We can't directly return kill_ because it uses postorder numbering while |
| // SSA construction uses preorder numbering internally. |
| // We have to permute postorder into preorder. |
| assigned_vars_.Clear(); |
| |
| const intptr_t block_count = flow_graph_->preorder().length(); |
| for (intptr_t i = 0; i < block_count; i++) { |
| BlockEntryInstr* block = flow_graph_->preorder()[i]; |
| // All locals are assigned inside a try{} block. |
| // This is a safe approximation and workaround to force insertion of |
| // phis for stores that appear non-live because of the way catch-blocks |
| // are connected to the graph: They normally are dominated by the |
| // try-entry, but are direct successors of the graph entry in our flow |
| // graph. |
| // TODO(fschneider): Improve this approximation by better modeling the |
| // actual data flow to reduce the number of redundant phis. |
| BitVector* kill = GetKillSet(block); |
| if (block->InsideTryBlock()) { |
| kill->SetAll(); |
| } else { |
| kill->Intersect(GetLiveOutSet(block)); |
| } |
| assigned_vars_.Add(kill); |
| } |
| |
| return assigned_vars_; |
| } |
| |
| // Returns true if the value set by the given store reaches any load from the |
| // same local variable. |
| bool IsStoreAlive(BlockEntryInstr* block, StoreLocalInstr* store) { |
| if (store->local().Equals(*flow_graph_->CurrentContextVar())) { |
| return true; |
| } |
| |
| if (store->is_dead()) { |
| return false; |
| } |
| if (store->is_last()) { |
| const intptr_t index = flow_graph_->EnvIndex(&store->local()); |
| return GetLiveOutSet(block)->Contains(index); |
| } |
| |
| return true; |
| } |
| |
| // Returns true if the given load is the last for the local and the value |
| // of the local will not flow into another one. |
| bool IsLastLoad(BlockEntryInstr* block, LoadLocalInstr* load) { |
| if (load->local().Equals(*flow_graph_->CurrentContextVar())) { |
| return false; |
| } |
| const intptr_t index = flow_graph_->EnvIndex(&load->local()); |
| return load->is_last() && !GetLiveOutSet(block)->Contains(index); |
| } |
| |
| private: |
| virtual void ComputeInitialSets(); |
| |
| const FlowGraph* flow_graph_; |
| GrowableArray<BitVector*> assigned_vars_; |
| }; |
| |
| void VariableLivenessAnalysis::ComputeInitialSets() { |
| const intptr_t block_count = postorder_.length(); |
| |
| BitVector* last_loads = new (zone()) BitVector(zone(), variable_count_); |
| for (intptr_t i = 0; i < block_count; i++) { |
| BlockEntryInstr* block = postorder_[i]; |
| |
| BitVector* kill = kill_[i]; |
| BitVector* live_in = live_in_[i]; |
| last_loads->Clear(); |
| |
| // There is an implicit use (load-local) of every local variable at each |
| // call inside a try{} block and every call has an implicit control-flow |
| // to the catch entry. As an approximation we mark all locals as live |
| // inside try{}. |
| // TODO(fschneider): Improve this approximation, since not all local |
| // variable stores actually reach a call. |
| if (block->InsideTryBlock()) { |
| live_in->SetAll(); |
| continue; |
| } |
| |
| // Iterate backwards starting at the last instruction. |
| for (BackwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| Instruction* current = it.Current(); |
| |
| LoadLocalInstr* load = current->AsLoadLocal(); |
| if (load != NULL) { |
| const intptr_t index = flow_graph_->EnvIndex(&load->local()); |
| if (index >= live_in->length()) continue; // Skip tmp_locals. |
| live_in->Add(index); |
| if (!last_loads->Contains(index)) { |
| last_loads->Add(index); |
| load->mark_last(); |
| } |
| continue; |
| } |
| |
| StoreLocalInstr* store = current->AsStoreLocal(); |
| if (store != NULL) { |
| const intptr_t index = flow_graph_->EnvIndex(&store->local()); |
| if (index >= live_in->length()) continue; // Skip tmp_locals. |
| if (kill->Contains(index)) { |
| if (!live_in->Contains(index)) { |
| store->mark_dead(); |
| } |
| } else { |
| if (!live_in->Contains(index)) { |
| store->mark_last(); |
| } |
| kill->Add(index); |
| } |
| live_in->Remove(index); |
| continue; |
| } |
| } |
| |
| // For blocks with parameter or special parameter instructions we add them |
| // to the kill set. |
| const bool is_function_entry = block->IsFunctionEntry(); |
| const bool is_osr_entry = block->IsOsrEntry(); |
| const bool is_catch_block_entry = block->IsCatchBlockEntry(); |
| if (is_function_entry || is_osr_entry || is_catch_block_entry) { |
| const intptr_t parameter_count = |
| (is_osr_entry || is_catch_block_entry) |
| ? flow_graph_->variable_count() |
| : flow_graph_->num_direct_parameters(); |
| for (intptr_t i = 0; i < parameter_count; ++i) { |
| live_in->Remove(i); |
| kill->Add(i); |
| } |
| } |
| if (is_function_entry) { |
| if (flow_graph_->parsed_function().has_arg_desc_var()) { |
| const auto index = flow_graph_->ArgumentDescriptorEnvIndex(); |
| live_in->Remove(index); |
| kill->Add(index); |
| } |
| } |
| } |
| } |
| |
| void FlowGraph::ComputeSSA( |
| intptr_t next_virtual_register_number, |
| ZoneGrowableArray<Definition*>* inlining_parameters) { |
| ASSERT((next_virtual_register_number == 0) || (inlining_parameters != NULL)); |
| current_ssa_temp_index_ = next_virtual_register_number; |
| GrowableArray<BitVector*> dominance_frontier; |
| GrowableArray<intptr_t> idom; |
| |
| ComputeDominators(&dominance_frontier); |
| |
| VariableLivenessAnalysis variable_liveness(this); |
| variable_liveness.Analyze(); |
| |
| GrowableArray<PhiInstr*> live_phis; |
| |
| InsertPhis(preorder_, variable_liveness.ComputeAssignedVars(), |
| dominance_frontier, &live_phis); |
| |
| // Rename uses to reference inserted phis where appropriate. |
| // Collect phis that reach a non-environment use. |
| Rename(&live_phis, &variable_liveness, inlining_parameters); |
| |
| // Propagate alive mark transitively from alive phis and then remove |
| // non-live ones. |
| RemoveDeadPhis(&live_phis); |
| } |
| |
| // Compute immediate dominators and the dominance frontier for each basic |
| // block. As a side effect of the algorithm, sets the immediate dominator |
| // of each basic block. |
| // |
| // dominance_frontier: an output parameter encoding the dominance frontier. |
| // The array maps the preorder block number of a block to the set of |
| // (preorder block numbers of) blocks in the dominance frontier. |
| void FlowGraph::ComputeDominators( |
| GrowableArray<BitVector*>* dominance_frontier) { |
| // Use the SEMI-NCA algorithm to compute dominators. This is a two-pass |
| // version of the Lengauer-Tarjan algorithm (LT is normally three passes) |
| // that eliminates a pass by using nearest-common ancestor (NCA) to |
| // compute immediate dominators from semidominators. It also removes a |
| // level of indirection in the link-eval forest data structure. |
| // |
| // The algorithm is described in Georgiadis, Tarjan, and Werneck's |
| // "Finding Dominators in Practice". |
| // See http://www.cs.princeton.edu/~rwerneck/dominators/ . |
| |
| // All arrays are maps between preorder basic-block numbers. |
| intptr_t size = parent_.length(); |
| GrowableArray<intptr_t> idom(size); // Immediate dominator. |
| GrowableArray<intptr_t> semi(size); // Semidominator. |
| GrowableArray<intptr_t> label(size); // Label for link-eval forest. |
| |
| // 1. First pass: compute semidominators as in Lengauer-Tarjan. |
| // Semidominators are computed from a depth-first spanning tree and are an |
| // approximation of immediate dominators. |
| |
| // Use a link-eval data structure with path compression. Implement path |
| // compression in place by mutating the parent array. Each block has a |
| // label, which is the minimum block number on the compressed path. |
| |
| // Initialize idom, semi, and label used by SEMI-NCA. Initialize the |
| // dominance frontier output array. |
| for (intptr_t i = 0; i < size; ++i) { |
| idom.Add(parent_[i]); |
| semi.Add(i); |
| label.Add(i); |
| dominance_frontier->Add(new (zone()) BitVector(zone(), size)); |
| } |
| |
| // Loop over the blocks in reverse preorder (not including the graph |
| // entry). Clear the dominated blocks in the graph entry in case |
| // ComputeDominators is used to recompute them. |
| preorder_[0]->ClearDominatedBlocks(); |
| for (intptr_t block_index = size - 1; block_index >= 1; --block_index) { |
| // Loop over the predecessors. |
| BlockEntryInstr* block = preorder_[block_index]; |
| // Clear the immediately dominated blocks in case ComputeDominators is |
| // used to recompute them. |
| block->ClearDominatedBlocks(); |
| for (intptr_t i = 0, count = block->PredecessorCount(); i < count; ++i) { |
| BlockEntryInstr* pred = block->PredecessorAt(i); |
| ASSERT(pred != NULL); |
| |
| // Look for the semidominator by ascending the semidominator path |
| // starting from pred. |
| intptr_t pred_index = pred->preorder_number(); |
| intptr_t best = pred_index; |
| if (pred_index > block_index) { |
| CompressPath(block_index, pred_index, &parent_, &label); |
