blob: 2051c54dfb3a5fd70a8530379205a9458feb816e [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// IrNodes are kept in a separate library to have precise control over their
// dependencies on other parts of the system.
library dart2js.ir_nodes;
import '../dart2jslib.dart' as dart2js show Constant, ConstructedConstant,
StringConstant, ListConstant, MapConstant;
import '../elements/elements.dart';
import '../universe/universe.dart' show Selector, SelectorKind;
import '../dart_types.dart' show DartType, GenericType;
import 'const_expression.dart';
import '../helpers/helpers.dart';
abstract class Node {
static int hashCount = 0;
final int hashCode = hashCount = (hashCount + 1) & 0x3fffffff;
/// A pointer to the parent node. Is null until set by optimization passes.
Node parent;
accept(Visitor visitor);
}
abstract class Expression extends Node {
Expression plug(Expression expr) => throw 'impossible';
}
/// The base class of things that variables can refer to: primitives,
/// continuations, function and continuation parameters, etc.
abstract class Definition extends Node {
// The head of a linked-list of occurrences, in no particular order.
Reference firstRef = null;
bool get hasAtMostOneUse => firstRef == null || firstRef.next == null;
bool get hasExactlyOneUse => firstRef != null && firstRef.next == null;
bool get hasAtLeastOneUse => firstRef != null;
bool get hasMultipleUses => !hasAtMostOneUse;
void substituteFor(Definition other) {
if (other.firstRef == null) return;
Reference previous, current = other.firstRef;
do {
current.definition = this;
previous = current;
current = current.next;
} while (current != null);
previous.next = firstRef;
if (firstRef != null) firstRef.previous = previous;
firstRef = other.firstRef;
}
}
/// An expression that cannot throw or diverge and has no side-effects.
/// All primitives are named using the identity of the [Primitive] object.
///
/// Primitives may allocate objects, this is not considered side-effect here.
///
/// Although primitives may not mutate state, they may depend on state.
abstract class Primitive extends Definition {
/// The [VariableElement] or [ParameterElement] from which the primitive
/// binding originated.
Element hint;
/// Register in which the variable binding this primitive can be allocated.
/// Separate register spaces are used for primitives with different [element].
/// Assigned by [RegisterAllocator], is null before that phase.
int registerIndex;
/// Use the given element as a hint for naming this primitive.
///
/// Has no effect if this primitive already has a non-null [element].
void useElementAsHint(Element hint) {
if (this.hint == null) {
this.hint = hint;
}
}
}
/// Operands to invocations and primitives are always variables. They point to
/// their definition and are doubly-linked into a list of occurrences.
class Reference {
Definition definition;
Reference previous = null;
Reference next = null;
/// A pointer to the parent node. Is null until set by optimization passes.
Node parent;
Reference(this.definition) {
next = definition.firstRef;
if (next != null) next.previous = this;
definition.firstRef = this;
}
/// Unlinks this reference from the list of occurrences.
void unlink() {
if (previous == null) {
assert(definition.firstRef == this);
definition.firstRef = next;
} else {
previous.next = next;
}
if (next != null) next.previous = previous;
}
}
/// Binding a value (primitive or constant): 'let val x = V in E'. The bound
/// value is in scope in the body.
/// During one-pass construction a LetVal with an empty body is used to
/// represent one-level context 'let val x = V in []'.
class LetPrim extends Expression implements InteriorNode {
final Primitive primitive;
Expression body = null;
LetPrim(this.primitive);
Expression plug(Expression expr) {
assert(body == null);
return body = expr;
}
accept(Visitor visitor) => visitor.visitLetPrim(this);
}
/// Binding a continuation: 'let cont k(v) = E in E'. The bound continuation
/// is in scope in the body and the continuation parameter is in scope in the
/// continuation body.
/// During one-pass construction a LetCont with an empty continuation body is
/// used to represent the one-level context 'let cont k(v) = [] in E'.
class LetCont extends Expression implements InteriorNode {
final Continuation continuation;
Expression body;
LetCont(this.continuation, this.body);
Expression plug(Expression expr) {
assert(continuation.body == null);
return continuation.body = expr;
}
accept(Visitor visitor) => visitor.visitLetCont(this);
}
abstract class Invoke {
Selector get selector;
List<Reference> get arguments;
}
/// Represents a node with a child node, which can be accessed through the
/// `body` member. A typical usage is when removing a node from the CPS graph:
///
/// Node child = node.body;
/// InteriorNode parent = node.parent;
///
/// child.parent = parent;
/// parent.body = child;
abstract class InteriorNode implements Node {
Expression body;
}
/// Invoke a static function or static field getter/setter.
class InvokeStatic extends Expression implements Invoke {
/// [FunctionElement] or [FieldElement].
final Entity target;
/**
* The selector encodes how the function is invoked: number of positional
* arguments, names used in named arguments. This information is required
* to build the [StaticCallSiteTypeInformation] for the inference graph.
