blob: 28e44710d6a4ff4ed9a9f3c99a2704c9662e2175 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library tree_ir_builder;
import '../dart2jslib.dart' as dart2js;
import '../elements/elements.dart';
import '../cps_ir/cps_ir_nodes.dart' as cps_ir;
import 'tree_ir_nodes.dart';
/**
* Builder translates from CPS-based IR to direct-style Tree.
*
* A call `Invoke(fun, cont, args)`, where cont is a singly-referenced
* non-exit continuation `Cont(v, body)` is translated into a direct-style call
* whose value is bound in the continuation body:
*
* `LetVal(v, Invoke(fun, args), body)`
*
* and the continuation definition is eliminated. A similar translation is
* applied to continuation invocations where the continuation is
* singly-referenced, though such invocations should not appear in optimized
* IR.
*
* A call `Invoke(fun, cont, args)`, where cont is multiply referenced, is
* translated into a call followed by a jump with an argument:
*
* `Jump L(Invoke(fun, args))`
*
* and the continuation is translated into a named block that takes an
* argument:
*
* `LetLabel(L, v, body)`
*
* Block arguments are later replaced with data flow during the Tree-to-Tree
* translation out of SSA. Jumps are eliminated during the Tree-to-Tree
* control-flow recognition.
*
* Otherwise, the output of Builder looks very much like the input. In
* particular, intermediate values and blocks used for local control flow are
* still all named.
*/
class Builder extends cps_ir.Visitor<Node> {
final dart2js.Compiler compiler;
/// Maps variable/parameter elements to the Tree variables that represent it.
final Map<Element, List<Variable>> element2variables =
<Element,List<Variable>>{};
/// Like [element2variables], except for closure variables. Closure variables
/// are not subject to SSA, so at most one variable is used per local.
final Map<Local, Variable> local2closure = <Local, Variable>{};
// Continuations with more than one use are replaced with Tree labels. This
// is the mapping from continuations to labels.
final Map<cps_ir.Continuation, Label> labels = <cps_ir.Continuation, Label>{};
FunctionDefinition function;
cps_ir.Continuation returnContinuation;
Builder parent;
Builder(this.compiler);
Builder.inner(Builder parent)
: this.parent = parent,
compiler = parent.compiler;
/// Variable used in [buildPhiAssignments] as a temporary when swapping
/// variables.
Variable phiTempVar;
Variable getClosureVariable(Local local) {
if (local.executableContext != function.element) {
return parent.getClosureVariable(local);
}
Variable variable = local2closure[local];
if (variable == null) {
variable = new Variable(function, local);
local2closure[local] = variable;
}
return variable;
}
/// Obtains the variable representing the given primitive. Returns null for
/// primitives that have no reference and do not need a variable.
Variable getVariable(cps_ir.Primitive primitive) {
if (primitive.registerIndex == null) {
return null; // variable is unused
}
List<Variable> variables = element2variables[primitive.hint];
if (variables == null) {
variables = <Variable>[];
element2variables[primitive.hint] = variables;
}
while (variables.length <= primitive.registerIndex) {
variables.add(new Variable(function, primitive.hint));
}
return variables[primitive.registerIndex];
}
/// Obtains a reference to the tree Variable corresponding to the IR primitive
/// referred to by [reference].
/// This increments the reference count for the given variable, so the
/// returned expression must be used in the tree.
Expression getVariableReference(cps_ir.Reference reference) {
Variable variable = getVariable(reference.definition);
if (variable == null) {
compiler.internalError(
compiler.currentElement,
"Reference to ${reference.definition} has no register");
}
++variable.readCount;
return variable;
}
FunctionDefinition build(cps_ir.FunctionDefinition node) {
visit(node);
return function;
}
List<Expression> translateArguments(List<cps_ir.Reference> args) {
return new List<Expression>.generate(args.length,
(int index) => getVariableReference(args[index]));
}
List<Variable> translatePhiArguments(List<cps_ir.Reference> args) {
return new List<Variable>.generate(args.length,
(int index) => getVariableReference(args[index]));
}
Statement buildContinuationAssignment(
cps_ir.Parameter parameter,
Expression argument,
Statement buildRest()) {
Variable variable = getVariable(parameter);
Statement assignment;
if (variable == null) {
assignment = new ExpressionStatement(argument, null);
} else {
assignment = new Assign(variable, argument, null);
}
assignment.next = buildRest();
return assignment;
}
/// Simultaneously assigns each argument to the corresponding parameter,
/// then continues at the statement created by [buildRest].
Statement buildPhiAssignments(
List<cps_ir.Parameter> parameters,
List<Variable> arguments,
Statement buildRest()) {
assert(parameters.length == arguments.length);
// We want a parallel assignment to all parameters simultaneously.
// Since we do not have parallel assignments in dart_tree, we must linearize
// the assignments without attempting to read a previously-overwritten
// value. For example {x,y = y,x} cannot be linearized to {x = y; y = x},
// for this we must introduce a temporary variable: {t = x; x = y; y = t}.