| best = label[pred_index]; |
| } |
| |
| // Update the semidominator if we've found a better one. |
| semi[block_index] = Utils::Minimum(semi[block_index], semi[best]); |
| } |
| |
| // Now use label for the semidominator. |
| label[block_index] = semi[block_index]; |
| } |
| |
| // 2. Compute the immediate dominators as the nearest common ancestor of |
| // spanning tree parent and semidominator, for all blocks except the entry. |
| for (intptr_t block_index = 1; block_index < size; ++block_index) { |
| intptr_t dom_index = idom[block_index]; |
| while (dom_index > semi[block_index]) { |
| dom_index = idom[dom_index]; |
| } |
| idom[block_index] = dom_index; |
| preorder_[dom_index]->AddDominatedBlock(preorder_[block_index]); |
| } |
| |
| // 3. Now compute the dominance frontier for all blocks. This is |
| // algorithm in "A Simple, Fast Dominance Algorithm" (Figure 5), which is |
| // attributed to a paper by Ferrante et al. There is no bookkeeping |
| // required to avoid adding a block twice to the same block's dominance |
| // frontier because we use a set to represent the dominance frontier. |
| for (intptr_t block_index = 0; block_index < size; ++block_index) { |
| BlockEntryInstr* block = preorder_[block_index]; |
| intptr_t count = block->PredecessorCount(); |
| if (count <= 1) continue; |
| for (intptr_t i = 0; i < count; ++i) { |
| BlockEntryInstr* runner = block->PredecessorAt(i); |
| while (runner != block->dominator()) { |
| (*dominance_frontier)[runner->preorder_number()]->Add(block_index); |
| runner = runner->dominator(); |
| } |
| } |
| } |
| } |
| |
| void FlowGraph::CompressPath(intptr_t start_index, |
| intptr_t current_index, |
| GrowableArray<intptr_t>* parent, |
| GrowableArray<intptr_t>* label) { |
| intptr_t next_index = (*parent)[current_index]; |
| if (next_index > start_index) { |
| CompressPath(start_index, next_index, parent, label); |
| (*label)[current_index] = |
| Utils::Minimum((*label)[current_index], (*label)[next_index]); |
| (*parent)[current_index] = (*parent)[next_index]; |
| } |
| } |
| |
| void FlowGraph::InsertPhis(const GrowableArray<BlockEntryInstr*>& preorder, |
| const GrowableArray<BitVector*>& assigned_vars, |
| const GrowableArray<BitVector*>& dom_frontier, |
| GrowableArray<PhiInstr*>* live_phis) { |
| const intptr_t block_count = preorder.length(); |
| // Map preorder block number to the highest variable index that has a phi |
| // in that block. Use it to avoid inserting multiple phis for the same |
| // variable. |
| GrowableArray<intptr_t> has_already(block_count); |
| // Map preorder block number to the highest variable index for which the |
| // block went on the worklist. Use it to avoid adding the same block to |
| // the worklist more than once for the same variable. |
| GrowableArray<intptr_t> work(block_count); |
| |
| // Initialize has_already and work. |
| for (intptr_t block_index = 0; block_index < block_count; ++block_index) { |
| has_already.Add(-1); |
| work.Add(-1); |
| } |
| |
| // Insert phis for each variable in turn. |
| GrowableArray<BlockEntryInstr*> worklist; |
| for (intptr_t var_index = 0; var_index < variable_count(); ++var_index) { |
| const bool always_live = |
| !FLAG_prune_dead_locals || (var_index == CurrentContextEnvIndex()); |
| // Add to the worklist each block containing an assignment. |
| for (intptr_t block_index = 0; block_index < block_count; ++block_index) { |
| if (assigned_vars[block_index]->Contains(var_index)) { |
| work[block_index] = var_index; |
| worklist.Add(preorder[block_index]); |
| } |
| } |
| |
| while (!worklist.is_empty()) { |
| BlockEntryInstr* current = worklist.RemoveLast(); |
| // Ensure a phi for each block in the dominance frontier of current. |
| for (BitVector::Iterator it(dom_frontier[current->preorder_number()]); |
| !it.Done(); it.Advance()) { |
| int index = it.Current(); |
| if (has_already[index] < var_index) { |
| JoinEntryInstr* join = preorder[index]->AsJoinEntry(); |
| ASSERT(join != nullptr); |
| PhiInstr* phi = join->InsertPhi( |
| var_index, variable_count() + join->stack_depth()); |
| if (always_live) { |
| phi->mark_alive(); |
| live_phis->Add(phi); |
| } |
| has_already[index] = var_index; |
| if (work[index] < var_index) { |
| work[index] = var_index; |
| worklist.Add(join); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void FlowGraph::CreateCommonConstants() { |
| constant_null_ = GetConstant(Object::ZoneHandle()); |
| constant_dead_ = GetConstant(Symbols::OptimizedOut()); |
| } |
| |
| void FlowGraph::AddSyntheticPhis(BlockEntryInstr* block) { |
| ASSERT(IsCompiledForOsr()); |
| if (auto join = block->AsJoinEntry()) { |
| const intptr_t local_phi_count = variable_count() + join->stack_depth(); |
| for (intptr_t i = variable_count(); i < local_phi_count; ++i) { |
| if (join->phis() == nullptr || (*join->phis())[i] == nullptr) { |
| join->InsertPhi(i, local_phi_count)->mark_alive(); |
| } |
| } |
| } |
| } |
| |
| void FlowGraph::Rename(GrowableArray<PhiInstr*>* live_phis, |
| VariableLivenessAnalysis* variable_liveness, |
| ZoneGrowableArray<Definition*>* inlining_parameters) { |
| GraphEntryInstr* entry = graph_entry(); |
| |
| // Add global constants to the initial definitions. |
| CreateCommonConstants(); |
| |
| // Initial renaming environment. |
| GrowableArray<Definition*> env(variable_count()); |
| env.FillWith(constant_dead(), 0, num_direct_parameters()); |
| env.FillWith(constant_null(), num_direct_parameters(), num_stack_locals()); |
| |
| if (entry->catch_entries().length() > 0) { |
| // Functions with try-catch have a fixed area of stack slots reserved |
| // so that all local variables are stored at a known location when |
| // on entry to the catch. |
| entry->set_fixed_slot_count(num_stack_locals()); |
| } else { |
| ASSERT(entry->unchecked_entry() != nullptr ? entry->SuccessorCount() == 2 |
| : entry->SuccessorCount() == 1); |
| } |
| |
| // For OSR on a non-empty stack, insert synthetic phis on every joining entry. |
| // These phis are synthetic since they are not driven by live variable |
| // analysis, but merely serve the purpose of merging stack slots from |
| // parameters and other predecessors at the block in which OSR occurred. |
| if (IsCompiledForOsr()) { |
| AddSyntheticPhis(entry->osr_entry()->last_instruction()->SuccessorAt(0)); |
| for (intptr_t i = 0, n = entry->dominated_blocks().length(); i < n; ++i) { |
| AddSyntheticPhis(entry->dominated_blocks()[i]); |
| } |
| } |
| |
| RenameRecursive(entry, &env, live_phis, variable_liveness, |
| inlining_parameters); |
| } |
| |
| void FlowGraph::PopulateEnvironmentFromFunctionEntry( |
| FunctionEntryInstr* function_entry, |
| GrowableArray<Definition*>* env, |
| GrowableArray<PhiInstr*>* live_phis, |
| VariableLivenessAnalysis* variable_liveness, |
| ZoneGrowableArray<Definition*>* inlining_parameters) { |
| ASSERT(!IsCompiledForOsr()); |
| const intptr_t direct_parameter_count = num_direct_parameters_; |
| |
| // Check if inlining_parameters include a type argument vector parameter. |
| const intptr_t inlined_type_args_param = |
| ((inlining_parameters != NULL) && function().IsGeneric()) ? 1 : 0; |
| |
| ASSERT(variable_count() == env->length()); |
| ASSERT(direct_parameter_count <= env->length()); |
| intptr_t param_offset = 0; |
| for (intptr_t i = 0; i < direct_parameter_count; i++) { |
| ASSERT(FLAG_precompiled_mode || !function().is_unboxed_parameter_at(i)); |
| ParameterInstr* param; |
| |
| const intptr_t index = (function().IsFactory() ? (i - 1) : i); |
| |
| if (index >= 0 && function().is_unboxed_integer_parameter_at(index)) { |
| constexpr intptr_t kCorrection = compiler::target::kIntSpillFactor - 1; |
| param = new (zone()) ParameterInstr(i, param_offset + kCorrection, |
| function_entry, kUnboxedInt64); |
| param_offset += compiler::target::kIntSpillFactor; |
| } else if (index >= 0 && function().is_unboxed_double_parameter_at(index)) { |
| constexpr intptr_t kCorrection = compiler::target::kDoubleSpillFactor - 1; |
| param = new (zone()) ParameterInstr(i, param_offset + kCorrection, |
| function_entry, kUnboxedDouble); |
| param_offset += compiler::target::kDoubleSpillFactor; |
| } else { |
| ASSERT(index < 0 || !function().is_unboxed_parameter_at(index)); |
| param = |
| new (zone()) ParameterInstr(i, param_offset, function_entry, kTagged); |
| param_offset++; |
| } |
| param->set_ssa_temp_index(alloc_ssa_temp_index()); |
| if (NeedsPairLocation(param->representation())) alloc_ssa_temp_index(); |
| AddToInitialDefinitions(function_entry, param); |
| (*env)[i] = param; |
| } |
| |
| // Override the entries in the renaming environment which are special (i.e. |
| // inlining arguments, type parameter, args descriptor, context, ...) |
| { |
| // Replace parameter slots with inlining definitions coming in. |
| if (inlining_parameters != NULL) { |
| for (intptr_t i = 0; i < function().NumParameters(); ++i) { |
| Definition* defn = (*inlining_parameters)[inlined_type_args_param + i]; |