*/
final Selector selector;
final Reference continuation;
final List<Reference> arguments;
InvokeStatic(this.target, this.selector, Continuation cont,
List<Definition> args)
: continuation = new Reference(cont),
arguments = _referenceList(args) {
assert(target is ErroneousElement || selector.name == target.name);
}
accept(Visitor visitor) => visitor.visitInvokeStatic(this);
}
/// Invoke a method, operator, getter, setter, or index getter/setter.
/// Converting a method to a function object is treated as a getter invocation.
class InvokeMethod extends Expression implements Invoke {
final Reference receiver;
final Selector selector;
final Reference continuation;
final List<Reference> arguments;
InvokeMethod(Definition receiver,
this.selector,
Continuation cont,
List<Definition> args)
: receiver = new Reference(receiver),
continuation = new Reference(cont),
arguments = _referenceList(args) {
assert(selector != null);
assert(selector.kind == SelectorKind.CALL ||
selector.kind == SelectorKind.OPERATOR ||
(selector.kind == SelectorKind.GETTER && arguments.isEmpty) ||
(selector.kind == SelectorKind.SETTER && arguments.length == 1) ||
(selector.kind == SelectorKind.INDEX && arguments.length == 1) ||
(selector.kind == SelectorKind.INDEX && arguments.length == 2));
}
accept(Visitor visitor) => visitor.visitInvokeMethod(this);
}
/// Invoke a method, operator, getter, setter, or index getter/setter from the
/// super class in tail position.
class InvokeSuperMethod extends Expression implements Invoke {
final Selector selector;
final Reference continuation;
final List<Reference> arguments;
InvokeSuperMethod(this.selector,
Continuation cont,
List<Definition> args)
: continuation = new Reference(cont),
arguments = _referenceList(args) {
assert(selector != null);
assert(selector.kind == SelectorKind.CALL ||
selector.kind == SelectorKind.OPERATOR ||
(selector.kind == SelectorKind.GETTER && arguments.isEmpty) ||
(selector.kind == SelectorKind.SETTER && arguments.length == 1) ||
(selector.kind == SelectorKind.INDEX && arguments.length == 1) ||
(selector.kind == SelectorKind.INDEX && arguments.length == 2));
}
accept(Visitor visitor) => visitor.visitInvokeSuperMethod(this);
}
/// Non-const call to a constructor. The [target] may be a generative
/// constructor, factory, or redirecting factory.
class InvokeConstructor extends Expression implements Invoke {
final DartType type;
final FunctionElement target;
final Reference continuation;
final List<Reference> arguments;
final Selector selector;
/// The class being instantiated. This is the same as `target.enclosingClass`
/// and `type.element`.
ClassElement get targetClass => target.enclosingElement;
/// True if this is an invocation of a factory constructor.
bool get isFactory => target.isFactoryConstructor;
InvokeConstructor(this.type,
this.target,
this.selector,
Continuation cont,
List<Definition> args)
: continuation = new Reference(cont),
arguments = _referenceList(args) {
assert(target.isErroneous || target.isConstructor);
assert(target.isErroneous || type.isDynamic ||
type.element == target.enclosingElement);
}
accept(Visitor visitor) => visitor.visitInvokeConstructor(this);
}
/// "as" casts and "is" checks.
// We might want to turn "is"-checks into a [Primitive] as it can never diverge.
// But then we need to special-case for is-checks with an erroneous .type as
// these will throw.
class TypeOperator extends Expression {
final Reference receiver;
final DartType type;
final Reference continuation;
final String operator;
TypeOperator(this.operator,
Primitive receiver,
this.type,
Continuation cont)
: this.receiver = new Reference(receiver),
this.continuation = new Reference(cont) {
assert(operator == "is" || operator == "as");
}
accept(Visitor visitor) => visitor.visitTypeOperator(this);
}
/// Invoke [toString] on each argument and concatenate the results.
class ConcatenateStrings extends Expression {
final Reference continuation;
final List<Reference> arguments;
ConcatenateStrings(Continuation cont, List<Definition> args)
: continuation = new Reference(cont),
arguments = _referenceList(args);
accept(Visitor visitor) => visitor.visitConcatenateStrings(this);
}
/// Gets the value from a closure variable. The identity of the variable is
/// determined by a [Local].
