blob: 7a5bd680f755594a0e380aa9253142d73f4cc52b [file] [log] [blame]
// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM.
#if defined(TARGET_ARCH_ARM)
#define SHOULD_NOT_INCLUDE_RUNTIME
#include "vm/class_id.h"
#include "vm/compiler/asm_intrinsifier.h"
#include "vm/compiler/assembler/assembler.h"
namespace dart {
namespace compiler {
// When entering intrinsics code:
// R4: Arguments descriptor
// LR: Return address
// The R4 register can be destroyed only if there is no slow-path, i.e.
// if the intrinsified method always executes a return.
// The FP register should not be modified, because it is used by the profiler.
// The PP and THR registers (see constants_arm.h) must be preserved.
#define __ assembler->
intptr_t AsmIntrinsifier::ParameterSlotFromSp() {
return -1;
}
static bool IsABIPreservedRegister(Register reg) {
return ((1 << reg) & kAbiPreservedCpuRegs) != 0;
}
void AsmIntrinsifier::IntrinsicCallPrologue(Assembler* assembler) {
ASSERT(IsABIPreservedRegister(CODE_REG));
ASSERT(IsABIPreservedRegister(ARGS_DESC_REG));
ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP));
// Save LR by moving it to a callee saved temporary register.
assembler->Comment("IntrinsicCallPrologue");
assembler->mov(CALLEE_SAVED_TEMP, Operand(LR));
}
void AsmIntrinsifier::IntrinsicCallEpilogue(Assembler* assembler) {
// Restore LR.
assembler->Comment("IntrinsicCallEpilogue");
assembler->mov(LR, Operand(CALLEE_SAVED_TEMP));
}
// Allocate a GrowableObjectArray:: using the backing array specified.
// On stack: type argument (+1), data (+0).
void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler,
Label* normal_ir_body) {
// The newly allocated object is returned in R0.
const intptr_t kTypeArgumentsOffset = 1 * target::kWordSize;
const intptr_t kArrayOffset = 0 * target::kWordSize;
// Try allocating in new space.
const Class& cls = GrowableObjectArrayClass();
__ TryAllocate(cls, normal_ir_body, R0, R1);
// Store backing array object in growable array object.
__ ldr(R1, Address(SP, kArrayOffset)); // Data argument.
// R0 is new, no barrier needed.
__ StoreIntoObjectNoBarrier(
R0, FieldAddress(R0, target::GrowableObjectArray::data_offset()), R1);
// R0: new growable array object start as a tagged pointer.
// Store the type argument field in the growable array object.
__ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument.
__ StoreIntoObjectNoBarrier(
R0,
FieldAddress(R0, target::GrowableObjectArray::type_arguments_offset()),
R1);
// Set the length field in the growable array object to 0.
__ LoadImmediate(R1, 0);
__ StoreIntoObjectNoBarrier(
R0, FieldAddress(R0, target::GrowableObjectArray::length_offset()), R1);
__ Ret(); // Returns the newly allocated object in R0.
__ Bind(normal_ir_body);
}
#define TYPED_ARRAY_ALLOCATION(cid, max_len, scale_shift) \
Label fall_through; \
const intptr_t kArrayLengthStackOffset = 0 * target::kWordSize; \
NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R2, cid)); \
NOT_IN_PRODUCT(__ MaybeTraceAllocation(R2, normal_ir_body)); \
__ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
/* Check that length is a positive Smi. */ \
/* R2: requested array length argument. */ \
__ tst(R2, Operand(kSmiTagMask)); \
__ b(normal_ir_body, NE); \
__ CompareImmediate(R2, 0); \
__ b(normal_ir_body, LT); \
__ SmiUntag(R2); \
/* Check for maximum allowed length. */ \
/* R2: untagged array length. */ \
__ CompareImmediate(R2, max_len); \
__ b(normal_ir_body, GT); \
__ mov(R2, Operand(R2, LSL, scale_shift)); \
const intptr_t fixed_size_plus_alignment_padding = \
target::TypedData::InstanceSize() + \
target::ObjectAlignment::kObjectAlignment - 1; \
__ AddImmediate(R2, fixed_size_plus_alignment_padding); \
__ bic(R2, R2, Operand(target::ObjectAlignment::kObjectAlignment - 1)); \
__ ldr(R0, Address(THR, target::Thread::top_offset())); \
\
/* R2: allocation size. */ \
__ adds(R1, R0, Operand(R2)); \
__ b(normal_ir_body, CS); /* Fail on unsigned overflow. */ \
\
/* Check if the allocation fits into the remaining space. */ \
/* R0: potential new object start. */ \
/* R1: potential next object start. */ \
/* R2: allocation size. */ \
__ ldr(IP, Address(THR, target::Thread::end_offset())); \
__ cmp(R1, Operand(IP)); \
__ b(normal_ir_body, CS); \
\
__ str(R1, Address(THR, target::Thread::top_offset())); \
__ AddImmediate(R0, kHeapObjectTag); \
/* Initialize the tags. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: allocation size. */ \
{ \
__ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); \
__ mov(R3, \
Operand(R2, LSL, \
target::ObjectLayout::kTagBitsSizeTagPos - \
target::ObjectAlignment::kObjectAlignmentLog2), \
LS); \
__ mov(R3, Operand(0), HI); \
\
/* Get the class index and insert it into the tags. */ \
uint32_t tags = \
target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); \
__ LoadImmediate(TMP, tags); \
__ orr(R3, R3, Operand(TMP)); \
__ str(R3, FieldAddress(R0, target::Object::tags_offset())); /* Tags. */ \
} \
/* Set the length field. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: allocation size. */ \
__ ldr(R3, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
__ StoreIntoObjectNoBarrier( \
R0, FieldAddress(R0, target::TypedDataBase::length_offset()), R3); \
/* Initialize all array elements to 0. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: allocation size. */ \
/* R3: iterator which initially points to the start of the variable */ \
/* R8, R9: zero. */ \
/* data area to be initialized. */ \
__ LoadImmediate(R8, 0); \
__ mov(R9, Operand(R8)); \
__ AddImmediate(R3, R0, target::TypedData::InstanceSize() - 1); \
__ StoreInternalPointer( \
R0, FieldAddress(R0, target::TypedDataBase::data_field_offset()), R3); \
Label init_loop; \
__ Bind(&init_loop); \
__ AddImmediate(R3, 2 * target::kWordSize); \
__ cmp(R3, Operand(R1)); \
__ strd(R8, R9, R3, -2 * target::kWordSize, LS); \
__ b(&init_loop, CC); \
__ str(R8, Address(R3, -2 * target::kWordSize), HI); \
\
__ Ret(); \
__ Bind(normal_ir_body);
static int GetScaleFactor(intptr_t size) {
switch (size) {
case 1:
return 0;
case 2:
return 1;
case 4:
return 2;
case 8:
return 3;
case 16:
return 4;
}
UNREACHABLE();
return -1;
}
#define TYPED_DATA_ALLOCATOR(clazz) \
void AsmIntrinsifier::TypedData_##clazz##_factory(Assembler* assembler, \
Label* normal_ir_body) { \
intptr_t size = TypedDataElementSizeInBytes(kTypedData##clazz##Cid); \
intptr_t max_len = TypedDataMaxNewSpaceElements(kTypedData##clazz##Cid); \
int shift = GetScaleFactor(size); \
TYPED_ARRAY_ALLOCATION(kTypedData##clazz##Cid, max_len, shift); \
}
CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR)
#undef TYPED_DATA_ALLOCATOR
// Loads args from stack into R0 and R1
// Tests if they are smis, jumps to label not_smi if not.
static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
__ ldr(R0, Address(SP, +0 * target::kWordSize));
__ ldr(R1, Address(SP, +1 * target::kWordSize));
__ orr(TMP, R0, Operand(R1));
__ tst(TMP, Operand(kSmiTagMask));
__ b(not_smi, NE);
}
void AsmIntrinsifier::Integer_addFromInteger(Assembler* assembler,
Label* normal_ir_body) {
TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis.
__ adds(R0, R0, Operand(R1)); // Adds.
__ bx(LR, VC); // Return if no overflow.
// Otherwise fall through.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_add(Assembler* assembler, Label* normal_ir_body) {
Integer_addFromInteger(assembler, normal_ir_body);
}
void AsmIntrinsifier::Integer_subFromInteger(Assembler* assembler,
Label* normal_ir_body) {
TestBothArgumentsSmis(assembler, normal_ir_body);
__ subs(R0, R0, Operand(R1)); // Subtract.
__ bx(LR, VC); // Return if no overflow.
// Otherwise fall through.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_sub(Assembler* assembler, Label* normal_ir_body) {
TestBothArgumentsSmis(assembler, normal_ir_body);
__ subs(R0, R1, Operand(R0)); // Subtract.
__ bx(LR, VC); // Return if no overflow.
// Otherwise fall through.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_mulFromInteger(Assembler* assembler,
Label* normal_ir_body) {
TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis
__ SmiUntag(R0); // Untags R0. We only want result shifted by one.
__ smull(R0, IP, R0, R1); // IP:R0 <- R0 * R1.
__ cmp(IP, Operand(R0, ASR, 31));
__ bx(LR, EQ);
__ Bind(normal_ir_body); // Fall through on overflow.
}
void AsmIntrinsifier::Integer_mul(Assembler* assembler, Label* normal_ir_body) {
Integer_mulFromInteger(assembler, normal_ir_body);
}
// Optimizations:
// - result is 0 if:
// - left is 0
// - left equals right
// - result is left if
// - left > 0 && left < right
// R1: Tagged left (dividend).
// R0: Tagged right (divisor).
// Returns:
// R1: Untagged fallthrough result (remainder to be adjusted), or
// R0: Tagged return result (remainder).
static void EmitRemainderOperation(Assembler* assembler) {
Label modulo;
const Register left = R1;
const Register right = R0;
const Register result = R1;
const Register tmp = R2;
ASSERT(left == result);
// Check for quick zero results.