| AllocateSSAIndexes(defn); |
| AddToInitialDefinitions(function_entry, defn); |
| |
| intptr_t index = EnvIndex(parsed_function_.RawParameterVariable(i)); |
| (*env)[index] = defn; |
| } |
| } |
| |
| // Replace the type arguments slot with a special parameter. |
| const bool reify_generic_argument = function().IsGeneric(); |
| if (reify_generic_argument) { |
| ASSERT(parsed_function().function_type_arguments() != NULL); |
| Definition* defn; |
| if (inlining_parameters == NULL) { |
| // Note: If we are not inlining, then the prologue builder will |
| // take care of checking that we got the correct reified type |
| // arguments. This includes checking the argument descriptor in order |
| // to even find out if the parameter was passed or not. |
| defn = constant_dead(); |
| } else { |
| defn = (*inlining_parameters)[0]; |
| } |
| AllocateSSAIndexes(defn); |
| AddToInitialDefinitions(function_entry, defn); |
| (*env)[RawTypeArgumentEnvIndex()] = defn; |
| } |
| |
| // Replace the argument descriptor slot with a special parameter. |
| if (parsed_function().has_arg_desc_var()) { |
| Definition* defn = |
| new (Z) SpecialParameterInstr(SpecialParameterInstr::kArgDescriptor, |
| DeoptId::kNone, function_entry); |
| AllocateSSAIndexes(defn); |
| AddToInitialDefinitions(function_entry, defn); |
| (*env)[ArgumentDescriptorEnvIndex()] = defn; |
| } |
| } |
| } |
| |
| void FlowGraph::PopulateEnvironmentFromOsrEntry( |
| OsrEntryInstr* osr_entry, |
| GrowableArray<Definition*>* env) { |
| ASSERT(IsCompiledForOsr()); |
| // During OSR, all variables and possibly a non-empty stack are |
| // passed as parameters. The latter mimics the incoming expression |
| // stack that was set up prior to triggering OSR. |
| const intptr_t parameter_count = osr_variable_count(); |
| ASSERT(parameter_count == env->length()); |
| for (intptr_t i = 0; i < parameter_count; i++) { |
| ParameterInstr* param = |
| new (zone()) ParameterInstr(i, i, osr_entry, kTagged); |
| param->set_ssa_temp_index(alloc_ssa_temp_index()); |
| AddToInitialDefinitions(osr_entry, param); |
| (*env)[i] = param; |
| } |
| } |
| |
| void FlowGraph::PopulateEnvironmentFromCatchEntry( |
| CatchBlockEntryInstr* catch_entry, |
| GrowableArray<Definition*>* env) { |
| const intptr_t raw_exception_var_envindex = |
| catch_entry->raw_exception_var() != nullptr |
| ? EnvIndex(catch_entry->raw_exception_var()) |
| : -1; |
| const intptr_t raw_stacktrace_var_envindex = |
| catch_entry->raw_stacktrace_var() != nullptr |
| ? EnvIndex(catch_entry->raw_stacktrace_var()) |
| : -1; |
| |
| // Add real definitions for all locals and parameters. |
| ASSERT(variable_count() == env->length()); |
| for (intptr_t i = 0, n = variable_count(); i < n; ++i) { |
| // Replace usages of the raw exception/stacktrace variables with |
| // [SpecialParameterInstr]s. |
| Definition* param = nullptr; |
| if (raw_exception_var_envindex == i) { |
| param = new (Z) SpecialParameterInstr(SpecialParameterInstr::kException, |
| DeoptId::kNone, catch_entry); |
| } else if (raw_stacktrace_var_envindex == i) { |
| param = new (Z) SpecialParameterInstr(SpecialParameterInstr::kStackTrace, |
| DeoptId::kNone, catch_entry); |
| } else { |
| param = new (Z) ParameterInstr(i, i, catch_entry, kTagged); |
| } |
| |
| param->set_ssa_temp_index(alloc_ssa_temp_index()); // New SSA temp. |
| (*env)[i] = param; |
| AddToInitialDefinitions(catch_entry, param); |
| } |
| } |
| |
| void FlowGraph::AttachEnvironment(Instruction* instr, |
| GrowableArray<Definition*>* env) { |
| Environment* deopt_env = |
| Environment::From(zone(), *env, num_direct_parameters_, parsed_function_); |
| if (instr->IsClosureCall() || instr->IsLoadField()) { |
| // Trim extra inputs of ClosureCall and LoadField instructions from |
| // the environment. Inputs of those instructions are not pushed onto |
| // the stack at the point where deoptimization can occur. |
| // Note that in case of LoadField there can be two possible situations, |
| // the code here handles LoadField to LoadField lazy deoptimization in |
| // which we are transitioning from position after the call to initialization |
| // stub in optimized code to a similar position after the call to |
| // initialization stub in unoptimized code. There is another variant |
| // (LoadField deoptimizing into a position after a getter call) which is |
| // handled in a different way (see |
| // CallSpecializer::InlineImplicitInstanceGetter). |
| deopt_env = |
| deopt_env->DeepCopy(zone(), deopt_env->Length() - instr->InputCount() + |
| instr->ArgumentCount()); |
| } |
| instr->SetEnvironment(deopt_env); |
| for (Environment::DeepIterator it(deopt_env); !it.Done(); it.Advance()) { |
| Value* use = it.CurrentValue(); |
| use->definition()->AddEnvUse(use); |
| } |
| } |
| |
| void FlowGraph::RenameRecursive( |
| BlockEntryInstr* block_entry, |
| GrowableArray<Definition*>* env, |
| GrowableArray<PhiInstr*>* live_phis, |
| VariableLivenessAnalysis* variable_liveness, |
| ZoneGrowableArray<Definition*>* inlining_parameters) { |
| // 1. Process phis first. |
| if (auto join = block_entry->AsJoinEntry()) { |
| if (join->phis() != nullptr) { |
| const intptr_t local_phi_count = variable_count() + join->stack_depth(); |
| ASSERT(join->phis()->length() == local_phi_count); |
| for (intptr_t i = 0; i < local_phi_count; ++i) { |
| PhiInstr* phi = (*join->phis())[i]; |
| if (phi != nullptr) { |
| (*env)[i] = phi; |
| AllocateSSAIndexes(phi); // New SSA temp. |
| if (block_entry->InsideTryBlock() && !phi->is_alive()) { |
| // This is a safe approximation. Inside try{} all locals are |
| // used at every call implicitly, so we mark all phis as live |
| // from the start. |
| // TODO(fschneider): Improve this approximation to eliminate |
| // more redundant phis. |
| phi->mark_alive(); |
| live_phis->Add(phi); |
| } |
| } |
| } |
| } |
| } else if (auto osr_entry = block_entry->AsOsrEntry()) { |
| PopulateEnvironmentFromOsrEntry(osr_entry, env); |
| } else if (auto function_entry = block_entry->AsFunctionEntry()) { |
| ASSERT(!IsCompiledForOsr()); |
| PopulateEnvironmentFromFunctionEntry( |
| function_entry, env, live_phis, variable_liveness, inlining_parameters); |
| } else if (auto catch_entry = block_entry->AsCatchBlockEntry()) { |
| PopulateEnvironmentFromCatchEntry(catch_entry, env); |
| } |
| |
| if (!block_entry->IsGraphEntry() && |
| !block_entry->IsBlockEntryWithInitialDefs()) { |
| // Prune non-live variables at block entry by replacing their environment |
| // slots with null. |
| BitVector* live_in = variable_liveness->GetLiveInSet(block_entry); |
| for (intptr_t i = 0; i < variable_count(); i++) { |
| // TODO(fschneider): Make sure that live_in always contains the |
| // CurrentContext variable to avoid the special case here. |
| if (FLAG_prune_dead_locals && !live_in->Contains(i) && |
| (i != CurrentContextEnvIndex())) { |
| (*env)[i] = constant_dead(); |
| } |
| } |
| } |
| |
| // Attach environment to the block entry. |
| AttachEnvironment(block_entry, env); |
| |
| // 2. Process normal instructions. |
| for (ForwardInstructionIterator it(block_entry); !it.Done(); it.Advance()) { |
| Instruction* current = it.Current(); |
| |
| // Attach current environment to the instructions that need it. |
| if (current->NeedsEnvironment()) { |
| AttachEnvironment(current, env); |
| } |
| |
| // 2a. Handle uses: |
| // Update the expression stack renaming environment for each use by |
| // removing the renamed value. For each use of a LoadLocal, StoreLocal, |
| // MakeTemp, DropTemps or Constant (or any expression under OSR), |
| // replace it with the renamed value. |
| for (intptr_t i = current->InputCount() - 1; i >= 0; --i) { |
| Value* v = current->InputAt(i); |
| // Update expression stack. |
| ASSERT(env->length() > variable_count()); |
| Definition* reaching_defn = env->RemoveLast(); |
| Definition* input_defn = v->definition(); |
| if (input_defn != reaching_defn) { |
| // Inspect the replacing definition before making the change. |
| if (IsCompiledForOsr()) { |
| // Under OSR, constants can reside on the expression stack. Just |
| // generate the constant rather than going through a synthetic phi. |
| if (input_defn->IsConstant() && reaching_defn->IsPhi()) { |
| ASSERT(env->length() < osr_variable_count()); |
| auto constant = GetConstant(input_defn->AsConstant()->value()); |
| current->ReplaceInEnvironment(reaching_defn, constant); |
| reaching_defn = constant; |
| } |
| } else { |
| // Note: constants can only be replaced with other constants. |
| ASSERT(input_defn->IsLoadLocal() || input_defn->IsStoreLocal() || |
| input_defn->IsDropTemps() || input_defn->IsMakeTemp() || |
| (input_defn->IsConstant() && reaching_defn->IsConstant())); |
| } |
| // Assert we are not referencing nulls in the initial environment. |
| ASSERT(reaching_defn->ssa_temp_index() != -1); |
| // Replace the definition. |
| v->set_definition(reaching_defn); |
| input_defn = reaching_defn; |