///
/// Closure variables can be seen as ref cells that are not first-class values.
/// A [LetPrim] with a [GetClosureVariable] can then be seen as:
///
/// let prim p = ![variable] in [body]
///
class GetClosureVariable extends Primitive {
final Local variable;
GetClosureVariable(this.variable) {
assert(variable != null);
}
accept(Visitor visitor) => visitor.visitGetClosureVariable(this);
}
/// Assign or declare a closure variable. The identity of the variable is
/// determined by a [Local].
///
/// Closure variables can be seen as ref cells that are not first-class values.
/// If [isDeclaration], this can seen as a let binding:
///
/// let [variable] = ref [value] in [body]
///
/// And otherwise, it can be seen as a dereferencing assignment:
///
/// { ![variable] := [value]; [body] }
///
/// Closure variables without a declaring [SetClosureVariable] are implicitly
/// declared at the entry to the [variable]'s enclosing function.
class SetClosureVariable extends Expression implements InteriorNode {
final Local variable;
final Reference value;
Expression body;
/// If true, this declares a new copy of the closure variable. If so, all
/// uses of the closure variable must occur in the [body].
///
/// There can be at most one declaration per closure variable. If there is no
/// declaration, only one copy exists (per function execution). It is best to
/// avoid declaring closure variables if it is not necessary.
final bool isDeclaration;
SetClosureVariable(this.variable, Primitive value,
{this.isDeclaration : false })
: this.value = new Reference(value) {
assert(variable != null);
}
accept(Visitor visitor) => visitor.visitSetClosureVariable(this);
Expression plug(Expression expr) {
assert(body == null);
return body = expr;
}
}
/// Create a potentially recursive function and store it in a closure variable.
/// The function can access itself using [GetClosureVariable] on [variable].
/// There must not exist a [SetClosureVariable] to [variable].
///
/// This can be seen as a let rec binding:
///
/// let rec [variable] = [definition] in [body]
///
class DeclareFunction extends Expression implements InteriorNode {
final Local variable;
final FunctionDefinition definition;
Expression body;
DeclareFunction(this.variable, this.definition);
Expression plug(Expression expr) {
assert(body == null);
return body = expr;
}
accept(Visitor visitor) => visitor.visitDeclareFunction(this);
}
/// Invoke a continuation in tail position.
class InvokeContinuation extends Expression {
final Reference continuation;
final List<Reference> arguments;
// An invocation of a continuation is recursive if it occurs in the body of
// the continuation itself.
bool isRecursive;
InvokeContinuation(Continuation cont, List<Definition> args,
{recursive: false})
: continuation = new Reference(cont),
arguments = _referenceList(args),
isRecursive = recursive {
assert(cont.parameters == null ||
cont.parameters.length == args.length);
if (recursive) cont.isRecursive = true;
}
accept(Visitor visitor) => visitor.visitInvokeContinuation(this);
}
/// The base class of things which can be tested and branched on.
abstract class Condition extends Node {
}
class IsTrue extends Condition {
final Reference value;
IsTrue(Definition val) : value = new Reference(val);
accept(Visitor visitor) => visitor.visitIsTrue(this);
}
/// Choose between a pair of continuations based on a condition value.
class Branch extends Expression {
final Condition condition;
final Reference trueContinuation;
final Reference falseContinuation;
Branch(this.condition, Continuation trueCont, Continuation falseCont)
: trueContinuation = new Reference(trueCont),
falseContinuation = new Reference(falseCont);
accept(Visitor visitor) => visitor.visitBranch(this);
}
class Constant extends Primitive {
final ConstExp expression;
final dart2js.Constant value;
Constant(this.expression, this.value);
accept(Visitor visitor) => visitor.visitConstant(this);
}
class This extends Primitive {
This();
accept(Visitor visitor) => visitor.visitThis(this);
}
/// Reify the given type variable as a [Type].