__ cmp(left, Operand(0));
__ mov(R0, Operand(0), EQ);
__ bx(LR, EQ); // left is 0? Return 0.
__ cmp(left, Operand(right));
__ mov(R0, Operand(0), EQ);
__ bx(LR, EQ); // left == right? Return 0.
// Check if result should be left.
__ cmp(left, Operand(0));
__ b(&modulo, LT);
// left is positive.
__ cmp(left, Operand(right));
// left is less than right, result is left.
__ mov(R0, Operand(left), LT);
__ bx(LR, LT);
__ Bind(&modulo);
// result <- left - right * (left / right)
__ SmiUntag(left);
__ SmiUntag(right);
__ IntegerDivide(tmp, left, right, D1, D0);
__ mls(result, right, tmp, left); // result <- left - right * TMP
}
// Implementation:
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
void AsmIntrinsifier::Integer_moduloFromInteger(Assembler* assembler,
Label* normal_ir_body) {
if (!TargetCPUFeatures::can_divide()) {
return;
}
// Check to see if we have integer division
__ ldr(R1, Address(SP, +0 * target::kWordSize));
__ ldr(R0, Address(SP, +1 * target::kWordSize));
__ orr(TMP, R0, Operand(R1));
__ tst(TMP, Operand(kSmiTagMask));
__ b(normal_ir_body, NE);
// R1: Tagged left (dividend).
// R0: Tagged right (divisor).
// Check if modulo by zero -> exception thrown in main function.
__ cmp(R0, Operand(0));
__ b(normal_ir_body, EQ);
EmitRemainderOperation(assembler);
// Untagged right in R0. Untagged remainder result in R1.
__ cmp(R1, Operand(0));
__ mov(R0, Operand(R1, LSL, 1), GE); // Tag and move result to R0.
__ bx(LR, GE);
// Result is negative, adjust it.
__ cmp(R0, Operand(0));
__ sub(R0, R1, Operand(R0), LT);
__ add(R0, R1, Operand(R0), GE);
__ SmiTag(R0);
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_truncDivide(Assembler* assembler,
Label* normal_ir_body) {
if (!TargetCPUFeatures::can_divide()) {
return;
}
// Check to see if we have integer division
TestBothArgumentsSmis(assembler, normal_ir_body);
__ cmp(R0, Operand(0));
__ b(normal_ir_body, EQ); // If b is 0, fall through.
__ SmiUntag(R0);
__ SmiUntag(R1);
__ IntegerDivide(R0, R1, R0, D1, D0);
// Check the corner case of dividing the 'MIN_SMI' with -1, in which case we
// cannot tag the result.
__ CompareImmediate(R0, 0x40000000);
__ SmiTag(R0, NE); // Not equal. Okay to tag and return.
__ bx(LR, NE); // Return.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_negate(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(SP, +0 * target::kWordSize)); // Grab first argument.
__ tst(R0, Operand(kSmiTagMask)); // Test for Smi.
__ b(normal_ir_body, NE);
__ rsbs(R0, R0, Operand(0)); // R0 is a Smi. R0 <- 0 - R0.
__ bx(LR, VC); // Return if there wasn't overflow, fall through otherwise.
// R0 is not a Smi. Fall through.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_bitAndFromInteger(Assembler* assembler,
Label* normal_ir_body) {
TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis
__ and_(R0, R0, Operand(R1));
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_bitAnd(Assembler* assembler,
Label* normal_ir_body) {
Integer_bitAndFromInteger(assembler, normal_ir_body);
}
void AsmIntrinsifier::Integer_bitOrFromInteger(Assembler* assembler,
Label* normal_ir_body) {
TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis
__ orr(R0, R0, Operand(R1));
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_bitOr(Assembler* assembler,
Label* normal_ir_body) {
Integer_bitOrFromInteger(assembler, normal_ir_body);
}
void AsmIntrinsifier::Integer_bitXorFromInteger(Assembler* assembler,
Label* normal_ir_body) {
TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis
__ eor(R0, R0, Operand(R1));
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_bitXor(Assembler* assembler,
Label* normal_ir_body) {
Integer_bitXorFromInteger(assembler, normal_ir_body);
}
void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) {
ASSERT(kSmiTagShift == 1);
ASSERT(kSmiTag == 0);
TestBothArgumentsSmis(assembler, normal_ir_body);
__ CompareImmediate(R0, target::ToRawSmi(target::kSmiBits));
__ b(normal_ir_body, HI);
__ SmiUntag(R0);
// Check for overflow by shifting left and shifting back arithmetically.
// If the result is different from the original, there was overflow.
__ mov(IP, Operand(R1, LSL, R0));
__ cmp(R1, Operand(IP, ASR, R0));
// No overflow, result in R0.
__ mov(R0, Operand(R1, LSL, R0), EQ);
__ bx(LR, EQ);
// Arguments are Smi but the shift produced an overflow to Mint.
__ CompareImmediate(R1, 0);
__ b(normal_ir_body, LT);
__ SmiUntag(R1);
// Pull off high bits that will be shifted off of R1 by making a mask
// ((1 << R0) - 1), shifting it to the left, masking R1, then shifting back.
// high bits = (((1 << R0) - 1) << (32 - R0)) & R1) >> (32 - R0)
// lo bits = R1 << R0
__ LoadImmediate(R8, 1);
__ mov(R8, Operand(R8, LSL, R0)); // R8 <- 1 << R0
__ sub(R8, R8, Operand(1)); // R8 <- R8 - 1
__ rsb(R3, R0, Operand(32)); // R3 <- 32 - R0
__ mov(R8, Operand(R8, LSL, R3)); // R8 <- R8 << R3
__ and_(R8, R1, Operand(R8)); // R8 <- R8 & R1
__ mov(R8, Operand(R8, LSR, R3)); // R8 <- R8 >> R3
// Now R8 has the bits that fall off of R1 on a left shift.
__ mov(R1, Operand(R1, LSL, R0)); // R1 gets the low bits.
const Class& mint_class = MintClass();
__ TryAllocate(mint_class, normal_ir_body, R0, R2);
__ str(R1, FieldAddress(R0, target::Mint::value_offset()));
__ str(R8,
FieldAddress(R0, target::Mint::value_offset() + target::kWordSize));
__ Ret();
__ Bind(normal_ir_body);
}
static void Get64SmiOrMint(Assembler* assembler,
Register res_hi,
Register res_lo,
Register reg,
Label* not_smi_or_mint) {
Label not_smi, done;
__ tst(reg, Operand(kSmiTagMask));
__ b(&not_smi, NE);
__ SmiUntag(reg);
// Sign extend to 64 bit
__ mov(res_lo, Operand(reg));
__ mov(res_hi, Operand(res_lo, ASR, 31));
__ b(&done);
__ Bind(&not_smi);
__ CompareClassId(reg, kMintCid, res_lo);
__ b(not_smi_or_mint, NE);
// Mint.
__ ldr(res_lo, FieldAddress(reg, target::Mint::value_offset()));
__ ldr(res_hi,
FieldAddress(reg, target::Mint::value_offset() + target::kWordSize));
__ Bind(&done);
}
static void CompareIntegers(Assembler* assembler,
Label* normal_ir_body,
Condition true_condition) {
Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through;
TestBothArgumentsSmis(assembler, &try_mint_smi);
// R0 contains the right argument. R1 contains left argument
__ cmp(R1, Operand(R0));
__ b(&is_true, true_condition);
__ Bind(&is_false);
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
__ Ret();
__ Bind(&is_true);
__ LoadObject(R0, CastHandle<Object>(TrueObject()));
__ Ret();
// 64-bit comparison
Condition hi_true_cond, hi_false_cond, lo_false_cond;
switch (true_condition) {
case LT:
case LE:
hi_true_cond = LT;
hi_false_cond = GT;
lo_false_cond = (true_condition == LT) ? CS : HI;
break;
case GT:
case GE:
hi_true_cond = GT;
hi_false_cond = LT;
lo_false_cond = (true_condition == GT) ? LS : CC;
break;
default:
UNREACHABLE();
hi_true_cond = hi_false_cond = lo_false_cond = VS;
}
__ Bind(&try_mint_smi);
// Get left as 64 bit integer.
Get64SmiOrMint(assembler, R3, R2, R1, normal_ir_body);
// Get right as 64 bit integer.
Get64SmiOrMint(assembler, R1, R8, R0, normal_ir_body);
// R3: left high.
// R2: left low.
// R1: right high.
// R8: right low.
__ cmp(R3, Operand(R1)); // Compare left hi, right high.
__ b(&is_false, hi_false_cond);
__ b(&is_true, hi_true_cond);
__ cmp(R2, Operand(R8)); // Compare left lo, right lo.
__ b(&is_false, lo_false_cond);
// Else is true.
__ b(&is_true);
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_greaterThanFromInt(Assembler* assembler,
Label* normal_ir_body) {
CompareIntegers(assembler, normal_ir_body, LT);
}
void AsmIntrinsifier::Integer_lessThan(Assembler* assembler,
Label* normal_ir_body) {
Integer_greaterThanFromInt(assembler, normal_ir_body);
}
void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler,
Label* normal_ir_body) {
CompareIntegers(assembler, normal_ir_body, GT);
}
void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler,
Label* normal_ir_body) {
CompareIntegers(assembler, normal_ir_body, LE);
}
void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler,
Label* normal_ir_body) {
CompareIntegers(assembler, normal_ir_body, GE);
}
// This is called for Smi and Mint receivers. The right argument
// can be Smi, Mint or double.
void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler,
Label* normal_ir_body) {
Label true_label, check_for_mint;
// For integer receiver '===' check first.