| } |
| input_defn->AddInputUse(v); |
| } |
| |
| // 2b. Handle LoadLocal/StoreLocal/MakeTemp/DropTemps/Constant specially. |
| // Other definitions are just pushed to the environment directly. |
| Definition* result = NULL; |
| switch (current->tag()) { |
| case Instruction::kLoadLocal: { |
| LoadLocalInstr* load = current->Cast<LoadLocalInstr>(); |
| |
| // The graph construction ensures we do not have an unused LoadLocal |
| // computation. |
| ASSERT(load->HasTemp()); |
| const intptr_t index = EnvIndex(&load->local()); |
| result = (*env)[index]; |
| |
| PhiInstr* phi = result->AsPhi(); |
| if ((phi != NULL) && !phi->is_alive()) { |
| phi->mark_alive(); |
| live_phis->Add(phi); |
| } |
| |
| if (FLAG_prune_dead_locals && |
| variable_liveness->IsLastLoad(block_entry, load)) { |
| (*env)[index] = constant_dead(); |
| } |
| |
| // Record captured parameters so that they can be skipped when |
| // emitting sync code inside optimized try-blocks. |
| if (load->local().is_captured_parameter()) { |
| captured_parameters_->Add(index); |
| } |
| |
| if (phi != nullptr) { |
| // Assign type to Phi if it doesn't have a type yet. |
| // For a Phi to appear in the local variable it either was placed |
| // there as incoming value by renaming or it was stored there by |
| // StoreLocal which took this Phi from another local via LoadLocal, |
| // to which this reasoning applies recursively. |
| // This means that we are guaranteed to process LoadLocal for a |
| // matching variable first. |
| if (!phi->HasType()) { |
| ASSERT((index < phi->block()->phis()->length()) && |
| ((*phi->block()->phis())[index] == phi)); |
| phi->UpdateType( |
| CompileType::FromAbstractType(load->local().type())); |
| } |
| } |
| break; |
| } |
| |
| case Instruction::kStoreLocal: { |
| StoreLocalInstr* store = current->Cast<StoreLocalInstr>(); |
| const intptr_t index = EnvIndex(&store->local()); |
| result = store->value()->definition(); |
| |
| if (!FLAG_prune_dead_locals || |
| variable_liveness->IsStoreAlive(block_entry, store)) { |
| (*env)[index] = result; |
| } else { |
| (*env)[index] = constant_dead(); |
| } |
| break; |
| } |
| |
| case Instruction::kDropTemps: { |
| // Drop temps from the environment. |
| DropTempsInstr* drop = current->Cast<DropTempsInstr>(); |
| for (intptr_t j = 0; j < drop->num_temps(); j++) { |
| env->RemoveLast(); |
| } |
| if (drop->value() != NULL) { |
| result = drop->value()->definition(); |
| } |
| ASSERT((drop->value() != NULL) || !drop->HasTemp()); |
| break; |
| } |
| |
| case Instruction::kConstant: { |
| ConstantInstr* constant = current->Cast<ConstantInstr>(); |
| if (constant->HasTemp()) { |
| result = GetConstant(constant->value()); |
| } |
| break; |
| } |
| |
| case Instruction::kMakeTemp: { |
| // Simply push a #null value to the expression stack. |
| result = constant_null_; |
| break; |
| } |
| |
| case Instruction::kPushArgument: |
| UNREACHABLE(); |
| break; |
| |
| case Instruction::kCheckStackOverflow: |
| // Assert environment integrity at checkpoints. |
| ASSERT((variable_count() + |
| current->AsCheckStackOverflow()->stack_depth()) == |
| env->length()); |
| continue; |
| |
| default: |
| // Other definitions directly go into the environment. |
| if (Definition* definition = current->AsDefinition()) { |
| if (definition->HasTemp()) { |
| // Assign fresh SSA temporary and update expression stack. |
| AllocateSSAIndexes(definition); |
| env->Add(definition); |
| } |
| } |
| continue; |
| } |
| |
| // Update expression stack and remove current instruction from the graph. |
| Definition* definition = current->Cast<Definition>(); |
| if (definition->HasTemp()) { |
| ASSERT(result != nullptr); |
| env->Add(result); |
| } |
| it.RemoveCurrentFromGraph(); |
| } |
| |
| // 3. Process dominated blocks. |
| const bool set_stack = (block_entry == graph_entry()) && IsCompiledForOsr(); |
| for (intptr_t i = 0; i < block_entry->dominated_blocks().length(); ++i) { |
| BlockEntryInstr* block = block_entry->dominated_blocks()[i]; |
| GrowableArray<Definition*> new_env(env->length()); |
| new_env.AddArray(*env); |
| // During OSR, when traversing from the graph entry directly any block |
| // (which may be a non-entry), we must adjust the environment to mimic |
| // a non-empty incoming expression stack to ensure temporaries refer to |
| // the right stack items. |
| const intptr_t stack_depth = block->stack_depth(); |
| ASSERT(stack_depth >= 0); |
| if (set_stack) { |
| ASSERT(variable_count() == new_env.length()); |
| new_env.FillWith(constant_dead(), variable_count(), stack_depth); |
| } else if (!block->last_instruction()->IsTailCall()) { |
| // Assert environment integrity otherwise. |
| ASSERT((variable_count() + stack_depth) == new_env.length()); |
| } |
| RenameRecursive(block, &new_env, live_phis, variable_liveness, |
| inlining_parameters); |
| } |
| |
| // 4. Process successor block. We have edge-split form, so that only blocks |
| // with one successor can have a join block as successor. |
| if ((block_entry->last_instruction()->SuccessorCount() == 1) && |
| block_entry->last_instruction()->SuccessorAt(0)->IsJoinEntry()) { |
| JoinEntryInstr* successor = |
| block_entry->last_instruction()->SuccessorAt(0)->AsJoinEntry(); |
| intptr_t pred_index = successor->IndexOfPredecessor(block_entry); |
| ASSERT(pred_index >= 0); |
| if (successor->phis() != NULL) { |
| for (intptr_t i = 0; i < successor->phis()->length(); ++i) { |
| PhiInstr* phi = (*successor->phis())[i]; |
| if (phi != nullptr) { |
| // Rename input operand. |
| Definition* input = (*env)[i]; |
| ASSERT(input != nullptr); |
| ASSERT(!input->IsPushArgument()); |
| Value* use = new (zone()) Value(input); |
| phi->SetInputAt(pred_index, use); |
| } |
| } |
| } |
| } |
| } |
| |
| void FlowGraph::RemoveDeadPhis(GrowableArray<PhiInstr*>* live_phis) { |
| // Augment live_phis with those that have implicit real used at |
| // potentially throwing instructions if there is a try-catch in this graph. |
| if (!graph_entry()->catch_entries().is_empty()) { |
| for (BlockIterator it(postorder_iterator()); !it.Done(); it.Advance()) { |
| JoinEntryInstr* join = it.Current()->AsJoinEntry(); |
| if (join == NULL) continue; |
| for (PhiIterator phi_it(join); !phi_it.Done(); phi_it.Advance()) { |
| PhiInstr* phi = phi_it.Current(); |
| if (phi == NULL || phi->is_alive() || (phi->input_use_list() != NULL) || |
| (phi->env_use_list() == NULL)) { |
| continue; |
| } |
| for (Value::Iterator it(phi->env_use_list()); !it.Done(); |
| it.Advance()) { |
| Value* use = it.Current(); |
| if (use->instruction()->MayThrow() && |
| use->instruction()->GetBlock()->InsideTryBlock()) { |
| live_phis->Add(phi); |
| phi->mark_alive(); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| while (!live_phis->is_empty()) { |
| PhiInstr* phi = live_phis->RemoveLast(); |
| for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| Value* val = phi->InputAt(i); |
| PhiInstr* used_phi = val->definition()->AsPhi(); |
| if ((used_phi != NULL) && !used_phi->is_alive()) { |
| used_phi->mark_alive(); |
| live_phis->Add(used_phi); |
| } |
| } |
| } |
| |
| for (BlockIterator it(postorder_iterator()); !it.Done(); it.Advance()) { |
| JoinEntryInstr* join = it.Current()->AsJoinEntry(); |
| if (join != NULL) join->RemoveDeadPhis(constant_dead()); |
| } |
| } |
| |
| RedefinitionInstr* FlowGraph::EnsureRedefinition(Instruction* prev, |
| Definition* original, |
| CompileType compile_type) { |
| RedefinitionInstr* first = prev->next()->AsRedefinition(); |
| if (first != nullptr && (first->constrained_type() != nullptr)) { |
| if ((first->value()->definition() == original) && |
| first->constrained_type()->IsEqualTo(&compile_type)) { |
| // Already redefined. Do nothing. |
| return nullptr; |
| } |
| } |
| RedefinitionInstr* redef = new RedefinitionInstr(new Value(original)); |
| |
| // Don't set the constrained type when the type is None(), which denotes an |
| // unreachable value (e.g. using value null after some form of null check). |
| if (!compile_type.IsNone()) { |
| redef->set_constrained_type(new CompileType(compile_type)); |
| } |
| |
| InsertAfter(prev, redef, nullptr, FlowGraph::kValue); |
| RenameDominatedUses(original, redef, redef); |
| |
| if (redef->input_use_list() == nullptr) { |
| // There are no dominated uses, so the newly added Redefinition is useless. |
| // Remove Redefinition to avoid interfering with |
| // BranchSimplifier::Simplify which needs empty blocks. |
| redef->RemoveFromGraph(); |
| return nullptr; |
| } |
| |
| return redef; |
| } |
| |
| void FlowGraph::RemoveRedefinitions(bool keep_checks) { |
| // Remove redefinition and check instructions that were inserted |
| // to make a control dependence explicit with a data dependence, |
| // for example, to inhibit hoisting. |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| thread()->CheckForSafepoint(); |
| for (ForwardInstructionIterator instr_it(block_it.Current()); |