/// This depends on the current binding of 'this'.
class ReifyTypeVar extends Primitive {
final TypeVariableElement typeVariable;
ReifyTypeVar(this.typeVariable);
dart2js.Constant get constant => null;
accept(Visitor visitor) => visitor.visitReifyTypeVar(this);
}
class LiteralList extends Primitive {
/// The List type being created; this is not the type argument.
final GenericType type;
final List<Reference> values;
LiteralList(this.type, List<Primitive> values)
: this.values = _referenceList(values);
accept(Visitor visitor) => visitor.visitLiteralList(this);
}
class LiteralMap extends Primitive {
final GenericType type;
final List<Reference> keys;
final List<Reference> values;
LiteralMap(this.type, List<Primitive> keys, List<Primitive> values)
: this.keys = _referenceList(keys),
this.values = _referenceList(values);
accept(Visitor visitor) => visitor.visitLiteralMap(this);
}
/// Create a non-recursive function.
class CreateFunction extends Primitive {
final FunctionDefinition definition;
CreateFunction(this.definition);
accept(Visitor visitor) => visitor.visitCreateFunction(this);
}
class Parameter extends Primitive {
Parameter(Element element) {
super.hint = element;
}
accept(Visitor visitor) => visitor.visitParameter(this);
}
/// Continuations are normally bound by 'let cont'. A continuation with one
/// parameter and no body is used to represent a function's return continuation.
/// The return continuation is bound by the Function, not by 'let cont'.
class Continuation extends Definition implements InteriorNode {
final List<Parameter> parameters;
Expression body = null;
// A continuation is recursive if it has any recursive invocations.
bool isRecursive = false;
bool get isReturnContinuation => body == null;
Continuation(this.parameters);
Continuation.retrn() : parameters = <Parameter>[new Parameter(null)];
accept(Visitor visitor) => visitor.visitContinuation(this);
}
/// A function definition, consisting of parameters and a body. The parameters
/// include a distinguished continuation parameter.
class FunctionDefinition extends Node implements InteriorNode {
final FunctionElement element;
final Continuation returnContinuation;
final List<Parameter> parameters;
Expression body;
final List<ConstDeclaration> localConstants;
/// Values for optional parameters.
final List<ConstExp> defaultParameterValues;
FunctionDefinition(this.element, this.returnContinuation,
this.parameters, this.body, this.localConstants,
this.defaultParameterValues);
accept(Visitor visitor) => visitor.visitFunctionDefinition(this);
}
List<Reference> _referenceList(List<Definition> definitions) {
return definitions.map((e) => new Reference(e)).toList();
}
abstract class Visitor<T> {
T visit(Node node) => node.accept(this);
// Abstract classes.
T visitNode(Node node) => null;
T visitExpression(Expression node) => visitNode(node);
T visitDefinition(Definition node) => visitNode(node);
T visitPrimitive(Primitive node) => visitDefinition(node);
T visitCondition(Condition node) => visitNode(node);
// Concrete classes.
T visitFunctionDefinition(FunctionDefinition node) => visitNode(node);
// Expressions.
T visitLetPrim(LetPrim node) => visitExpression(node);
T visitLetCont(LetCont node) => visitExpression(node);
T visitInvokeStatic(InvokeStatic node) => visitExpression(node);
T visitInvokeContinuation(InvokeContinuation node) => visitExpression(node);
T visitInvokeMethod(InvokeMethod node) => visitExpression(node);
T visitInvokeSuperMethod(InvokeSuperMethod node) => visitExpression(node);
T visitInvokeConstructor(InvokeConstructor node) => visitExpression(node);
T visitConcatenateStrings(ConcatenateStrings node) => visitExpression(node);
T visitBranch(Branch node) => visitExpression(node);
T visitTypeOperator(TypeOperator node) => visitExpression(node);
T visitSetClosureVariable(SetClosureVariable node) => visitExpression(node);
T visitDeclareFunction(DeclareFunction node) => visitExpression(node);
// Definitions.
T visitLiteralList(LiteralList node) => visitPrimitive(node);
T visitLiteralMap(LiteralMap node) => visitPrimitive(node);
T visitConstant(Constant node) => visitPrimitive(node);
T visitThis(This node) => visitPrimitive(node);
T visitReifyTypeVar(ReifyTypeVar node) => visitPrimitive(node);
T visitCreateFunction(CreateFunction node) => visitPrimitive(node);
T visitGetClosureVariable(GetClosureVariable node) => visitPrimitive(node);
T visitParameter(Parameter node) => visitPrimitive(node);
T visitContinuation(Continuation node) => visitDefinition(node);
// Conditions.