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ ldr(R1, Address(SP, 1 * target::kWordSize));
__ cmp(R0, Operand(R1));
__ b(&true_label, EQ);
__ orr(R2, R0, Operand(R1));
__ tst(R2, Operand(kSmiTagMask));
__ b(&check_for_mint, NE); // If R0 or R1 is not a smi do Mint checks.
// Both arguments are smi, '===' is good enough.
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
__ Ret();
__ Bind(&true_label);
__ LoadObject(R0, CastHandle<Object>(TrueObject()));
__ Ret();
// At least one of the arguments was not Smi.
Label receiver_not_smi;
__ Bind(&check_for_mint);
__ tst(R1, Operand(kSmiTagMask)); // Check receiver.
__ b(&receiver_not_smi, NE);
// Left (receiver) is Smi, return false if right is not Double.
// Note that an instance of Mint never contains a value that can be
// represented by Smi.
__ CompareClassId(R0, kDoubleCid, R2);
__ b(normal_ir_body, EQ);
__ LoadObject(R0,
CastHandle<Object>(FalseObject())); // Smi == Mint -> false.
__ Ret();
__ Bind(&receiver_not_smi);
// R1:: receiver.
__ CompareClassId(R1, kMintCid, R2);
__ b(normal_ir_body, NE);
// Receiver is Mint, return false if right is Smi.
__ tst(R0, Operand(kSmiTagMask));
__ LoadObject(R0, CastHandle<Object>(FalseObject()), EQ);
__ bx(LR, EQ);
// TODO(srdjan): Implement Mint == Mint comparison.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_equal(Assembler* assembler,
Label* normal_ir_body) {
Integer_equalToInteger(assembler, normal_ir_body);
}
void AsmIntrinsifier::Integer_sar(Assembler* assembler, Label* normal_ir_body) {
TestBothArgumentsSmis(assembler, normal_ir_body);
// Shift amount in R0. Value to shift in R1.
// Fall through if shift amount is negative.
__ SmiUntag(R0);
__ CompareImmediate(R0, 0);
__ b(normal_ir_body, LT);
// If shift amount is bigger than 31, set to 31.
__ CompareImmediate(R0, 0x1F);
__ LoadImmediate(R0, 0x1F, GT);
__ SmiUntag(R1);
__ mov(R0, Operand(R1, ASR, R0));
__ SmiTag(R0);
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Smi_bitNegate(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ mvn(R0, Operand(R0));
__ bic(R0, R0, Operand(kSmiTagMask)); // Remove inverted smi-tag.
__ Ret();
}
void AsmIntrinsifier::Smi_bitLength(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ SmiUntag(R0);
// XOR with sign bit to complement bits if value is negative.
__ eor(R0, R0, Operand(R0, ASR, 31));
__ clz(R0, R0);
__ rsb(R0, R0, Operand(32));
__ SmiTag(R0);
__ Ret();
}
void AsmIntrinsifier::Smi_bitAndFromSmi(Assembler* assembler,
Label* normal_ir_body) {
Integer_bitAndFromInteger(assembler, normal_ir_body);
}
void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) {
// static void _lsh(Uint32List x_digits, int x_used, int n,
// Uint32List r_digits)
// R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi.
__ ldrd(R0, R1, SP, 2 * target::kWordSize);
// R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0.
__ ldrd(R2, R3, SP, 0 * target::kWordSize);
__ SmiUntag(R3);
// R4 = n ~/ _DIGIT_BITS
__ Asr(R4, R3, Operand(5));
// R8 = &x_digits[0]
__ add(R8, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R6 = &r_digits[1]
__ add(R6, R2,
Operand(target::TypedData::data_offset() - kHeapObjectTag +
kBytesPerBigIntDigit));
// R2 = &x_digits[x_used]
__ add(R2, R8, Operand(R0, LSL, 1));
// R6 = &r_digits[x_used + n ~/ _DIGIT_BITS + 1]
__ add(R4, R4, Operand(R0, ASR, 1));
__ add(R6, R6, Operand(R4, LSL, 2));
// R1 = n % _DIGIT_BITS
__ and_(R1, R3, Operand(31));
// R0 = 32 - R1
__ rsb(R0, R1, Operand(32));
__ mov(R9, Operand(0));
Label loop;
__ Bind(&loop);
__ ldr(R4, Address(R2, -kBytesPerBigIntDigit, Address::PreIndex));
__ orr(R9, R9, Operand(R4, LSR, R0));
__ str(R9, Address(R6, -kBytesPerBigIntDigit, Address::PreIndex));
__ mov(R9, Operand(R4, LSL, R1));
__ teq(R2, Operand(R8));
__ b(&loop, NE);
__ str(R9, Address(R6, -kBytesPerBigIntDigit, Address::PreIndex));
__ LoadObject(R0, NullObject());
__ Ret();
}
void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) {
// static void _lsh(Uint32List x_digits, int x_used, int n,
// Uint32List r_digits)
// R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi.
__ ldrd(R0, R1, SP, 2 * target::kWordSize);
// R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0.
__ ldrd(R2, R3, SP, 0 * target::kWordSize);
__ SmiUntag(R3);
// R4 = n ~/ _DIGIT_BITS
__ Asr(R4, R3, Operand(5));
// R6 = &r_digits[0]
__ add(R6, R2, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R2 = &x_digits[n ~/ _DIGIT_BITS]
__ add(R2, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag));
__ add(R2, R2, Operand(R4, LSL, 2));
// R8 = &r_digits[x_used - n ~/ _DIGIT_BITS - 1]
__ add(R4, R4, Operand(1));
__ rsb(R4, R4, Operand(R0, ASR, 1));
__ add(R8, R6, Operand(R4, LSL, 2));
// R1 = n % _DIGIT_BITS
__ and_(R1, R3, Operand(31));
// R0 = 32 - R1
__ rsb(R0, R1, Operand(32));
// R9 = x_digits[n ~/ _DIGIT_BITS] >> (n % _DIGIT_BITS)
__ ldr(R9, Address(R2, kBytesPerBigIntDigit, Address::PostIndex));
__ mov(R9, Operand(R9, LSR, R1));
Label loop_entry;
__ b(&loop_entry);
Label loop;
__ Bind(&loop);
__ ldr(R4, Address(R2, kBytesPerBigIntDigit, Address::PostIndex));
__ orr(R9, R9, Operand(R4, LSL, R0));
__ str(R9, Address(R6, kBytesPerBigIntDigit, Address::PostIndex));
__ mov(R9, Operand(R4, LSR, R1));
__ Bind(&loop_entry);
__ teq(R6, Operand(R8));
__ b(&loop, NE);
__ str(R9, Address(R6, 0));
__ LoadObject(R0, NullObject());
__ Ret();
}
void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler,
Label* normal_ir_body) {
// static void _absAdd(Uint32List digits, int used,
// Uint32List a_digits, int a_used,
// Uint32List r_digits)
// R0 = used, R1 = digits
__ ldrd(R0, R1, SP, 3 * target::kWordSize);
// R1 = &digits[0]
__ add(R1, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R2 = a_used, R3 = a_digits
__ ldrd(R2, R3, SP, 1 * target::kWordSize);
// R3 = &a_digits[0]
__ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R8 = r_digits
__ ldr(R8, Address(SP, 0 * target::kWordSize));
// R8 = &r_digits[0]
__ add(R8, R8, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R2 = &digits[a_used >> 1], a_used is Smi.
__ add(R2, R1, Operand(R2, LSL, 1));
// R6 = &digits[used >> 1], used is Smi.
__ add(R6, R1, Operand(R0, LSL, 1));
__ adds(R4, R4, Operand(0)); // carry flag = 0
Label add_loop;
__ Bind(&add_loop);
// Loop a_used times, a_used > 0.
__ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex));
__ ldr(R9, Address(R3, kBytesPerBigIntDigit, Address::PostIndex));
__ adcs(R4, R4, Operand(R9));
__ teq(R1, Operand(R2)); // Does not affect carry flag.
__ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex));
__ b(&add_loop, NE);
Label last_carry;
__ teq(R1, Operand(R6)); // Does not affect carry flag.
__ b(&last_carry, EQ); // If used - a_used == 0.
Label carry_loop;
__ Bind(&carry_loop);
// Loop used - a_used times, used - a_used > 0.
__ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex));
__ adcs(R4, R4, Operand(0));
__ teq(R1, Operand(R6)); // Does not affect carry flag.
__ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex));
__ b(&carry_loop, NE);
__ Bind(&last_carry);
__ mov(R4, Operand(0));
__ adc(R4, R4, Operand(0));
__ str(R4, Address(R8, 0));
__ LoadObject(R0, NullObject());
__ Ret();
}
void AsmIntrinsifier::Bigint_absSub(Assembler* assembler,
Label* normal_ir_body) {
// static void _absSub(Uint32List digits, int used,
// Uint32List a_digits, int a_used,
// Uint32List r_digits)
// R0 = used, R1 = digits
__ ldrd(R0, R1, SP, 3 * target::kWordSize);
// R1 = &digits[0]
__ add(R1, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R2 = a_used, R3 = a_digits
__ ldrd(R2, R3, SP, 1 * target::kWordSize);
// R3 = &a_digits[0]
__ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R8 = r_digits
__ ldr(R8, Address(SP, 0 * target::kWordSize));
// R8 = &r_digits[0]
__ add(R8, R8, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R2 = &digits[a_used >> 1], a_used is Smi.
__ add(R2, R1, Operand(R2, LSL, 1));
// R6 = &digits[used >> 1], used is Smi.
__ add(R6, R1, Operand(R0, LSL, 1));
__ subs(R4, R4, Operand(0)); // carry flag = 1
Label sub_loop;
__ Bind(&sub_loop);
// Loop a_used times, a_used > 0.
__ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex));
__ ldr(R9, Address(R3, kBytesPerBigIntDigit, Address::PostIndex));
__ sbcs(R4, R4, Operand(R9));
__ teq(R1, Operand(R2)); // Does not affect carry flag.
__ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex));
__ b(&sub_loop, NE);
Label done;
__ teq(R1, Operand(R6)); // Does not affect carry flag.
__ b(&done, EQ); // If used - a_used == 0.
Label carry_loop;
__ Bind(&carry_loop);
// Loop used - a_used times, used - a_used > 0.
__ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex));
__ sbcs(R4, R4, Operand(0));
__ teq(R1, Operand(R6)); // Does not affect carry flag.
__ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex));
__ b(&carry_loop, NE);
__ Bind(&done);
__ LoadObject(R0, NullObject());
__ Ret();
}
void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler,
Label* normal_ir_body) {
// Pseudo code:
// static int _mulAdd(Uint32List x_digits, int xi,
// Uint32List m_digits, int i,
// Uint32List a_digits, int j, int n) {
// uint32_t x = x_digits[xi >> 1]; // xi is Smi.
// if (x == 0 || n == 0) {
// return 1;
// }
// uint32_t* mip = &m_digits[i >> 1]; // i is Smi.
// uint32_t* ajp = &a_digits[j >> 1]; // j is Smi.
// uint32_t c = 0;
// SmiUntag(n);
// do {
// uint32_t mi = *mip++;
// uint32_t aj = *ajp;
// uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit.
// *ajp++ = low32(t);
// c = high32(t);
// } while (--n > 0);
// while (c != 0) {
// uint64_t t = *ajp + c;
// *ajp++ = low32(t);
// c = high32(t); // c == 0 or 1.
// }
// return 1;
// }
Label done;
// R3 = x, no_op if x == 0
__ ldrd(R0, R1, SP, 5 * target::kWordSize); // R0 = xi as Smi, R1 = x_digits.
__ add(R1, R1, Operand(R0, LSL, 1));
__ ldr(R3, FieldAddress(R1, target::TypedData::data_offset()));
__ tst(R3, Operand(R3));
__ b(&done, EQ);
// R8 = SmiUntag(n), no_op if n == 0
__ ldr(R8, Address(SP, 0 * target::kWordSize));
__ Asrs(R8, R8, Operand(kSmiTagSize));
__ b(&done, EQ);
// R4 = mip = &m_digits[i >> 1]
__ ldrd(R0, R1, SP, 3 * target::kWordSize); // R0 = i as Smi, R1 = m_digits.
__ add(R1, R1, Operand(R0, LSL, 1));
__ add(R4, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R9 = ajp = &a_digits[j >> 1]
__ ldrd(R0, R1, SP, 1 * target::kWordSize); // R0 = j as Smi, R1 = a_digits.
__ add(R1, R1, Operand(R0, LSL, 1));
__ add(R9, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R1 = c = 0
__ mov(R1, Operand(0));
Label muladd_loop;
__ Bind(&muladd_loop);
// x: R3
// mip: R4
// ajp: R9
// c: R1
// n: R8
// uint32_t mi = *mip++
__ ldr(R2, Address(R4, kBytesPerBigIntDigit, Address::PostIndex));
// uint32_t aj = *ajp
__ ldr(R0, Address(R9, 0));
// uint64_t t = x*mi + aj + c
__ umaal(R0, R1, R2, R3); // R1:R0 = R2*R3 + R1 + R0.
// *ajp++ = low32(t) = R0
__ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex));
// c = high32(t) = R1
// while (--n > 0)
__ subs(R8, R8, Operand(1)); // --n
__ b(&muladd_loop, NE);
__ tst(R1, Operand(R1));
__ b(&done, EQ);
// *ajp++ += c
__ ldr(R0, Address(R9, 0));
__ adds(R0, R0, Operand(R1));
__ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex));
__ b(&done, CC);
Label propagate_carry_loop;
__ Bind(&propagate_carry_loop);
__ ldr(R0, Address(R9, 0));
__ adds(R0, R0, Operand(1));
__ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex));
__ b(&propagate_carry_loop, CS);
__ Bind(&done);
__ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed.
__ Ret();
}
void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler,
Label* normal_ir_body) {
// Pseudo code:
// static int _sqrAdd(Uint32List x_digits, int i,
// Uint32List a_digits, int used) {
// uint32_t* xip = &x_digits[i >> 1]; // i is Smi.
// uint32_t x = *xip++;
// if (x == 0) return 1;
// uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi.
// uint32_t aj = *ajp;
// uint64_t t = x*x + aj;
// *ajp++ = low32(t);
// uint64_t c = high32(t);
// int n = ((used - i) >> 1) - 1; // used and i are Smi.
// while (--n >= 0) {
// uint32_t xi = *xip++;
// uint32_t aj = *ajp;
// uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit.
// *ajp++ = low32(t);
// c = high64(t); // 33-bit.
// }
// uint32_t aj = *ajp;
// uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit.
// *ajp++ = low32(t);
// *ajp = high32(t);
// return 1;
// }
// The code has no bailout path, so we can use R6 (CODE_REG) freely.
// R4 = xip = &x_digits[i >> 1]
__ ldrd(R2, R3, SP, 2 * target::kWordSize); // R2 = i as Smi, R3 = x_digits
__ add(R3, R3, Operand(R2, LSL, 1));
__ add(R4, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R3 = x = *xip++, return if x == 0
Label x_zero;
__ ldr(R3, Address(R4, kBytesPerBigIntDigit, Address::PostIndex));
__ tst(R3, Operand(R3));
__ b(&x_zero, EQ);
// R6 = ajp = &a_digits[i]
__ ldr(R1, Address(SP, 1 * target::kWordSize)); // a_digits
__ add(R1, R1, Operand(R2, LSL, 2)); // j == 2*i, i is Smi.
__ add(R6, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag));
// R8:R0 = t = x*x + *ajp
__ ldr(R0, Address(R6, 0));
__ mov(R8, Operand(0));
__ umaal(R0, R8, R3, R3); // R8:R0 = R3*R3 + R8 + R0.
// *ajp++ = low32(t) = R0
__ str(R0, Address(R6, kBytesPerBigIntDigit, Address::PostIndex));
// R8 = low32(c) = high32(t)
// R9 = high32(c) = 0
__ mov(R9, Operand(0));
// int n = used - i - 1; while (--n >= 0) ...
__ ldr(R0, Address(SP, 0 * target::kWordSize)); // used is Smi
__ sub(TMP, R0, Operand(R2));
__ mov(R0, Operand(2)); // n = used - i - 2; if (n >= 0) ... while (--n >= 0)
__ rsbs(TMP, R0, Operand(TMP, ASR, kSmiTagSize));
Label loop, done;
__ b(&done, MI);
__ Bind(&loop);
// x: R3
// xip: R4
// ajp: R6
// c: R9:R8
// t: R2:R1:R0 (not live at loop entry)
// n: TMP
// uint32_t xi = *xip++
__ ldr(R2, Address(R4, kBytesPerBigIntDigit, Address::PostIndex));
// uint96_t t = R9:R8:R0 = 2*x*xi + aj + c
__ umull(R0, R1, R2, R3); // R1:R0 = R2*R3.
__ adds(R0, R0, Operand(R0));
__ adcs(R1, R1, Operand(R1));
__ mov(R2, Operand(0));
__ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi.
__ adds(R0, R0, Operand(R8));
__ adcs(R1, R1, Operand(R9));
__ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi + c.
__ ldr(R8, Address(R6, 0)); // R8 = aj = *ajp.
__ adds(R0, R0, Operand(R8));
__ adcs(R8, R1, Operand(0));
__ adc(R9, R2, Operand(0)); // R9:R8:R0 = 2*x*xi + c + aj.
// *ajp++ = low32(t) = R0
__ str(R0, Address(R6, kBytesPerBigIntDigit, Address::PostIndex));
// while (--n >= 0)
__ subs(TMP, TMP, Operand(1)); // --n
__ b(&loop, PL);
__ Bind(&done);
// uint32_t aj = *ajp
__ ldr(R0, Address(R6, 0));
// uint64_t t = aj + c
__ adds(R8, R8, Operand(R0));
__ adc(R9, R9, Operand(0));
// *ajp = low32(t) = R8
// *(ajp + 1) = high32(t) = R9
__ strd(R8, R9, R6, 0);
__ Bind(&x_zero);
__ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed.
__ Ret();
}
void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler,
Label* normal_ir_body) {
// No unsigned 64-bit / 32-bit divide instruction.
}
void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler,
Label* normal_ir_body) {
// Pseudo code:
// static int _mulMod(Uint32List args, Uint32List digits, int i) {
// uint32_t rho = args[_RHO]; // _RHO == 2.
// uint32_t d = digits[i >> 1]; // i is Smi.
// uint64_t t = rho*d;
// args[_MU] = t mod DIGIT_BASE; // _MU == 4.
// return 1;
// }
// R4 = args
__ ldr(R4, Address(SP, 2 * target::kWordSize)); // args
// R3 = rho = args[2]
__ ldr(R3, FieldAddress(R4, target::TypedData::data_offset() +
2 * kBytesPerBigIntDigit));
// R2 = digits[i >> 1]
__ ldrd(R0, R1, SP, 0 * target::kWordSize); // R0 = i as Smi, R1 = digits
__ add(R1, R1, Operand(R0, LSL, 1));
__ ldr(R2, FieldAddress(R1, target::TypedData::data_offset()));
// R1:R0 = t = rho*d
__ umull(R0, R1, R2, R3);
// args[4] = t mod DIGIT_BASE = low32(t)
__ str(R0, FieldAddress(R4, target::TypedData::data_offset() +
4 * kBytesPerBigIntDigit));
__ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed.
__ Ret();
}
// Check if the last argument is a double, jump to label 'is_smi' if smi
// (easy to convert to double), otherwise jump to label 'not_double_smi',
// Returns the last argument in R0.
static void TestLastArgumentIsDouble(Assembler* assembler,
Label* is_smi,
Label* not_double_smi) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ tst(R0, Operand(kSmiTagMask));
__ b(is_smi, EQ);
__ CompareClassId(R0, kDoubleCid, R1);
__ b(not_double_smi, NE);
// Fall through with Double in R0.