| !instr_it.Done(); instr_it.Advance()) { |
| Instruction* instruction = instr_it.Current(); |
| if (auto redef = instruction->AsRedefinition()) { |
| redef->ReplaceUsesWith(redef->value()->definition()); |
| instr_it.RemoveCurrentFromGraph(); |
| } else if (keep_checks) { |
| continue; |
| } else if (auto def = instruction->AsDefinition()) { |
| Value* value = def->RedefinedValue(); |
| if (value != nullptr) { |
| def->ReplaceUsesWith(value->definition()); |
| def->ClearSSATempIndex(); |
| } |
| } |
| } |
| } |
| } |
| |
| BitVector* FlowGraph::FindLoopBlocks(BlockEntryInstr* m, |
| BlockEntryInstr* n) const { |
| GrowableArray<BlockEntryInstr*> stack; |
| BitVector* loop_blocks = new (zone()) BitVector(zone(), preorder_.length()); |
| |
| loop_blocks->Add(n->preorder_number()); |
| if (n != m) { |
| loop_blocks->Add(m->preorder_number()); |
| stack.Add(m); |
| } |
| |
| while (!stack.is_empty()) { |
| BlockEntryInstr* p = stack.RemoveLast(); |
| for (intptr_t i = 0; i < p->PredecessorCount(); ++i) { |
| BlockEntryInstr* q = p->PredecessorAt(i); |
| if (!loop_blocks->Contains(q->preorder_number())) { |
| loop_blocks->Add(q->preorder_number()); |
| stack.Add(q); |
| } |
| } |
| } |
| return loop_blocks; |
| } |
| |
| LoopHierarchy* FlowGraph::ComputeLoops() const { |
| // Iterate over all entry blocks in the flow graph to attach |
| // loop information to each loop header. |
| ZoneGrowableArray<BlockEntryInstr*>* loop_headers = |
| new (zone()) ZoneGrowableArray<BlockEntryInstr*>(); |
| for (BlockIterator it = postorder_iterator(); !it.Done(); it.Advance()) { |
| BlockEntryInstr* block = it.Current(); |
| // Reset loop information on every entry block (since this method |
| // may recompute loop information on a modified flow graph). |
| block->set_loop_info(nullptr); |
| // Iterate over predecessors to find back edges. |
| for (intptr_t i = 0; i < block->PredecessorCount(); ++i) { |
| BlockEntryInstr* pred = block->PredecessorAt(i); |
| if (block->Dominates(pred)) { |
| // Identify the block as a loop header and add the blocks in the |
| // loop to the loop information. Loops that share the same loop |
| // header are treated as one loop by merging these blocks. |
| BitVector* loop_blocks = FindLoopBlocks(pred, block); |
| if (block->loop_info() == nullptr) { |
| intptr_t id = loop_headers->length(); |
| block->set_loop_info(new (zone()) LoopInfo(id, block, loop_blocks)); |
| loop_headers->Add(block); |
| } else { |
| ASSERT(block->loop_info()->header() == block); |
| block->loop_info()->AddBlocks(loop_blocks); |
| } |
| block->loop_info()->AddBackEdge(pred); |
| } |
| } |
| } |
| |
| // Build the loop hierarchy and link every entry block to |
| // the closest enveloping loop in loop hierarchy. |
| return new (zone()) LoopHierarchy(loop_headers, preorder_); |
| } |
| |
| intptr_t FlowGraph::InstructionCount() const { |
| intptr_t size = 0; |
| // Iterate each block, skipping the graph entry. |
| for (intptr_t i = 1; i < preorder_.length(); ++i) { |
| BlockEntryInstr* block = preorder_[i]; |
| |
| // Skip any blocks from the prologue to make them not count towards the |
| // inlining instruction budget. |
| const intptr_t block_id = block->block_id(); |
| if (prologue_info_.Contains(block_id)) { |
| continue; |
| } |
| |
| for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| ++size; |
| } |
| } |
| return size; |
| } |
| |
| void FlowGraph::ConvertUse(Value* use, Representation from_rep) { |
| const Representation to_rep = |
| use->instruction()->RequiredInputRepresentation(use->use_index()); |
| if (from_rep == to_rep || to_rep == kNoRepresentation) { |
| return; |
| } |
| InsertConversion(from_rep, to_rep, use, /*is_environment_use=*/false); |
| } |
| |
| static bool IsUnboxedInteger(Representation rep) { |
| return (rep == kUnboxedInt32) || (rep == kUnboxedUint32) || |
| (rep == kUnboxedInt64); |
| } |
| |
| static bool ShouldInlineSimd() { |
| return FlowGraphCompiler::SupportsUnboxedSimd128(); |
| } |
| |
| static bool CanUnboxDouble() { |
| return FlowGraphCompiler::SupportsUnboxedDoubles(); |
| } |
| |
| static bool CanConvertInt64ToDouble() { |
| return FlowGraphCompiler::CanConvertInt64ToDouble(); |
| } |
| |
| void FlowGraph::InsertConversion(Representation from, |
| Representation to, |
| Value* use, |
| bool is_environment_use) { |
| Instruction* insert_before; |
| Instruction* deopt_target; |
| PhiInstr* phi = use->instruction()->AsPhi(); |
| if (phi != NULL) { |
| ASSERT(phi->is_alive()); |
| // For phis conversions have to be inserted in the predecessor. |
| auto predecessor = phi->block()->PredecessorAt(use->use_index()); |
| insert_before = predecessor->last_instruction(); |
| ASSERT(insert_before->GetBlock() == predecessor); |
| deopt_target = NULL; |
| } else { |
| deopt_target = insert_before = use->instruction(); |
| } |
| |
| Definition* converted = NULL; |
| if (IsUnboxedInteger(from) && IsUnboxedInteger(to)) { |
| const intptr_t deopt_id = (to == kUnboxedInt32) && (deopt_target != NULL) |
| ? deopt_target->DeoptimizationTarget() |
| : DeoptId::kNone; |
| converted = |
| new (Z) IntConverterInstr(from, to, use->CopyWithType(), deopt_id); |
| } else if ((from == kUnboxedInt32) && (to == kUnboxedDouble)) { |
| converted = new Int32ToDoubleInstr(use->CopyWithType()); |
| } else if ((from == kUnboxedInt64) && (to == kUnboxedDouble) && |
| CanConvertInt64ToDouble()) { |
| const intptr_t deopt_id = (deopt_target != NULL) |
| ? deopt_target->DeoptimizationTarget() |
| : DeoptId::kNone; |
| ASSERT(CanUnboxDouble()); |
| converted = new Int64ToDoubleInstr(use->CopyWithType(), deopt_id); |
| } else if ((from == kTagged) && Boxing::Supports(to)) { |
| const intptr_t deopt_id = (deopt_target != NULL) |
| ? deopt_target->DeoptimizationTarget() |
| : DeoptId::kNone; |
| converted = UnboxInstr::Create( |
| to, use->CopyWithType(), deopt_id, |
| use->instruction()->SpeculativeModeOfInput(use->use_index())); |
| } else if ((to == kTagged) && Boxing::Supports(from)) { |
| converted = BoxInstr::Create(from, use->CopyWithType()); |
| } else { |
| // We have failed to find a suitable conversion instruction. |
| // Insert two "dummy" conversion instructions with the correct |
| // "from" and "to" representation. The inserted instructions will |
| // trigger a deoptimization if executed. See #12417 for a discussion. |
| const intptr_t deopt_id = (deopt_target != NULL) |
| ? deopt_target->DeoptimizationTarget() |
| : DeoptId::kNone; |
| ASSERT(Boxing::Supports(from)); |
| ASSERT(Boxing::Supports(to)); |
| Definition* boxed = BoxInstr::Create(from, use->CopyWithType()); |
| use->BindTo(boxed); |
| InsertBefore(insert_before, boxed, NULL, FlowGraph::kValue); |
| converted = UnboxInstr::Create(to, new (Z) Value(boxed), deopt_id); |
| } |
| ASSERT(converted != NULL); |
| InsertBefore(insert_before, converted, use->instruction()->env(), |
| FlowGraph::kValue); |
| if (is_environment_use) { |
| use->BindToEnvironment(converted); |
| } else { |
| use->BindTo(converted); |
| } |
| |
| if ((to == kUnboxedInt32) && (phi != NULL)) { |
| // Int32 phis are unboxed optimistically. Ensure that unboxing |
| // has deoptimization target attached from the goto instruction. |
| CopyDeoptTarget(converted, insert_before); |
| } |
| } |
| |
| void FlowGraph::InsertConversionsFor(Definition* def) { |
| const Representation from_rep = def->representation(); |
| |
| for (Value::Iterator it(def->input_use_list()); !it.Done(); it.Advance()) { |
| ConvertUse(it.Current(), from_rep); |
| } |
| } |
| |
| static void UnboxPhi(PhiInstr* phi) { |
| Representation unboxed = phi->representation(); |
| |
| switch (phi->Type()->ToCid()) { |
| case kDoubleCid: |
| if (CanUnboxDouble()) { |
| unboxed = kUnboxedDouble; |
| } |
| break; |
| case kFloat32x4Cid: |
| if (ShouldInlineSimd()) { |
| unboxed = kUnboxedFloat32x4; |
| } |
| break; |
| case kInt32x4Cid: |
| if (ShouldInlineSimd()) { |
| unboxed = kUnboxedInt32x4; |
| } |
| break; |
| case kFloat64x2Cid: |
| if (ShouldInlineSimd()) { |
| unboxed = kUnboxedFloat64x2; |
| } |
| break; |
| } |
| |
| // If all the inputs are unboxed, leave the Phi unboxed. |
| if ((unboxed == kTagged) && phi->Type()->IsInt()) { |
| bool should_unbox = true; |
| Representation new_representation = kTagged; |
| for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| Definition* input = phi->InputAt(i)->definition(); |
| if (input->representation() != kUnboxedInt64 && |
| input->representation() != kUnboxedInt32 && |
| input->representation() != kUnboxedUint32 && !(input == phi)) { |
| should_unbox = false; |
| break; |
| } |
| |
| if (new_representation == kTagged) { |
| new_representation = input->representation(); |
| } else if (new_representation != input->representation()) { |
| new_representation = kNoRepresentation; |
| } |
| } |
| if (should_unbox) { |
| unboxed = new_representation != kNoRepresentation |
| ? new_representation |
| : RangeUtils::Fits(phi->range(), |
| RangeBoundary::kRangeBoundaryInt32) |