// [rightHand] is the inverse of [arguments], that is, it maps variables
// to the assignments on which is occurs as the right-hand side.
Map<Variable, List<int>> rightHand = <Variable, List<int>>{};
for (int i = 0; i < parameters.length; i++) {
Variable param = getVariable(parameters[i]);
Variable arg = arguments[i];
if (param == null || param == arg) {
continue; // No assignment necessary.
}
List<int> list = rightHand[arg];
if (list == null) {
rightHand[arg] = list = <int>[];
}
list.add(i);
}
Statement first, current;
void addAssignment(Variable dst, Variable src) {
if (first == null) {
first = current = new Assign(dst, src, null);
} else {
current = current.next = new Assign(dst, src, null);
}
}
List<Variable> assignmentSrc = new List<Variable>(parameters.length);
List<bool> done = new List<bool>(parameters.length);
void visitAssignment(int i) {
if (done[i] == true) {
return;
}
Variable param = getVariable(parameters[i]);
Variable arg = arguments[i];
if (param == null || param == arg) {
return; // No assignment necessary.
}
if (assignmentSrc[i] != null) {
// Cycle found; store argument in a temporary variable.
// The temporary will then be used as right-hand side when the
// assignment gets added.
if (assignmentSrc[i] != phiTempVar) { // Only move to temporary once.
assignmentSrc[i] = phiTempVar;
addAssignment(phiTempVar, arg);
}
return;
}
assignmentSrc[i] = arg;
List<int> paramUses = rightHand[param];
if (paramUses != null) {
for (int useIndex in paramUses) {
visitAssignment(useIndex);
}
}
addAssignment(param, assignmentSrc[i]);
done[i] = true;
}
for (int i = 0; i < parameters.length; i++) {
if (done[i] == null) {
visitAssignment(i);
}
}
if (first == null) {
first = buildRest();
} else {
current.next = buildRest();
}
return first;
}
visitNode(cps_ir.Node node) => throw "Unhandled node: $node";
Expression visitFunctionDefinition(cps_ir.FunctionDefinition node) {
List<Variable> parameters = <Variable>[];
function = new FunctionDefinition(node.element, parameters,
null, node.localConstants, node.defaultParameterValues);
returnContinuation = node.returnContinuation;
for (cps_ir.Parameter p in node.parameters) {
Variable parameter = getVariable(p);
assert(parameter != null);
++parameter.writeCount; // Being a parameter counts as a write.
parameters.add(parameter);
}
phiTempVar = new Variable(function, null);
function.body = visit(node.body);
return null;
}
Statement visitLetPrim(cps_ir.LetPrim node) {
Variable variable = getVariable(node.primitive);
// Don't translate unused primitives.
if (variable == null) return visit(node.body);
Node definition = visit(node.primitive);
// visitPrimitive returns a Statement without successor if it cannot occur
// in expression context (currently only the case for FunctionDeclarations).
if (definition is Statement) {
definition.next = visit(node.body);
return definition;
} else {
return new Assign(variable, definition, visit(node.body));
}
}
Statement visitLetCont(cps_ir.LetCont node) {
Label label;
if (node.continuation.hasMultipleUses) {
label = new Label();
labels[node.continuation] = label;
}
Statement body = visit(node.body);
// The continuation's body is not always translated directly here because
// it may have been already translated:
// * For singly-used continuations, the continuation's body is
// translated at the site of the continuation invocation.
// * For recursive continuations, there is a single non-recursive
// invocation. The continuation's body is translated at the site
// of the non-recursive continuation invocation.
// See visitInvokeContinuation for the implementation.
if (label == null || node.continuation.isRecursive) return body;
return new LabeledStatement(label, body, visit(node.continuation.body));
}
Statement visitInvokeStatic(cps_ir.InvokeStatic node) {
// Calls are translated to direct style.
List<Expression> arguments = translateArguments(node.arguments);
Expression invoke = new InvokeStatic(node.target, node.selector, arguments);
return continueWithExpression(node.continuation, invoke);
}
Statement visitInvokeMethod(cps_ir.InvokeMethod node) {
Expression receiver = getVariableReference(node.receiver);
List<Expression> arguments = translateArguments(node.arguments);
Expression invoke = new InvokeMethod(receiver, node.selector, arguments);
return continueWithExpression(node.continuation, invoke);
}
Statement visitInvokeSuperMethod(cps_ir.InvokeSuperMethod node) {
List<Expression> arguments = translateArguments(node.arguments);
Expression invoke = new InvokeSuperMethod(node.selector, arguments);
return continueWithExpression(node.continuation, invoke);
}
Statement visitConcatenateStrings(cps_ir.ConcatenateStrings node) {
List<Expression> arguments = translateArguments(node.arguments);
Expression concat = new ConcatenateStrings(arguments);
return continueWithExpression(node.continuation, concat);
}
Statement continueWithExpression(cps_ir.Reference continuation,
Expression expression) {
cps_ir.Continuation cont = continuation.definition;
if (cont == returnContinuation) {
return new Return(expression);
} else {
assert(cont.parameters.length == 1);
Function nextBuilder = cont.hasExactlyOneUse ?