}
// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown
// type. Return true or false object in the register R0. Any NaN argument
// returns false. Any non-double arg1 causes control flow to fall through to the
// slow case (compiled method body).
static void CompareDoubles(Assembler* assembler,
Label* normal_ir_body,
Condition true_condition) {
if (TargetCPUFeatures::vfp_supported()) {
Label is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body);
// Both arguments are double, right operand is in R0.
__ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag);
__ Bind(&double_op);
__ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument.
__ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
__ vcmpd(D0, D1);
__ vmstat();
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
// Return false if D0 or D1 was NaN before checking true condition.
__ bx(LR, VS);
__ LoadObject(R0, CastHandle<Object>(TrueObject()), true_condition);
__ Ret();
__ Bind(&is_smi); // Convert R0 to a double.
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D1, S0);
__ b(&double_op); // Then do the comparison.
__ Bind(normal_ir_body);
}
}
void AsmIntrinsifier::Double_greaterThan(Assembler* assembler,
Label* normal_ir_body) {
CompareDoubles(assembler, normal_ir_body, HI);
}
void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler,
Label* normal_ir_body) {
CompareDoubles(assembler, normal_ir_body, CS);
}
void AsmIntrinsifier::Double_lessThan(Assembler* assembler,
Label* normal_ir_body) {
CompareDoubles(assembler, normal_ir_body, CC);
}
void AsmIntrinsifier::Double_equal(Assembler* assembler,
Label* normal_ir_body) {
CompareDoubles(assembler, normal_ir_body, EQ);
}
void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler,
Label* normal_ir_body) {
CompareDoubles(assembler, normal_ir_body, LS);
}
// Expects left argument to be double (receiver). Right argument is unknown.
// Both arguments are on stack.
static void DoubleArithmeticOperations(Assembler* assembler,
Label* normal_ir_body,
Token::Kind kind) {
if (TargetCPUFeatures::vfp_supported()) {
Label is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body);
// Both arguments are double, right operand is in R0.
__ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag);
__ Bind(&double_op);
__ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument.
__ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
switch (kind) {
case Token::kADD:
__ vaddd(D0, D0, D1);
break;
case Token::kSUB:
__ vsubd(D0, D0, D1);
break;
case Token::kMUL:
__ vmuld(D0, D0, D1);
break;
case Token::kDIV:
__ vdivd(D0, D0, D1);
break;
default:
UNREACHABLE();
}
const Class& double_class = DoubleClass();
__ TryAllocate(double_class, normal_ir_body, R0,
R1); // Result register.
__ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
__ Ret();
__ Bind(&is_smi); // Convert R0 to a double.
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D1, S0);
__ b(&double_op);
__ Bind(normal_ir_body);
}
}
void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) {
DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD);
}
void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) {
DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL);
}
void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) {
DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB);
}
void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) {
DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV);
}
// Left is double, right is integer (Mint or Smi)
void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler,
Label* normal_ir_body) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through;
// Only smis allowed.
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ tst(R0, Operand(kSmiTagMask));
__ b(normal_ir_body, NE);
// Is Smi.
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D1, S0);
__ ldr(R0, Address(SP, 1 * target::kWordSize));
__ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
__ vmuld(D0, D0, D1);
const Class& double_class = DoubleClass();
__ TryAllocate(double_class, normal_ir_body, R0,
R1); // Result register.
__ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
__ Ret();
__ Bind(normal_ir_body);
}
}
void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler,
Label* normal_ir_body) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ tst(R0, Operand(kSmiTagMask));
__ b(normal_ir_body, NE);
// Is Smi.
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D0, S0);
const Class& double_class = DoubleClass();
__ TryAllocate(double_class, normal_ir_body, R0,
R1); // Result register.
__ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
__ Ret();
__ Bind(normal_ir_body);
}
}
void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler,
Label* normal_ir_body) {
if (TargetCPUFeatures::vfp_supported()) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
__ vcmpd(D0, D0);
__ vmstat();
__ LoadObject(R0, CastHandle<Object>(FalseObject()), VC);
__ LoadObject(R0, CastHandle<Object>(TrueObject()), VS);
__ Ret();
}
}
void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler,
Label* normal_ir_body) {
if (TargetCPUFeatures::vfp_supported()) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
// R1 <- value[0:31], R2 <- value[32:63]
__ LoadFieldFromOffset(kWord, R1, R0, target::Double::value_offset());
__ LoadFieldFromOffset(kWord, R2, R0,
target::Double::value_offset() + target::kWordSize);
// If the low word isn't 0, then it isn't infinity.
__ cmp(R1, Operand(0));
__ LoadObject(R0, CastHandle<Object>(FalseObject()), NE);
__ bx(LR, NE); // Return if NE.
// Mask off the sign bit.
__ AndImmediate(R2, R2, 0x7FFFFFFF);
// Compare with +infinity.
__ CompareImmediate(R2, 0x7FF00000);
__ LoadObject(R0, CastHandle<Object>(FalseObject()), NE);
__ bx(LR, NE);
__ LoadObject(R0, CastHandle<Object>(TrueObject()));
__ Ret();
}
}
void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler,
Label* normal_ir_body) {
if (TargetCPUFeatures::vfp_supported()) {
Label is_false, is_true, is_zero;
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
__ vcmpdz(D0);
__ vmstat();
__ b(&is_false, VS); // NaN -> false.
__ b(&is_zero, EQ); // Check for negative zero.
__ b(&is_false, CS); // >= 0 -> false.
__ Bind(&is_true);
__ LoadObject(R0, CastHandle<Object>(TrueObject()));
__ Ret();
__ Bind(&is_false);
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
__ Ret();
__ Bind(&is_zero);
// Check for negative zero by looking at the sign bit.
__ vmovrrd(R0, R1, D0); // R1:R0 <- D0, so sign bit is in bit 31 of R1.
__ mov(R1, Operand(R1, LSR, 31));
__ tst(R1, Operand(1));
__ b(&is_true, NE); // Sign bit set.
__ b(&is_false);
}
}
void AsmIntrinsifier::DoubleToInteger(Assembler* assembler,
Label* normal_ir_body) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
// Explicit NaN check, since ARM gives an FPU exception if you try to
// convert NaN to an int.
__ vcmpd(D0, D0);
__ vmstat();
__ b(normal_ir_body, VS);
__ vcvtid(S0, D0);
__ vmovrs(R0, S0);
// Overflow is signaled with minint.
// Check for overflow and that it fits into Smi.
__ CompareImmediate(R0, 0xC0000000);
__ SmiTag(R0, PL);
__ bx(LR, PL);
__ Bind(normal_ir_body);
}
}
void AsmIntrinsifier::Double_hashCode(Assembler* assembler,
Label* normal_ir_body) {
// TODO(dartbug.com/31174): Convert this to a graph intrinsic.
if (!TargetCPUFeatures::vfp_supported()) return;
// Load double value and check that it isn't NaN, since ARM gives an
// FPU exception if you try to convert NaN to an int.
Label double_hash;
__ ldr(R1, Address(SP, 0 * target::kWordSize));
__ LoadDFromOffset(D0, R1, target::Double::value_offset() - kHeapObjectTag);
__ vcmpd(D0, D0);
__ vmstat();
__ b(&double_hash, VS);
// Convert double value to signed 32-bit int in R0.
__ vcvtid(S2, D0);
__ vmovrs(R0, S2);
// Tag the int as a Smi, making sure that it fits; this checks for
// overflow in the conversion from double to int. Conversion
// overflow is signalled by vcvt through clamping R0 to either
// INT32_MAX or INT32_MIN (saturation).
ASSERT(kSmiTag == 0 && kSmiTagShift == 1);
__ adds(R0, R0, Operand(R0));
__ b(normal_ir_body, VS);
// Compare the two double values. If they are equal, we return the
// Smi tagged result immediately as the hash code.
__ vcvtdi(D1, S2);
__ vcmpd(D0, D1);
__ vmstat();
__ bx(LR, EQ);
// Convert the double bits to a hash code that fits in a Smi.
__ Bind(&double_hash);
__ ldr(R0, FieldAddress(R1, target::Double::value_offset()));
__ ldr(R1, FieldAddress(R1, target::Double::value_offset() + 4));
__ eor(R0, R0, Operand(R1));
__ AndImmediate(R0, R0, target::kSmiMax);
__ SmiTag(R0);
__ Ret();
// Fall into the native C++ implementation.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::MathSqrt(Assembler* assembler, Label* normal_ir_body) {
if (TargetCPUFeatures::vfp_supported()) {
Label is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body);
// Argument is double and is in R0.
__ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag);
__ Bind(&double_op);
__ vsqrtd(D0, D1);
const Class& double_class = DoubleClass();
__ TryAllocate(double_class, normal_ir_body, R0,
R1); // Result register.
__ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag);
__ Ret();
__ Bind(&is_smi);
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D1, S0);
__ b(&double_op);
__ Bind(normal_ir_body);
}
}
// var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64;
// _state[kSTATE_LO] = state & _MASK_32;
// _state[kSTATE_HI] = state >> 32;
void AsmIntrinsifier::Random_nextState(Assembler* assembler,
Label* normal_ir_body) {
const Field& state_field = LookupMathRandomStateFieldOffset();
const int64_t a_int_value = AsmIntrinsifier::kRandomAValue;
// 'a_int_value' is a mask.