| ? kUnboxedInt32 |
| : kUnboxedInt64; |
| } |
| } |
| |
| if ((unboxed == kTagged) && phi->Type()->IsInt()) { |
| // Conservatively unbox phis that: |
| // - are proven to be of type Int; |
| // - fit into 64bits range; |
| // - have either constants or Box() operations as inputs; |
| // - have at least one Box() operation as an input; |
| // - are used in at least 1 Unbox() operation. |
| bool should_unbox = false; |
| for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| Definition* input = phi->InputAt(i)->definition(); |
| if (input->IsBox()) { |
| should_unbox = true; |
| } else if (!input->IsConstant()) { |
| should_unbox = false; |
| break; |
| } |
| } |
| |
| if (should_unbox) { |
| // We checked inputs. Check if phi is used in at least one unbox |
| // operation. |
| bool has_unboxed_use = false; |
| for (Value* use = phi->input_use_list(); use != NULL; |
| use = use->next_use()) { |
| Instruction* instr = use->instruction(); |
| if (instr->IsUnbox()) { |
| has_unboxed_use = true; |
| break; |
| } else if (IsUnboxedInteger( |
| instr->RequiredInputRepresentation(use->use_index()))) { |
| has_unboxed_use = true; |
| break; |
| } |
| } |
| |
| if (!has_unboxed_use) { |
| should_unbox = false; |
| } |
| } |
| |
| if (should_unbox) { |
| unboxed = |
| RangeUtils::Fits(phi->range(), RangeBoundary::kRangeBoundaryInt32) |
| ? kUnboxedInt32 |
| : kUnboxedInt64; |
| } |
| } |
| |
| phi->set_representation(unboxed); |
| } |
| |
| void FlowGraph::SelectRepresentations() { |
| // First we decide for each phi if it is beneficial to unbox it. If so, we |
| // change it's `phi->representation()` |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| JoinEntryInstr* join_entry = block_it.Current()->AsJoinEntry(); |
| if (join_entry != NULL) { |
| for (PhiIterator it(join_entry); !it.Done(); it.Advance()) { |
| PhiInstr* phi = it.Current(); |
| UnboxPhi(phi); |
| } |
| } |
| } |
| |
| // Process all initial definitions and insert conversions when needed (depends |
| // on phi unboxing decision above). |
| for (intptr_t i = 0; i < graph_entry()->initial_definitions()->length(); |
| i++) { |
| InsertConversionsFor((*graph_entry()->initial_definitions())[i]); |
| } |
| for (intptr_t i = 0; i < graph_entry()->SuccessorCount(); ++i) { |
| auto successor = graph_entry()->SuccessorAt(i); |
| if (auto entry = successor->AsBlockEntryWithInitialDefs()) { |
| auto& initial_definitions = *entry->initial_definitions(); |
| for (intptr_t j = 0; j < initial_definitions.length(); j++) { |
| InsertConversionsFor(initial_definitions[j]); |
| } |
| } |
| } |
| |
| // Process all normal definitions and insert conversions when needed (depends |
| // on phi unboxing decision above). |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| BlockEntryInstr* entry = block_it.Current(); |
| if (JoinEntryInstr* join_entry = entry->AsJoinEntry()) { |
| for (PhiIterator it(join_entry); !it.Done(); it.Advance()) { |
| PhiInstr* phi = it.Current(); |
| ASSERT(phi != NULL); |
| ASSERT(phi->is_alive()); |
| InsertConversionsFor(phi); |
| } |
| } |
| for (ForwardInstructionIterator it(entry); !it.Done(); it.Advance()) { |
| Definition* def = it.Current()->AsDefinition(); |
| if (def != NULL) { |
| InsertConversionsFor(def); |
| } |
| } |
| } |
| } |
| |
| #if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_IA32) |
| // Smi widening pass is only meaningful on platforms where Smi |
| // is smaller than 32bit. For now only support it on ARM and ia32. |
| static bool CanBeWidened(BinarySmiOpInstr* smi_op) { |
| return BinaryInt32OpInstr::IsSupported(smi_op->op_kind(), smi_op->left(), |
| smi_op->right()); |
| } |
| |
| static bool BenefitsFromWidening(BinarySmiOpInstr* smi_op) { |
| // TODO(vegorov): when shifts with non-constants shift count are supported |
| // add them here as we save untagging for the count. |
| switch (smi_op->op_kind()) { |
| case Token::kMUL: |
| case Token::kSHR: |
| // For kMUL we save untagging of the argument for kSHR |
| // we save tagging of the result. |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| // Maps an entry block to its closest enveloping loop id, or -1 if none. |
| static intptr_t LoopId(BlockEntryInstr* block) { |
| LoopInfo* loop = block->loop_info(); |
| if (loop != nullptr) { |
| return loop->id(); |
| } |
| return -1; |
| } |
| |
| void FlowGraph::WidenSmiToInt32() { |
| if (!FLAG_use_smi_widening) { |
| return; |
| } |
| |
| GrowableArray<BinarySmiOpInstr*> candidates; |
| |
| // Step 1. Collect all instructions that potentially benefit from widening of |
| // their operands (or their result) into int32 range. |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| for (ForwardInstructionIterator instr_it(block_it.Current()); |
| !instr_it.Done(); instr_it.Advance()) { |
| BinarySmiOpInstr* smi_op = instr_it.Current()->AsBinarySmiOp(); |
| if ((smi_op != NULL) && smi_op->HasSSATemp() && |
| BenefitsFromWidening(smi_op) && CanBeWidened(smi_op)) { |
| candidates.Add(smi_op); |
| } |
| } |
| } |
| |
| if (candidates.is_empty()) { |
| return; |
| } |
| |
| // Step 2. For each block in the graph compute which loop it belongs to. |
| // We will use this information later during computation of the widening's |
| // gain: we are going to assume that only conversion occurring inside the |
| // same loop should be counted against the gain, all other conversions |
| // can be hoisted and thus cost nothing compared to the loop cost itself. |
| GetLoopHierarchy(); |
| |
| // Step 3. For each candidate transitively collect all other BinarySmiOpInstr |
| // and PhiInstr that depend on it and that it depends on and count amount of |
| // untagging operations that we save in assumption that this whole graph of |
| // values is using kUnboxedInt32 representation instead of kTagged. |
| // Convert those graphs that have positive gain to kUnboxedInt32. |
| |
| // BitVector containing SSA indexes of all processed definitions. Used to skip |
| // those candidates that belong to dependency graph of another candidate. |
| BitVector* processed = new (Z) BitVector(Z, current_ssa_temp_index()); |
| |
| // Worklist used to collect dependency graph. |
| DefinitionWorklist worklist(this, candidates.length()); |
| for (intptr_t i = 0; i < candidates.length(); i++) { |
| BinarySmiOpInstr* op = candidates[i]; |
| if (op->WasEliminated() || processed->Contains(op->ssa_temp_index())) { |
| continue; |
| } |
| |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("analysing candidate: %s\n", op->ToCString()); |
| } |
| worklist.Clear(); |
| worklist.Add(op); |
| |
| // Collect dependency graph. Note: more items are added to worklist |
| // inside this loop. |
| intptr_t gain = 0; |
| for (intptr_t j = 0; j < worklist.definitions().length(); j++) { |
| Definition* defn = worklist.definitions()[j]; |
| |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("> %s\n", defn->ToCString()); |
| } |
| |
| if (defn->IsBinarySmiOp() && |
| BenefitsFromWidening(defn->AsBinarySmiOp())) { |
| gain++; |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("^ [%" Pd "] (o) %s\n", gain, defn->ToCString()); |
| } |
| } |
| |
| const intptr_t defn_loop = LoopId(defn->GetBlock()); |
| |
| // Process all inputs. |
| for (intptr_t k = 0; k < defn->InputCount(); k++) { |
| Definition* input = defn->InputAt(k)->definition(); |
| if (input->IsBinarySmiOp() && CanBeWidened(input->AsBinarySmiOp())) { |
| worklist.Add(input); |
| } else if (input->IsPhi() && (input->Type()->ToCid() == kSmiCid)) { |
| worklist.Add(input); |
| } else if (input->IsBinaryInt64Op()) { |
| // Mint operation produces untagged result. We avoid tagging. |
| gain++; |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("^ [%" Pd "] (i) %s\n", gain, input->ToCString()); |
| } |
| } else if (defn_loop == LoopId(input->GetBlock()) && |
| (input->Type()->ToCid() == kSmiCid)) { |
| // Input comes from the same loop, is known to be smi and requires |
| // untagging. |
| // TODO(vegorov) this heuristic assumes that values that are not |
| // known to be smi have to be checked and this check can be |
| // coalesced with untagging. Start coalescing them. |
| gain--; |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("v [%" Pd "] (i) %s\n", gain, input->ToCString()); |
| } |
| } |
| } |
| |
| // Process all uses. |
| for (Value* use = defn->input_use_list(); use != NULL; |
| use = use->next_use()) { |
| Instruction* instr = use->instruction(); |
| Definition* use_defn = instr->AsDefinition(); |
| if (use_defn == NULL) { |
| // We assume that tagging before returning or pushing argument costs |
| // very little compared to the cost of the return/call itself. |
| ASSERT(!instr->IsPushArgument()); |
| if (!instr->IsReturn() && |
| (use->use_index() >= instr->ArgumentCount())) { |
| gain--; |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("v [%" Pd "] (u) %s\n", gain, |
| use->instruction()->ToCString()); |
| } |
| } |
| continue; |