() => visit(cont.body) : () => new Break(labels[cont]);
return buildContinuationAssignment(cont.parameters.single, expression,
nextBuilder);
}
}
Expression visitGetClosureVariable(cps_ir.GetClosureVariable node) {
return getClosureVariable(node.variable);
}
Statement visitSetClosureVariable(cps_ir.SetClosureVariable node) {
Variable variable = getClosureVariable(node.variable);
Expression value = getVariableReference(node.value);
return new Assign(variable, value, visit(node.body),
isDeclaration: node.isDeclaration);
}
Statement visitDeclareFunction(cps_ir.DeclareFunction node) {
Variable variable = getClosureVariable(node.variable);
FunctionDefinition function = makeSubFunction(node.definition);
return new FunctionDeclaration(variable, function, visit(node.body));
}
Statement visitTypeOperator(cps_ir.TypeOperator node) {
Expression receiver = getVariableReference(node.receiver);
Expression concat = new TypeOperator(receiver, node.type, node.operator);
return continueWithExpression(node.continuation, concat);
}
Statement visitInvokeConstructor(cps_ir.InvokeConstructor node) {
List<Expression> arguments = translateArguments(node.arguments);
Expression invoke =
new InvokeConstructor(node.type, node.target, node.selector, arguments);
return continueWithExpression(node.continuation, invoke);
}
Statement visitInvokeContinuation(cps_ir.InvokeContinuation node) {
// Invocations of the return continuation are translated to returns.
// Other continuation invocations are replaced with assignments of the
// arguments to formal parameter variables, followed by the body if
// the continuation is singly reference or a break if it is multiply
// referenced.
cps_ir.Continuation cont = node.continuation.definition;
if (cont == returnContinuation) {
assert(node.arguments.length == 1);
return new Return(getVariableReference(node.arguments.single));
} else {
List<Expression> arguments = translatePhiArguments(node.arguments);
return buildPhiAssignments(cont.parameters, arguments,
() {
// Translate invocations of recursive and non-recursive
// continuations differently.
// * Non-recursive continuations
// - If there is one use, translate the continuation body
// inline at the invocation site.
// - If there are multiple uses, translate to Break.
// * Recursive continuations
// - There is a single non-recursive invocation. Translate
// the continuation body inline as a labeled loop at the
// invocation site.
// - Translate the recursive invocations to Continue.
if (cont.isRecursive) {
return node.isRecursive
? new Continue(labels[cont])
: new WhileTrue(labels[cont], visit(cont.body));
} else {
return cont.hasExactlyOneUse
? visit(cont.body)
: new Break(labels[cont]);
}
});
}
}
Statement visitBranch(cps_ir.Branch node) {
Expression condition = visit(node.condition);
Statement thenStatement, elseStatement;
cps_ir.Continuation cont = node.trueContinuation.definition;
assert(cont.parameters.isEmpty);
thenStatement =
cont.hasExactlyOneUse ? visit(cont.body) : new Break(labels[cont]);
cont = node.falseContinuation.definition;
assert(cont.parameters.isEmpty);
elseStatement =
cont.hasExactlyOneUse ? visit(cont.body) : new Break(labels[cont]);
return new If(condition, thenStatement, elseStatement);
}
Expression visitConstant(cps_ir.Constant node) {
return new Constant(node.expression, node.value);
}
Expression visitThis(cps_ir.This node) {
return new This();
}
Expression visitReifyTypeVar(cps_ir.ReifyTypeVar node) {
return new ReifyTypeVar(node.typeVariable);
}
Expression visitLiteralList(cps_ir.LiteralList node) {
return new LiteralList(
node.type,
translateArguments(node.values));
}
Expression visitLiteralMap(cps_ir.LiteralMap node) {
return new LiteralMap(
node.type,
translateArguments(node.keys),
translateArguments(node.values));
}
FunctionDefinition makeSubFunction(cps_ir.FunctionDefinition function) {
return new Builder.inner(this).build(function);
}
Node visitCreateFunction(cps_ir.CreateFunction node) {
FunctionDefinition def = makeSubFunction(node.definition);
FunctionSignature signature = node.definition.element.functionSignature;
bool hasReturnType = !signature.type.returnType.treatAsDynamic;
if (hasReturnType) {
// This function cannot occur in expression context.
// The successor will be filled in by visitLetPrim.
return new FunctionDeclaration(getVariable(node), def, null);
} else {
return new FunctionExpression(def);
}
}
Expression visitParameter(cps_ir.Parameter node) {
// Continuation parameters are not visited (continuations themselves are
// not visited yet).
compiler.internalError(compiler.currentElement, 'Unexpected IR node.');
return null;
}
Expression visitContinuation(cps_ir.Continuation node) {
// Until continuations with multiple uses are supported, they are not
// visited.
compiler.internalError(compiler.currentElement, 'Unexpected IR node.');
return null;
}
Expression visitIsTrue(cps_ir.IsTrue node) {
return getVariableReference(node.value);
}
}