ASSERT(Utils::IsUint(32, a_int_value));
int32_t a_int32_value = static_cast<int32_t>(a_int_value);
// Receiver.
__ ldr(R0, Address(SP, 0 * target::kWordSize));
// Field '_state'.
__ ldr(R1, FieldAddress(R0, target::Field::OffsetOf(state_field)));
// Addresses of _state[0] and _state[1].
const int64_t disp_0 =
target::Instance::DataOffsetFor(kTypedDataUint32ArrayCid);
const int64_t disp_1 =
disp_0 + target::Instance::ElementSizeFor(kTypedDataUint32ArrayCid);
__ LoadImmediate(R0, a_int32_value);
__ LoadFromOffset(kWord, R2, R1, disp_0 - kHeapObjectTag);
__ LoadFromOffset(kWord, R3, R1, disp_1 - kHeapObjectTag);
__ mov(R8, Operand(0)); // Zero extend unsigned _state[kSTATE_HI].
// Unsigned 32-bit multiply and 64-bit accumulate into R8:R3.
__ umlal(R3, R8, R0, R2); // R8:R3 <- R8:R3 + R0 * R2.
__ StoreToOffset(kWord, R3, R1, disp_0 - kHeapObjectTag);
__ StoreToOffset(kWord, R8, R1, disp_1 - kHeapObjectTag);
ASSERT(target::ToRawSmi(0) == 0);
__ eor(R0, R0, Operand(R0));
__ Ret();
}
void AsmIntrinsifier::ObjectEquals(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ ldr(R1, Address(SP, 1 * target::kWordSize));
__ cmp(R0, Operand(R1));
__ LoadObject(R0, CastHandle<Object>(FalseObject()), NE);
__ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ);
__ Ret();
}
static void RangeCheck(Assembler* assembler,
Register val,
Register tmp,
intptr_t low,
intptr_t high,
Condition cc,
Label* target) {
__ AddImmediate(tmp, val, -low);
__ CompareImmediate(tmp, high - low);
__ b(target, cc);
}
const Condition kIfNotInRange = HI;
const Condition kIfInRange = LS;
static void JumpIfInteger(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfInRange, target);
}
static void JumpIfNotInteger(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfNotInRange, target);
}
static void JumpIfString(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
kIfInRange, target);
}
static void JumpIfNotString(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
kIfNotInRange, target);
}
// Return type quickly for simple types (not parameterized and not signature).
void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler,
Label* normal_ir_body) {
Label use_declaration_type, not_double, not_integer;
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ LoadClassIdMayBeSmi(R1, R0);
__ CompareImmediate(R1, kClosureCid);
__ b(normal_ir_body, EQ); // Instance is a closure.
__ CompareImmediate(R1, kNumPredefinedCids);
__ b(&use_declaration_type, HI);
__ CompareImmediate(R1, kDoubleCid);
__ b(&not_double, NE);
__ LoadIsolate(R0);
__ LoadFromOffset(kWord, R0, R0,
target::Isolate::cached_object_store_offset());
__ LoadFromOffset(kWord, R0, R0, target::ObjectStore::double_type_offset());
__ Ret();
__ Bind(&not_double);
JumpIfNotInteger(assembler, R1, R0, &not_integer);
__ LoadIsolate(R0);
__ LoadFromOffset(kWord, R0, R0,
target::Isolate::cached_object_store_offset());
__ LoadFromOffset(kWord, R0, R0, target::ObjectStore::int_type_offset());
__ Ret();
__ Bind(&not_integer);
JumpIfNotString(assembler, R1, R0, &use_declaration_type);
__ LoadIsolate(R0);
__ LoadFromOffset(kWord, R0, R0,
target::Isolate::cached_object_store_offset());
__ LoadFromOffset(kWord, R0, R0, target::ObjectStore::string_type_offset());
__ Ret();
__ Bind(&use_declaration_type);
__ LoadClassById(R2, R1);
__ ldrh(R3, FieldAddress(R2, target::Class::num_type_arguments_offset()));
__ CompareImmediate(R3, 0);
__ b(normal_ir_body, NE);
__ ldr(R0, FieldAddress(R2, target::Class::declaration_type_offset()));
__ CompareObject(R0, NullObject());
__ b(normal_ir_body, EQ);
__ Ret();
__ Bind(normal_ir_body);
}
// Compares cid1 and cid2 to see if they're syntactically equivalent. If this
// can be determined by this fast path, it jumps to either equal or not_equal,
// otherwise it jumps to normal_ir_body. May clobber cid1, cid2, and scratch.
static void EquivalentClassIds(Assembler* assembler,
Label* normal_ir_body,
Label* equal,
Label* not_equal,
Register cid1,
Register cid2,
Register scratch) {
Label different_cids, not_integer;
// Check if left hand side is a closure. Closures are handled in the runtime.
__ CompareImmediate(cid1, kClosureCid);
__ b(normal_ir_body, EQ);
// Check whether class ids match. If class ids don't match types may still be
// considered equivalent (e.g. multiple string implementation classes map to a
// single String type).
__ cmp(cid1, Operand(cid2));
__ b(&different_cids, NE);
// Types have the same class and neither is a closure type.
// Check if there are no type arguments. In this case we can return true.
// Otherwise fall through into the runtime to handle comparison.
__ LoadClassById(scratch, cid1);
__ ldrh(scratch,
FieldAddress(scratch, target::Class::num_type_arguments_offset()));
__ CompareImmediate(scratch, 0);
__ b(normal_ir_body, NE);
__ b(equal);
// Class ids are different. Check if we are comparing two string types (with
// different representations) or two integer types.
__ Bind(&different_cids);
__ CompareImmediate(cid1, kNumPredefinedCids);
__ b(not_equal, HI);
// Check if both are integer types.
JumpIfNotInteger(assembler, cid1, scratch, &not_integer);
// First type is an integer. Check if the second is an integer too.
// Otherwise types are unequiv because only integers have the same runtime
// type as other integers.
JumpIfInteger(assembler, cid2, scratch, equal);
__ b(not_equal);
__ Bind(&not_integer);
// Check if the first type is String. If it is not then types are not
// equivalent because they have different class ids and they are not strings
// or integers.
JumpIfNotString(assembler, cid1, scratch, not_equal);
// First type is String. Check if the second is a string too.
JumpIfString(assembler, cid2, scratch, equal);
// String types are only equivalent to other String types.
__ b(not_equal);
}
void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ LoadClassIdMayBeSmi(R1, R0);
__ ldr(R0, Address(SP, 1 * target::kWordSize));
__ LoadClassIdMayBeSmi(R2, R0);
Label equal, not_equal;
EquivalentClassIds(assembler, normal_ir_body, &equal, &not_equal, R1, R2, R0);
__ Bind(&equal);
__ LoadObject(R0, CastHandle<Object>(TrueObject()));
__ Ret();
__ Bind(&not_equal);
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::String_getHashCode(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ ldr(R0, FieldAddress(R0, target::String::hash_offset()));
__ cmp(R0, Operand(0));
__ bx(LR, NE);
// Hash not yet computed.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Type_getHashCode(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ ldr(R0, FieldAddress(R0, target::Type::hash_offset()));
__ cmp(R0, Operand(0));
__ bx(LR, NE);
// Hash not yet computed.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Type_equality(Assembler* assembler,
Label* normal_ir_body) {
Label equal, not_equal, equiv_cids, check_legacy;
__ ldm(IA, SP, (1 << R1 | 1 << R2));
__ cmp(R1, Operand(R2));
__ b(&equal, EQ);
// R1 might not be a Type object, so check that first (R2 should be though,
// since this is a method on the Type class).
__ LoadClassIdMayBeSmi(R0, R1);
__ CompareImmediate(R0, kTypeCid);
__ b(normal_ir_body, NE);
// Check if types are syntactically equal.
__ ldr(R3, FieldAddress(R1, target::Type::type_class_id_offset()));
__ SmiUntag(R3);
__ ldr(R4, FieldAddress(R2, target::Type::type_class_id_offset()));
__ SmiUntag(R4);
EquivalentClassIds(assembler, normal_ir_body, &equiv_cids, &not_equal, R3, R4,
R0);
// Check nullability.
__ Bind(&equiv_cids);
__ ldrb(R1, FieldAddress(R1, target::Type::nullability_offset()));
__ ldrb(R2, FieldAddress(R2, target::Type::nullability_offset()));
__ cmp(R1, Operand(R2));
__ b(&check_legacy, NE);
// Fall through to equal case if nullability is strictly equal.
__ Bind(&equal);
__ LoadObject(R0, CastHandle<Object>(TrueObject()));
__ Ret();
// At this point the nullabilities are different, so they can only be
// syntactically equivalent if they're both either kNonNullable or kLegacy.
// These are the two largest values of the enum, so we can just do a < check.
ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable &&
target::Nullability::kNonNullable < target::Nullability::kLegacy);
__ Bind(&check_legacy);
__ CompareImmediate(R1, target::Nullability::kNonNullable);
__ b(&not_equal, LT);
__ CompareImmediate(R2, target::Nullability::kNonNullable);
__ b(&equal, GE);
__ Bind(&not_equal);
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
__ Ret();
__ Bind(normal_ir_body);
}
void GenerateSubstringMatchesSpecialization(Assembler* assembler,
intptr_t receiver_cid,
intptr_t other_cid,
Label* return_true,
Label* return_false) {
__ SmiUntag(R1);
__ ldr(R8, FieldAddress(R0, target::String::length_offset())); // this.length
__ SmiUntag(R8);
__ ldr(R9,
FieldAddress(R2, target::String::length_offset())); // other.length
__ SmiUntag(R9);
// if (other.length == 0) return true;
__ cmp(R9, Operand(0));
__ b(return_true, EQ);
// if (start < 0) return false;
__ cmp(R1, Operand(0));
__ b(return_false, LT);
// if (start + other.length > this.length) return false;
__ add(R3, R1, Operand(R9));
__ cmp(R3, Operand(R8));
__ b(return_false, GT);
if (receiver_cid == kOneByteStringCid) {
__ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag);
__ add(R0, R0, Operand(R1));
} else {
ASSERT(receiver_cid == kTwoByteStringCid);
__ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag);
__ add(R0, R0, Operand(R1));
__ add(R0, R0, Operand(R1));
}
if (other_cid == kOneByteStringCid) {
__ AddImmediate(R2, target::OneByteString::data_offset() - kHeapObjectTag);
} else {
ASSERT(other_cid == kTwoByteStringCid);
__ AddImmediate(R2, target::TwoByteString::data_offset() - kHeapObjectTag);
}
// i = 0
__ LoadImmediate(R3, 0);
// do
Label loop;
__ Bind(&loop);
if (receiver_cid == kOneByteStringCid) {
__ ldrb(R4, Address(R0, 0)); // this.codeUnitAt(i + start)
} else {
__ ldrh(R4, Address(R0, 0)); // this.codeUnitAt(i + start)
}
if (other_cid == kOneByteStringCid) {
__ ldrb(TMP, Address(R2, 0)); // other.codeUnitAt(i)
} else {
__ ldrh(TMP, Address(R2, 0)); // other.codeUnitAt(i)
}
__ cmp(R4, Operand(TMP));
__ b(return_false, NE);
// i++, while (i < len)
__ AddImmediate(R3, 1);
__ AddImmediate(R0, receiver_cid == kOneByteStringCid ? 1 : 2);
__ AddImmediate(R2, other_cid == kOneByteStringCid ? 1 : 2);
__ cmp(R3, Operand(R9));
__ b(&loop, LT);
__ b(return_true);
}
// bool _substringMatches(int start, String other)
// This intrinsic handles a OneByteString or TwoByteString receiver with a
// OneByteString other.
void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler,
Label* normal_ir_body) {
Label return_true, return_false, try_two_byte;
__ ldr(R0, Address(SP, 2 * target::kWordSize)); // this
__ ldr(R1, Address(SP, 1 * target::kWordSize)); // start
__ ldr(R2, Address(SP, 0 * target::kWordSize)); // other
__ Push(R4); // Make ARGS_DESC_REG available.
__ tst(R1, Operand(kSmiTagMask));
__ b(normal_ir_body, NE); // 'start' is not a Smi.
__ CompareClassId(R2, kOneByteStringCid, R3);
__ b(normal_ir_body, NE);
__ CompareClassId(R0, kOneByteStringCid, R3);
__ b(&try_two_byte, NE);
GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid,
kOneByteStringCid, &return_true,
&return_false);
__ Bind(&try_two_byte);
__ CompareClassId(R0, kTwoByteStringCid, R3);
__ b(normal_ir_body, NE);
GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid,
kOneByteStringCid, &return_true,
&return_false);
__ Bind(&return_true);
__ Pop(R4);
__ LoadObject(R0, CastHandle<Object>(TrueObject()));
__ Ret();
__ Bind(&return_false);
__ Pop(R4);
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
__ Ret();
__ Bind(normal_ir_body);
__ Pop(R4);
}
void AsmIntrinsifier::Object_getHash(Assembler* assembler,
Label* normal_ir_body) {
UNREACHABLE();
}
void AsmIntrinsifier::Object_setHash(Assembler* assembler,
Label* normal_ir_body) {
UNREACHABLE();
}
void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler,
Label* normal_ir_body) {
Label try_two_byte_string;
__ ldr(R1, Address(SP, 0 * target::kWordSize)); // Index.
__ ldr(R0, Address(SP, 1 * target::kWordSize)); // String.
__ tst(R1, Operand(kSmiTagMask));
__ b(normal_ir_body, NE); // Index is not a Smi.
// Range check.
__ ldr(R2, FieldAddress(R0, target::String::length_offset()));
__ cmp(R1, Operand(R2));
__ b(normal_ir_body, CS); // Runtime throws exception.
__ CompareClassId(R0, kOneByteStringCid, R3);
__ b(&try_two_byte_string, NE);
__ SmiUntag(R1);
__ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag);
__ ldrb(R1, Address(R0, R1));
__ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols);
__ b(normal_ir_body, GE);
__ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset()));
__ AddImmediate(
R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize);
__ ldr(R0, Address(R0, R1, LSL, 2));
__ Ret();
__ Bind(&try_two_byte_string);
__ CompareClassId(R0, kTwoByteStringCid, R3);
__ b(normal_ir_body, NE);
ASSERT(kSmiTagShift == 1);
__ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag);
__ ldrh(R1, Address(R0, R1));
__ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols);
__ b(normal_ir_body, GE);
__ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset()));
__ AddImmediate(
R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize);
__ ldr(R0, Address(R0, R1, LSL, 2));
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(SP, 0 * target::kWordSize));
__ ldr(R0, FieldAddress(R0, target::String::length_offset()));
__ cmp(R0, Operand(target::ToRawSmi(0)));
__ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ);
__ LoadObject(R0, CastHandle<Object>(FalseObject()), NE);
__ Ret();
}
void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R1, Address(SP, 0 * target::kWordSize));
__ ldr(R0, FieldAddress(R1, target::String::hash_offset()));
__ cmp(R0, Operand(0));
__ bx(LR, NE); // Return if already computed.
__ ldr(R2, FieldAddress(R1, target::String::length_offset()));
Label done;
// If the string is empty, set the hash to 1, and return.
__ cmp(R2, Operand(target::ToRawSmi(0)));
__ b(&done, EQ);
__ SmiUntag(R2);
__ mov(R3, Operand(0));
__ AddImmediate(R8, R1,
target::OneByteString::data_offset() - kHeapObjectTag);
// R1: Instance of OneByteString.
// R2: String length, untagged integer.
// R3: Loop counter, untagged integer.
// R8: String data.
// R0: Hash code, untagged integer.
Label loop;
// Add to hash code: (hash_ is uint32)
// hash_ += ch;
// hash_ += hash_ << 10;
// hash_ ^= hash_ >> 6;
// Get one characters (ch).
__ Bind(&loop);
__ ldrb(TMP, Address(R8, 0));
// TMP: ch.
__ add(R3, R3, Operand(1));
__ add(R8, R8, Operand(1));
__ add(R0, R0, Operand(TMP));
__ add(R0, R0, Operand(R0, LSL, 10));
__ eor(R0, R0, Operand(R0, LSR, 6));
__ cmp(R3, Operand(R2));
__ b(&loop, NE);
// Finalize.
// hash_ += hash_ << 3;
// hash_ ^= hash_ >> 11;
// hash_ += hash_ << 15;
__ add(R0, R0, Operand(R0, LSL, 3));
__ eor(R0, R0, Operand(R0, LSR, 11));
__ add(R0, R0, Operand(R0, LSL, 15));
// hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1);
__ LoadImmediate(R2,
(static_cast<intptr_t>(1) << target::String::kHashBits) - 1);
__ and_(R0, R0, Operand(R2));
__ cmp(R0, Operand(0));
// return hash_ == 0 ? 1 : hash_;
__ Bind(&done);
__ mov(R0, Operand(1), EQ);
__ SmiTag(R0);
__ StoreIntoSmiField(FieldAddress(R1, target::String::hash_offset()), R0);
__ Ret();
}
// Allocates a _OneByteString or _TwoByteString. The content is not initialized.
// 'length-reg' (R2) contains the desired length as a _Smi or _Mint.
// Returns new string as tagged pointer in R0.
static void TryAllocateString(Assembler* assembler,
classid_t cid,
Label* ok,
Label* failure) {
ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid);
const Register length_reg = R2;
// _Mint length: call to runtime to produce error.
__ BranchIfNotSmi(length_reg, failure);
// Negative length: call to runtime to produce error.
__ cmp(length_reg, Operand(0));
__ b(failure, LT);
NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R0, cid));
NOT_IN_PRODUCT(__ MaybeTraceAllocation(R0, failure));
__ mov(R8, Operand(length_reg)); // Save the length register.
if (cid == kOneByteStringCid) {
__ SmiUntag(length_reg);
} else {
// Untag length and multiply by element size -> no-op.
}
const intptr_t fixed_size_plus_alignment_padding =
target::String::InstanceSize() +
target::ObjectAlignment::kObjectAlignment - 1;
__ AddImmediate(length_reg, fixed_size_plus_alignment_padding);
__ bic(length_reg, length_reg,
Operand(target::ObjectAlignment::kObjectAlignment - 1));
__ ldr(R0, Address(THR, target::Thread::top_offset()));
// length_reg: allocation size.
__ adds(R1, R0, Operand(length_reg));
__ b(failure, CS); // Fail on unsigned overflow.
// Check if the allocation fits into the remaining space.
// R0: potential new object start.
// R1: potential next object start.
// R2: allocation size.
__ ldr(TMP, Address(THR, target::Thread::end_offset()));
__ cmp(R1, Operand(TMP));
__ b(failure, CS);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ str(R1, Address(THR, target::Thread::top_offset()));
__ AddImmediate(R0, kHeapObjectTag);
// Initialize the tags.
// R0: new object start as a tagged pointer.
// R1: new object end address.
// R2: allocation size.
{
const intptr_t shift = target::ObjectLayout::kTagBitsSizeTagPos -
target::ObjectAlignment::kObjectAlignmentLog2;
__ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag);
__ mov(R3, Operand(R2, LSL, shift), LS);
__ mov(R3, Operand(0), HI);
// Get the class index and insert it into the tags.
// R3: size and bit tags.
const uint32_t tags =
target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0);
__ LoadImmediate(TMP, tags);
__ orr(R3, R3, Operand(TMP));
__ str(R3, FieldAddress(R0, target::Object::tags_offset())); // Store tags.
}
// Set the length field using the saved length (R8).