| } else if (use_defn->IsBinarySmiOp() && |
| CanBeWidened(use_defn->AsBinarySmiOp())) { |
| worklist.Add(use_defn); |
| } else if (use_defn->IsPhi() && |
| use_defn->AsPhi()->Type()->ToCid() == kSmiCid) { |
| worklist.Add(use_defn); |
| } else if (use_defn->IsBinaryInt64Op()) { |
| // BinaryInt64Op requires untagging of its inputs. |
| // Converting kUnboxedInt32 to kUnboxedInt64 is essentially zero cost |
| // sign extension operation. |
| gain++; |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("^ [%" Pd "] (u) %s\n", gain, |
| use->instruction()->ToCString()); |
| } |
| } else if (defn_loop == LoopId(instr->GetBlock())) { |
| gain--; |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("v [%" Pd "] (u) %s\n", gain, |
| use->instruction()->ToCString()); |
| } |
| } |
| } |
| } |
| |
| processed->AddAll(worklist.contains_vector()); |
| |
| if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| THR_Print("~ %s gain %" Pd "\n", op->ToCString(), gain); |
| } |
| |
| if (gain > 0) { |
| // We have positive gain from widening. Convert all BinarySmiOpInstr into |
| // BinaryInt32OpInstr and set representation of all phis to kUnboxedInt32. |
| for (intptr_t j = 0; j < worklist.definitions().length(); j++) { |
| Definition* defn = worklist.definitions()[j]; |
| ASSERT(defn->IsPhi() || defn->IsBinarySmiOp()); |
| |
| // Since we widen the integer representation we've to clear out type |
| // propagation information (e.g. it might no longer be a _Smi). |
| for (Value::Iterator it(defn->input_use_list()); !it.Done(); |
| it.Advance()) { |
| it.Current()->SetReachingType(nullptr); |
| } |
| |
| if (defn->IsBinarySmiOp()) { |
| BinarySmiOpInstr* smi_op = defn->AsBinarySmiOp(); |
| BinaryInt32OpInstr* int32_op = new (Z) BinaryInt32OpInstr( |
| smi_op->op_kind(), smi_op->left()->CopyWithType(), |
| smi_op->right()->CopyWithType(), smi_op->DeoptimizationTarget()); |
| |
| smi_op->ReplaceWith(int32_op, NULL); |
| } else if (defn->IsPhi()) { |
| defn->AsPhi()->set_representation(kUnboxedInt32); |
| ASSERT(defn->Type()->IsInt()); |
| } |
| } |
| } |
| } |
| } |
| #else |
| void FlowGraph::WidenSmiToInt32() { |
| // TODO(vegorov) ideally on 64-bit platforms we would like to narrow smi |
| // operations to 32-bit where it saves tagging and untagging and allows |
| // to use shorted (and faster) instructions. But we currently don't |
| // save enough range information in the ICData to drive this decision. |
| } |
| #endif |
| |
| void FlowGraph::EliminateEnvironments() { |
| // After this pass we can no longer perform LICM and hoist instructions |
| // that can deoptimize. |
| |
| disallow_licm(); |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| BlockEntryInstr* block = block_it.Current(); |
| if (!block->IsCatchBlockEntry()) { |
| block->RemoveEnvironment(); |
| } |
| for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| Instruction* current = it.Current(); |
| if (!current->ComputeCanDeoptimize() && |
| (!current->MayThrow() || !current->GetBlock()->InsideTryBlock())) { |
| // Instructions that can throw need an environment for optimized |
| // try-catch. |
| // TODO(srdjan): --source-lines needs deopt environments to get at |
| // the code for this instruction, however, leaving the environment |
| // changes code. |
| current->RemoveEnvironment(); |
| } |
| } |
| } |
| } |
| |
| bool FlowGraph::Canonicalize() { |
| bool changed = false; |
| |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| BlockEntryInstr* const block = block_it.Current(); |
| if (auto join = block->AsJoinEntry()) { |
| for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| PhiInstr* current = it.Current(); |
| if (current->HasUnmatchedInputRepresentations()) { |
| // Can't canonicalize this instruction until all conversions for its |
| // inputs are inserted. |
| continue; |
| } |
| |
| Definition* replacement = current->Canonicalize(this); |
| ASSERT(replacement != nullptr); |
| if (replacement != current) { |
| current->ReplaceUsesWith(replacement); |
| it.RemoveCurrentFromGraph(); |
| changed = true; |
| } |
| } |
| } |
| for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| Instruction* current = it.Current(); |
| if (current->HasUnmatchedInputRepresentations()) { |
| // Can't canonicalize this instruction until all conversions for its |
| // inputs are inserted. |
| continue; |
| } |
| |
| Instruction* replacement = current->Canonicalize(this); |
| |
| if (replacement != current) { |
| // For non-definitions Canonicalize should return either NULL or |
| // this. |
| ASSERT((replacement == NULL) || current->IsDefinition()); |
| ReplaceCurrentInstruction(&it, current, replacement); |
| changed = true; |
| } |
| } |
| } |
| return changed; |
| } |
| |
| void FlowGraph::PopulateWithICData(const Function& function) { |
| Zone* zone = Thread::Current()->zone(); |
| |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| ForwardInstructionIterator it(block_it.Current()); |
| for (; !it.Done(); it.Advance()) { |
| Instruction* instr = it.Current(); |
| if (instr->IsInstanceCall()) { |
| InstanceCallInstr* call = instr->AsInstanceCall(); |
| if (!call->HasICData()) { |
| const Array& arguments_descriptor = |
| Array::Handle(zone, call->GetArgumentsDescriptor()); |
| const ICData& ic_data = ICData::ZoneHandle( |
| zone, |
| ICData::New(function, call->function_name(), arguments_descriptor, |
| call->deopt_id(), call->checked_argument_count(), |
| ICData::kInstance)); |
| call->set_ic_data(&ic_data); |
| } |
| } else if (instr->IsStaticCall()) { |
| StaticCallInstr* call = instr->AsStaticCall(); |
| if (!call->HasICData()) { |
| const Array& arguments_descriptor = |
| Array::Handle(zone, call->GetArgumentsDescriptor()); |
| const Function& target = call->function(); |
| int num_args_checked = |
| MethodRecognizer::NumArgsCheckedForStaticCall(target); |
| const ICData& ic_data = ICData::ZoneHandle( |
| zone, ICData::New(function, String::Handle(zone, target.name()), |
| arguments_descriptor, call->deopt_id(), |
| num_args_checked, ICData::kStatic)); |
| ic_data.AddTarget(target); |
| call->set_ic_data(&ic_data); |
| } |
| } |
| } |
| } |
| } |
| |
| // Optimize (a << b) & c pattern: if c is a positive Smi or zero, then the |
| // shift can be a truncating Smi shift-left and result is always Smi. |
| // Merging occurs only per basic-block. |
| void FlowGraph::TryOptimizePatterns() { |
| if (!FLAG_truncating_left_shift) return; |
| GrowableArray<BinarySmiOpInstr*> div_mod_merge; |
| GrowableArray<InvokeMathCFunctionInstr*> sin_cos_merge; |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| // Merging only per basic-block. |
| div_mod_merge.Clear(); |
| sin_cos_merge.Clear(); |
| ForwardInstructionIterator it(block_it.Current()); |
| for (; !it.Done(); it.Advance()) { |
| if (it.Current()->IsBinarySmiOp()) { |
| BinarySmiOpInstr* binop = it.Current()->AsBinarySmiOp(); |
| if (binop->op_kind() == Token::kBIT_AND) { |
| OptimizeLeftShiftBitAndSmiOp(&it, binop, binop->left()->definition(), |
| binop->right()->definition()); |
| } else if ((binop->op_kind() == Token::kTRUNCDIV) || |
| (binop->op_kind() == Token::kMOD)) { |
| if (binop->HasUses()) { |
| div_mod_merge.Add(binop); |
| } |
| } |
| } else if (it.Current()->IsBinaryInt64Op()) { |
| BinaryInt64OpInstr* mintop = it.Current()->AsBinaryInt64Op(); |
| if (mintop->op_kind() == Token::kBIT_AND) { |
| OptimizeLeftShiftBitAndSmiOp(&it, mintop, |
| mintop->left()->definition(), |
| mintop->right()->definition()); |
| } |
| } else if (it.Current()->IsInvokeMathCFunction()) { |
| InvokeMathCFunctionInstr* math_unary = |
| it.Current()->AsInvokeMathCFunction(); |
| if ((math_unary->recognized_kind() == MethodRecognizer::kMathSin) || |
| (math_unary->recognized_kind() == MethodRecognizer::kMathCos)) { |
| if (math_unary->HasUses()) { |
| sin_cos_merge.Add(math_unary); |
| } |
| } |
| } |
| } |
| TryMergeTruncDivMod(&div_mod_merge); |
| } |
| } |
| |
| // Returns true if use is dominated by the given instruction. |
| // Note: uses that occur at instruction itself are not dominated by it. |
| static bool IsDominatedUse(Instruction* dom, Value* use) { |
| BlockEntryInstr* dom_block = dom->GetBlock(); |
| |
| Instruction* instr = use->instruction(); |
| |
| PhiInstr* phi = instr->AsPhi(); |
| if (phi != NULL) { |
| return dom_block->Dominates(phi->block()->PredecessorAt(use->use_index())); |
| } |
| |
| BlockEntryInstr* use_block = instr->GetBlock(); |
| if (use_block == dom_block) { |
| // Fast path for the case of block entry. |
| if (dom_block == dom) return true; |
| |
| for (Instruction* curr = dom->next(); curr != NULL; curr = curr->next()) { |
| if (curr == instr) return true; |
| } |
| |
| return false; |
| } |
| |
| return dom_block->Dominates(use_block); |
| } |
| |
| void FlowGraph::RenameDominatedUses(Definition* def, |
| Instruction* dom, |
| Definition* other) { |
| for (Value::Iterator it(def->input_use_list()); !it.Done(); it.Advance()) { |
| Value* use = it.Current(); |