T visitIsTrue(IsTrue node) => visitCondition(node);
}
/// Recursively visits the entire CPS term, and calls abstract `process*`
/// (i.e. `processLetPrim`) functions in pre-order.
abstract class RecursiveVisitor extends Visitor {
// Ensures that RecursiveVisitor contains overrides for all relevant nodes.
// As a rule of thumb, nodes with structure to traverse should be overridden
// with the appropriate visits in this class (for example, visitLetCont),
// while leaving other nodes for subclasses (i.e., visitLiteralList).
visitNode(Node node) {
throw "RecursiveVisitor is stale, add missing visit overrides";
}
processReference(Reference ref) {}
processFunctionDefinition(FunctionDefinition node) {}
visitFunctionDefinition(FunctionDefinition node) {
processFunctionDefinition(node);
node.parameters.forEach(visitParameter);
visit(node.body);
}
// Expressions.
processLetPrim(LetPrim node) {}
visitLetPrim(LetPrim node) {
processLetPrim(node);
visit(node.primitive);
visit(node.body);
}
processLetCont(LetCont node) {}
visitLetCont(LetCont node) {
processLetCont(node);
visit(node.continuation);
visit(node.body);
}
processInvokeStatic(InvokeStatic node) {}
visitInvokeStatic(InvokeStatic node) {
processInvokeStatic(node);
processReference(node.continuation);
node.arguments.forEach(processReference);
}
processInvokeContinuation(InvokeContinuation node) {}
visitInvokeContinuation(InvokeContinuation node) {
processInvokeContinuation(node);
processReference(node.continuation);
node.arguments.forEach(processReference);
}
processInvokeMethod(InvokeMethod node) {}
visitInvokeMethod(InvokeMethod node) {
processInvokeMethod(node);
processReference(node.receiver);
processReference(node.continuation);
node.arguments.forEach(processReference);
}
processInvokeSuperMethod(InvokeSuperMethod node) {}
visitInvokeSuperMethod(InvokeSuperMethod node) {
processInvokeSuperMethod(node);
processReference(node.continuation);
node.arguments.forEach(processReference);
}
processInvokeConstructor(InvokeConstructor node) {}
visitInvokeConstructor(InvokeConstructor node) {
processInvokeConstructor(node);
processReference(node.continuation);
node.arguments.forEach(processReference);
}
processConcatenateStrings(ConcatenateStrings node) {}
visitConcatenateStrings(ConcatenateStrings node) {
processConcatenateStrings(node);
processReference(node.continuation);
node.arguments.forEach(processReference);
}
processBranch(Branch node) {}
visitBranch(Branch node) {
processBranch(node);
processReference(node.trueContinuation);
processReference(node.falseContinuation);
visit(node.condition);
}
processTypeOperator(TypeOperator node) {}
visitTypeOperator(TypeOperator node) {
processTypeOperator(node);
processReference(node.continuation);
processReference(node.receiver);
}
processSetClosureVariable(SetClosureVariable node) {}
visitSetClosureVariable(SetClosureVariable node) {
processSetClosureVariable(node);
processReference(node.value);
visit(node.body);
}
processDeclareFunction(DeclareFunction node) {}
visitDeclareFunction(DeclareFunction node) {
processDeclareFunction(node);
visit(node.definition);
visit(node.body);
}
// Definitions.
processLiteralList(LiteralList node) {}
visitLiteralList(LiteralList node) {
processLiteralList(node);
node.values.forEach(processReference);
}
processLiteralMap(LiteralMap node) {}
visitLiteralMap(LiteralMap node) {
processLiteralMap(node);
for (int i = 0; i < node.keys.length; i++) {
processReference(node.keys[i]);
processReference(node.values[i]);
}
}
processConstant(Constant node) {}
visitConstant(Constant node) => processConstant(node);
processThis(This node) {}
visitThis(This node) => processThis(node);
processReifyTypeVar(ReifyTypeVar node) {}
visitReifyTypeVar(ReifyTypeVar node) => processReifyTypeVar(node);
processCreateFunction(CreateFunction node) {}
visitCreateFunction(CreateFunction node) {
processCreateFunction(node);
visit(node.definition);
}
processGetClosureVariable(GetClosureVariable node) {}
visitGetClosureVariable(GetClosureVariable node) =>
processGetClosureVariable(node);
processParameter(Parameter node) {}
visitParameter(Parameter node) => processParameter(node);
processContinuation(Continuation node) {}
visitContinuation(Continuation node) {
processContinuation(node);
node.parameters.forEach(visitParameter);
visit(node.body);
}
// Conditions.