__ StoreIntoObjectNoBarrier(
R0, FieldAddress(R0, target::String::length_offset()), R8);
// Clear hash.
__ LoadImmediate(TMP, 0);
__ StoreIntoObjectNoBarrier(
R0, FieldAddress(R0, target::String::hash_offset()), TMP);
__ b(ok);
}
// Arg0: OneByteString (receiver).
// Arg1: Start index as Smi.
// Arg2: End index as Smi.
// The indexes must be valid.
void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler,
Label* normal_ir_body) {
const intptr_t kStringOffset = 2 * target::kWordSize;
const intptr_t kStartIndexOffset = 1 * target::kWordSize;
const intptr_t kEndIndexOffset = 0 * target::kWordSize;
Label ok;
__ ldr(R2, Address(SP, kEndIndexOffset));
__ ldr(TMP, Address(SP, kStartIndexOffset));
__ orr(R3, R2, Operand(TMP));
__ tst(R3, Operand(kSmiTagMask));
__ b(normal_ir_body, NE); // 'start', 'end' not Smi.
__ sub(R2, R2, Operand(TMP));
TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body);
__ Bind(&ok);
// R0: new string as tagged pointer.
// Copy string.
__ ldr(R3, Address(SP, kStringOffset));
__ ldr(R1, Address(SP, kStartIndexOffset));
__ SmiUntag(R1);
__ add(R3, R3, Operand(R1));
// Calculate start address and untag (- 1).
__ AddImmediate(R3, target::OneByteString::data_offset() - 1);
// R3: Start address to copy from (untagged).
// R1: Untagged start index.
__ ldr(R2, Address(SP, kEndIndexOffset));
__ SmiUntag(R2);
__ sub(R2, R2, Operand(R1));
// R3: Start address to copy from (untagged).
// R2: Untagged number of bytes to copy.
// R0: Tagged result string.
// R8: Pointer into R3.
// R1: Pointer into R0.
// TMP: Scratch register.
Label loop, done;
__ cmp(R2, Operand(0));
__ b(&done, LE);
__ mov(R8, Operand(R3));
__ mov(R1, Operand(R0));
__ Bind(&loop);
__ ldrb(TMP, Address(R8, 1, Address::PostIndex));
__ sub(R2, R2, Operand(1));
__ cmp(R2, Operand(0));
__ strb(TMP, FieldAddress(R1, target::OneByteString::data_offset()));
__ add(R1, R1, Operand(1));
__ b(&loop, GT);
__ Bind(&done);
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value.
__ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index.
__ ldr(R0, Address(SP, 2 * target::kWordSize)); // OneByteString.
__ SmiUntag(R1);
__ SmiUntag(R2);
__ AddImmediate(R3, R0,
target::OneByteString::data_offset() - kHeapObjectTag);
__ strb(R2, Address(R3, R1));
__ Ret();
}
void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value.
__ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index.
__ ldr(R0, Address(SP, 2 * target::kWordSize)); // TwoByteString.
// Untag index and multiply by element size -> no-op.
__ SmiUntag(R2);
__ AddImmediate(R3, R0,
target::TwoByteString::data_offset() - kHeapObjectTag);
__ strh(R2, Address(R3, R1));
__ Ret();
}
void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length.
Label ok;
TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body);
__ Bind(&ok);
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length.
Label ok;
TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body);
__ Bind(&ok);
__ Ret();
__ Bind(normal_ir_body);
}
// TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
static void StringEquality(Assembler* assembler,
Label* normal_ir_body,
intptr_t string_cid) {
Label is_true, is_false, loop;
__ ldr(R0, Address(SP, 1 * target::kWordSize)); // This.
__ ldr(R1, Address(SP, 0 * target::kWordSize)); // Other.
// Are identical?
__ cmp(R0, Operand(R1));
__ b(&is_true, EQ);
// Is other OneByteString?
__ tst(R1, Operand(kSmiTagMask));
__ b(normal_ir_body, EQ);
__ CompareClassId(R1, string_cid, R2);
__ b(normal_ir_body, NE);
// Have same length?
__ ldr(R2, FieldAddress(R0, target::String::length_offset()));
__ ldr(R3, FieldAddress(R1, target::String::length_offset()));
__ cmp(R2, Operand(R3));
__ b(&is_false, NE);
// Check contents, no fall-through possible.
// TODO(zra): try out other sequences.
ASSERT((string_cid == kOneByteStringCid) ||
(string_cid == kTwoByteStringCid));
const intptr_t offset = (string_cid == kOneByteStringCid)
? target::OneByteString::data_offset()
: target::TwoByteString::data_offset();
__ AddImmediate(R0, offset - kHeapObjectTag);
__ AddImmediate(R1, offset - kHeapObjectTag);
__ SmiUntag(R2);
__ Bind(&loop);
__ AddImmediate(R2, -1);
__ cmp(R2, Operand(0));
__ b(&is_true, LT);
if (string_cid == kOneByteStringCid) {
__ ldrb(R3, Address(R0));
__ ldrb(R4, Address(R1));
__ AddImmediate(R0, 1);
__ AddImmediate(R1, 1);
} else if (string_cid == kTwoByteStringCid) {
__ ldrh(R3, Address(R0));
__ ldrh(R4, Address(R1));
__ AddImmediate(R0, 2);
__ AddImmediate(R1, 2);
} else {
UNIMPLEMENTED();
}
__ cmp(R3, Operand(R4));
__ b(&is_false, NE);
__ b(&loop);
__ Bind(&is_true);
__ LoadObject(R0, CastHandle<Object>(TrueObject()));
__ Ret();
__ Bind(&is_false);
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
__ Ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::OneByteString_equality(Assembler* assembler,
Label* normal_ir_body) {
StringEquality(assembler, normal_ir_body, kOneByteStringCid);
}
void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler,
Label* normal_ir_body) {
StringEquality(assembler, normal_ir_body, kTwoByteStringCid);
}
void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler,
Label* normal_ir_body,
bool sticky) {
if (FLAG_interpret_irregexp) return;
static const intptr_t kRegExpParamOffset = 2 * target::kWordSize;
static const intptr_t kStringParamOffset = 1 * target::kWordSize;
// start_index smi is located at offset 0.
// Incoming registers:
// R0: Function. (Will be reloaded with the specialized matcher function.)
// R4: Arguments descriptor. (Will be preserved.)
// R9: Unknown. (Must be GC safe on tail call.)
// Load the specialized function pointer into R0. Leverage the fact the
// string CIDs as well as stored function pointers are in sequence.
__ ldr(R2, Address(SP, kRegExpParamOffset));
__ ldr(R1, Address(SP, kStringParamOffset));
__ LoadClassId(R1, R1);
__ AddImmediate(R1, -kOneByteStringCid);
__ add(R1, R2, Operand(R1, LSL, target::kWordSizeLog2));
__ ldr(R0, FieldAddress(R1, target::RegExp::function_offset(kOneByteStringCid,
sticky)));
// Registers are now set up for the lazy compile stub. It expects the function
// in R0, the argument descriptor in R4, and IC-Data in R9.
__ eor(R9, R9, Operand(R9));
// Tail-call the function.
__ ldr(CODE_REG, FieldAddress(R0, target::Function::code_offset()));
__ Branch(FieldAddress(R0, target::Function::entry_point_offset()));
}
// On stack: user tag (+0).
void AsmIntrinsifier::UserTag_makeCurrent(Assembler* assembler,
Label* normal_ir_body) {
// R1: Isolate.
__ LoadIsolate(R1);
// R0: Current user tag.
__ ldr(R0, Address(R1, target::Isolate::current_tag_offset()));
// R2: UserTag.
__ ldr(R2, Address(SP, +0 * target::kWordSize));
// Set target::Isolate::current_tag_.
__ str(R2, Address(R1, target::Isolate::current_tag_offset()));
// R2: UserTag's tag.
__ ldr(R2, FieldAddress(R2, target::UserTag::tag_offset()));
// Set target::Isolate::user_tag_.
__ str(R2, Address(R1, target::Isolate::user_tag_offset()));
__ Ret();
}
void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler,
Label* normal_ir_body) {
__ LoadIsolate(R0);
__ ldr(R0, Address(R0, target::Isolate::default_tag_offset()));
__ Ret();
}
void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler,
Label* normal_ir_body) {
__ LoadIsolate(R0);
__ ldr(R0, Address(R0, target::Isolate::current_tag_offset()));
__ Ret();
}
void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler,
Label* normal_ir_body) {
#if !defined(SUPPORT_TIMELINE)
__ LoadObject(R0, CastHandle<Object>(FalseObject()));
__ Ret();
#else
// Load TimelineStream*.
__ ldr(R0, Address(THR, target::Thread::dart_stream_offset()));
// Load uintptr_t from TimelineStream*.
__ ldr(R0, Address(R0, target::TimelineStream::enabled_offset()));
__ cmp(R0, Operand(0));
__ LoadObject(R0, CastHandle<Object>(TrueObject()), NE);
__ LoadObject(R0, CastHandle<Object>(FalseObject()), EQ);
__ Ret();
#endif
}
void AsmIntrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler,
Label* normal_ir_body) {
__ LoadObject(R0, NullObject());
__ str(R0, Address(THR, target::Thread::async_stack_trace_offset()));
__ Ret();
}
void AsmIntrinsifier::SetAsyncThreadStackTrace(Assembler* assembler,
Label* normal_ir_body) {
__ ldr(R0, Address(THR, target::Thread::async_stack_trace_offset()));
__ LoadObject(R0, NullObject());
__ Ret();
}
#undef __
} // namespace compiler
} // namespace dart
#endif // defined(TARGET_ARCH_ARM)