| if (IsDominatedUse(dom, use)) { |
| use->BindTo(other); |
| } |
| } |
| } |
| |
| void FlowGraph::RenameUsesDominatedByRedefinitions() { |
| for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| block_it.Advance()) { |
| for (ForwardInstructionIterator instr_it(block_it.Current()); |
| !instr_it.Done(); instr_it.Advance()) { |
| Definition* definition = instr_it.Current()->AsDefinition(); |
| // CheckArrayBound instructions have their own mechanism for ensuring |
| // proper dependencies, so we don't rewrite those here. |
| if (definition != nullptr && !definition->IsCheckArrayBound()) { |
| Value* redefined = definition->RedefinedValue(); |
| if (redefined != nullptr) { |
| if (!definition->HasSSATemp()) { |
| AllocateSSAIndexes(definition); |
| } |
| Definition* original = redefined->definition(); |
| RenameDominatedUses(original, definition, definition); |
| } |
| } |
| } |
| } |
| } |
| |
| static bool IsPositiveOrZeroSmiConst(Definition* d) { |
| ConstantInstr* const_instr = d->AsConstant(); |
| if ((const_instr != NULL) && (const_instr->value().IsSmi())) { |
| return Smi::Cast(const_instr->value()).Value() >= 0; |
| } |
| return false; |
| } |
| |
| static BinarySmiOpInstr* AsSmiShiftLeftInstruction(Definition* d) { |
| BinarySmiOpInstr* instr = d->AsBinarySmiOp(); |
| if ((instr != NULL) && (instr->op_kind() == Token::kSHL)) { |
| return instr; |
| } |
| return NULL; |
| } |
| |
| void FlowGraph::OptimizeLeftShiftBitAndSmiOp( |
| ForwardInstructionIterator* current_iterator, |
| Definition* bit_and_instr, |
| Definition* left_instr, |
| Definition* right_instr) { |
| ASSERT(bit_and_instr != NULL); |
| ASSERT((left_instr != NULL) && (right_instr != NULL)); |
| |
| // Check for pattern, smi_shift_left must be single-use. |
| bool is_positive_or_zero = IsPositiveOrZeroSmiConst(left_instr); |
| if (!is_positive_or_zero) { |
| is_positive_or_zero = IsPositiveOrZeroSmiConst(right_instr); |
| } |
| if (!is_positive_or_zero) return; |
| |
| BinarySmiOpInstr* smi_shift_left = NULL; |
| if (bit_and_instr->InputAt(0)->IsSingleUse()) { |
| smi_shift_left = AsSmiShiftLeftInstruction(left_instr); |
| } |
| if ((smi_shift_left == NULL) && (bit_and_instr->InputAt(1)->IsSingleUse())) { |
| smi_shift_left = AsSmiShiftLeftInstruction(right_instr); |
| } |
| if (smi_shift_left == NULL) return; |
| |
| // Pattern recognized. |
| smi_shift_left->mark_truncating(); |
| ASSERT(bit_and_instr->IsBinarySmiOp() || bit_and_instr->IsBinaryInt64Op()); |
| if (bit_and_instr->IsBinaryInt64Op()) { |
| // Replace Mint op with Smi op. |
| BinarySmiOpInstr* smi_op = new (Z) BinarySmiOpInstr( |
| Token::kBIT_AND, new (Z) Value(left_instr), new (Z) Value(right_instr), |
| DeoptId::kNone); // BIT_AND cannot deoptimize. |
| bit_and_instr->ReplaceWith(smi_op, current_iterator); |
| } |
| } |
| |
| // Dart: |
| // var x = d % 10; |
| // var y = d ~/ 10; |
| // var z = x + y; |
| // |
| // IL: |
| // v4 <- %(v2, v3) |
| // v5 <- ~/(v2, v3) |
| // v6 <- +(v4, v5) |
| // |
| // IL optimized: |
| // v4 <- DIVMOD(v2, v3); |
| // v5 <- LoadIndexed(v4, 0); // ~/ result |
| // v6 <- LoadIndexed(v4, 1); // % result |
| // v7 <- +(v5, v6) |
| // Because of the environment it is important that merged instruction replaces |
| // first original instruction encountered. |
| void FlowGraph::TryMergeTruncDivMod( |
| GrowableArray<BinarySmiOpInstr*>* merge_candidates) { |
| if (merge_candidates->length() < 2) { |
| // Need at least a TRUNCDIV and a MOD. |
| return; |
| } |
| for (intptr_t i = 0; i < merge_candidates->length(); i++) { |
| BinarySmiOpInstr* curr_instr = (*merge_candidates)[i]; |
| if (curr_instr == NULL) { |
| // Instruction was merged already. |
| continue; |
| } |
| ASSERT((curr_instr->op_kind() == Token::kTRUNCDIV) || |
| (curr_instr->op_kind() == Token::kMOD)); |
| // Check if there is kMOD/kTRUNDIV binop with same inputs. |
| const Token::Kind other_kind = (curr_instr->op_kind() == Token::kTRUNCDIV) |
| ? Token::kMOD |
| : Token::kTRUNCDIV; |
| Definition* left_def = curr_instr->left()->definition(); |
| Definition* right_def = curr_instr->right()->definition(); |
| for (intptr_t k = i + 1; k < merge_candidates->length(); k++) { |
| BinarySmiOpInstr* other_binop = (*merge_candidates)[k]; |
| // 'other_binop' can be NULL if it was already merged. |
| if ((other_binop != NULL) && (other_binop->op_kind() == other_kind) && |
| (other_binop->left()->definition() == left_def) && |
| (other_binop->right()->definition() == right_def)) { |
| (*merge_candidates)[k] = NULL; // Clear it. |
| ASSERT(curr_instr->HasUses()); |
| AppendExtractNthOutputForMerged( |
| curr_instr, TruncDivModInstr::OutputIndexOf(curr_instr->op_kind()), |
| kTagged, kSmiCid); |
| ASSERT(other_binop->HasUses()); |
| AppendExtractNthOutputForMerged( |
| other_binop, |
| TruncDivModInstr::OutputIndexOf(other_binop->op_kind()), kTagged, |
| kSmiCid); |
| |
| // Replace with TruncDivMod. |
| TruncDivModInstr* div_mod = new (Z) TruncDivModInstr( |
| curr_instr->left()->CopyWithType(), |
| curr_instr->right()->CopyWithType(), curr_instr->deopt_id()); |
| curr_instr->ReplaceWith(div_mod, NULL); |
| other_binop->ReplaceUsesWith(div_mod); |
| other_binop->RemoveFromGraph(); |
| // Only one merge possible. Because canonicalization happens later, |
| // more candidates are possible. |
| // TODO(srdjan): Allow merging of trunc-div/mod into truncDivMod. |
| break; |
| } |
| } |
| } |
| } |
| |
| void FlowGraph::AppendExtractNthOutputForMerged(Definition* instr, |
| intptr_t index, |
| Representation rep, |
| intptr_t cid) { |
| ExtractNthOutputInstr* extract = |
| new (Z) ExtractNthOutputInstr(new (Z) Value(instr), index, rep, cid); |
| instr->ReplaceUsesWith(extract); |
| InsertAfter(instr, extract, NULL, FlowGraph::kValue); |
| } |
| |
| // |
| // Static helpers for the flow graph utilities. |
| // |
| |
| static TargetEntryInstr* NewTarget(FlowGraph* graph, Instruction* inherit) { |
| TargetEntryInstr* target = new (graph->zone()) |
| TargetEntryInstr(graph->allocate_block_id(), |
| inherit->GetBlock()->try_index(), DeoptId::kNone); |
| target->InheritDeoptTarget(graph->zone(), inherit); |
| return target; |
| } |
| |
| static JoinEntryInstr* NewJoin(FlowGraph* graph, Instruction* inherit) { |
| JoinEntryInstr* join = new (graph->zone()) |
| JoinEntryInstr(graph->allocate_block_id(), |
| inherit->GetBlock()->try_index(), DeoptId::kNone); |
| join->InheritDeoptTarget(graph->zone(), inherit); |
| return join; |
| } |
| |
| static GotoInstr* NewGoto(FlowGraph* graph, |
| JoinEntryInstr* target, |
| Instruction* inherit) { |
| GotoInstr* got = new (graph->zone()) GotoInstr(target, DeoptId::kNone); |
| got->InheritDeoptTarget(graph->zone(), inherit); |
| return got; |
| } |
| |
| static BranchInstr* NewBranch(FlowGraph* graph, |
| ComparisonInstr* cmp, |
| Instruction* inherit) { |
| BranchInstr* bra = new (graph->zone()) BranchInstr(cmp, DeoptId::kNone); |
| bra->InheritDeoptTarget(graph->zone(), inherit); |
| return bra; |
| } |
| |
| // |
| // Flow graph utilities. |
| // |
| |
| // Constructs new diamond decision at the given instruction. |
| // |
| // ENTRY |
| // instruction |
| // if (compare) |
| // / \ |
| // B_TRUE B_FALSE |
| // \ / |
| // JOIN |
| // |
| JoinEntryInstr* FlowGraph::NewDiamond(Instruction* instruction, |
| Instruction* inherit, |
| ComparisonInstr* compare, |
| TargetEntryInstr** b_true, |
| TargetEntryInstr** b_false) { |
| BlockEntryInstr* entry = instruction->GetBlock(); |
| |
| TargetEntryInstr* bt = NewTarget(this, inherit); |
| TargetEntryInstr* bf = NewTarget(this, inherit); |
| JoinEntryInstr* join = NewJoin(this, inherit); |
| GotoInstr* gotot = NewGoto(this, join, inherit); |
| GotoInstr* gotof = NewGoto(this, join, inherit); |
| BranchInstr* bra = NewBranch(this, compare, inherit); |
| |
| instruction->AppendInstruction(bra); |
| entry->set_last_instruction(bra); |
| |
| *bra->true_successor_address() = bt; |
| *bra->false_successor_address() = bf; |
| |
| bt->AppendInstruction(gotot); |
| bt->set_last_instruction(gotot); |
| |
| bf->AppendInstruction(gotof); |
| bf->set_last_instruction(gotof); |
| |
| // Update dominance relation incrementally. |
| for (intptr_t i = 0, n = entry->dominated_blocks().length(); i < n; ++i) { |
| join->AddDominatedBlock(entry->dominated_blocks()[i]); |
| } |
| entry->ClearDominatedBlocks(); |
| entry->AddDominatedBlock(bt); |
| entry->AddDominatedBlock(bf); |
| entry->AddDominatedBlock(join); |
| |
| // TODO(ajcbik): update pred/succ/ordering incrementally too. |
| |
| // Return new blocks. |
| *b_true = bt; |
| *b_false = bf; |
| return join; |
| } |
| |
| JoinEntryInstr* FlowGraph::NewDiamond(Instruction* instruction, |
| Instruction* inherit, |
| const LogicalAnd& condition, |
| TargetEntryInstr** b_true, |
| TargetEntryInstr** b_false) { |
| // First diamond for first comparison. |
| TargetEntryInstr* bt = nullptr; |
| TargetEntryInstr* bf = nullptr; |
| JoinEntryInstr* mid_point = |
| |