processIsTrue(IsTrue node) {}
visitIsTrue(IsTrue node) {
processIsTrue(node);
processReference(node.value);
}
}
/// Keeps track of currently unused register indices.
class RegisterArray {
int nextIndex = 0;
final List<int> freeStack = <int>[];
/// Returns an index that is currently unused.
int makeIndex() {
if (freeStack.isEmpty) {
return nextIndex++;
} else {
return freeStack.removeLast();
}
}
void releaseIndex(int index) {
freeStack.add(index);
}
}
/// Assigns indices to each primitive in the IR such that primitives that are
/// live simultaneously never get assigned the same index.
/// This information is used by the dart tree builder to generate fewer
/// redundant variables.
/// Currently, the liveness analysis is very simple and is often inadequate
/// for removing all of the redundant variables.
class RegisterAllocator extends Visitor {
/// Separate register spaces for each source-level variable/parameter.
/// Note that null is used as key for primitives without elements.
final Map<Element, RegisterArray> elementRegisters =
<Element, RegisterArray>{};
RegisterArray getRegisterArray(Element element) {
RegisterArray registers = elementRegisters[element];
if (registers == null) {
registers = new RegisterArray();
elementRegisters[element] = registers;
}
return registers;
}
void allocate(Primitive primitive) {
if (primitive.registerIndex == null) {
primitive.registerIndex = getRegisterArray(primitive.hint).makeIndex();
}
}
void release(Primitive primitive) {
// Do not share indices for temporaries as this may obstruct inlining.
if (primitive.hint == null) return;
if (primitive.registerIndex != null) {
getRegisterArray(primitive.hint).releaseIndex(primitive.registerIndex);
}
}
void visitReference(Reference reference) {
allocate(reference.definition);
}
void visitFunctionDefinition(FunctionDefinition node) {
visit(node.body);
node.parameters.forEach(allocate); // Assign indices to unused parameters.
elementRegisters.clear();
}
void visitLetPrim(LetPrim node) {
visit(node.body);
release(node.primitive);
visit(node.primitive);
}
void visitLetCont(LetCont node) {
visit(node.continuation);
visit(node.body);
}
void visitInvokeStatic(InvokeStatic node) {
node.arguments.forEach(visitReference);
}
void visitInvokeContinuation(InvokeContinuation node) {
node.arguments.forEach(visitReference);
}
void visitInvokeMethod(InvokeMethod node) {
visitReference(node.receiver);
node.arguments.forEach(visitReference);
}
void visitInvokeSuperMethod(InvokeSuperMethod node) {
node.arguments.forEach(visitReference);
}
void visitInvokeConstructor(InvokeConstructor node) {
node.arguments.forEach(visitReference);
}
void visitConcatenateStrings(ConcatenateStrings node) {
node.arguments.forEach(visitReference);
}
void visitBranch(Branch node) {
visit(node.condition);
}
void visitLiteralList(LiteralList node) {
node.values.forEach(visitReference);
}
void visitLiteralMap(LiteralMap node) {
for (int i = 0; i < node.keys.length; ++i) {
visitReference(node.keys[i]);
visitReference(node.values[i]);
}
}
void visitTypeOperator(TypeOperator node) {
visitReference(node.receiver);
}
void visitConstant(Constant node) {
}
void visitThis(This node) {
}
void visitReifyTypeVar(ReifyTypeVar node) {
}
void visitCreateFunction(CreateFunction node) {
new RegisterAllocator().visit(node.definition);
}
void visitGetClosureVariable(GetClosureVariable node) {
}
void visitSetClosureVariable(SetClosureVariable node) {
visit(node.body);
visitReference(node.value);
}
void visitDeclareFunction(DeclareFunction node) {
new RegisterAllocator().visit(node.definition);
visit(node.body);
}
void visitParameter(Parameter node) {
throw "Parameters should not be visited by RegisterAllocator";
}
void visitContinuation(Continuation node) {
visit(node.body);
// Arguments get allocated left-to-right, so we release parameters
// right-to-left. This increases the likelihood that arguments can be
// transferred without intermediate assignments.
for (int i = node.parameters.length - 1; i >= 0; --i) {
release(node.parameters[i]);
}
}
void visitIsTrue(IsTrue node) {
visitReference(node.value);
}
}