blob: 2f8540cb9fa5428c6b7073714caebb526cb4660a [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'package:_fe_analyzer_shared/src/flow_analysis/flow_analysis.dart';
import 'package:_fe_analyzer_shared/src/flow_analysis/flow_analysis_operations.dart'
as shared;
import 'package:_fe_analyzer_shared/src/type_inference/type_analysis_result.dart'
as shared;
import 'package:_fe_analyzer_shared/src/type_inference/type_analysis_result.dart';
import 'package:_fe_analyzer_shared/src/type_inference/type_analyzer.dart'
as shared;
import 'package:_fe_analyzer_shared/src/type_inference/type_analyzer.dart';
import 'package:_fe_analyzer_shared/src/type_inference/type_analyzer_operations.dart'
as shared;
import 'package:analyzer/dart/analysis/features.dart';
import 'package:analyzer/dart/ast/syntactic_entity.dart';
import 'package:analyzer/dart/ast/token.dart';
import 'package:analyzer/dart/ast/visitor.dart';
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/scope.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/dart/element/type_provider.dart';
import 'package:analyzer/diagnostic/diagnostic.dart';
import 'package:analyzer/error/error.dart';
import 'package:analyzer/error/listener.dart';
import 'package:analyzer/source/source.dart';
import 'package:analyzer/src/dart/ast/ast.dart';
import 'package:analyzer/src/dart/ast/extensions.dart';
import 'package:analyzer/src/dart/ast/utilities.dart';
import 'package:analyzer/src/dart/element/element.dart';
import 'package:analyzer/src/dart/element/extensions.dart';
import 'package:analyzer/src/dart/element/generic_inferrer.dart';
import 'package:analyzer/src/dart/element/inheritance_manager3.dart';
import 'package:analyzer/src/dart/element/scope.dart';
import 'package:analyzer/src/dart/element/type.dart';
import 'package:analyzer/src/dart/element/type_constraint_gatherer.dart';
import 'package:analyzer/src/dart/element/type_provider.dart';
import 'package:analyzer/src/dart/element/type_schema.dart';
import 'package:analyzer/src/dart/element/type_system.dart';
import 'package:analyzer/src/dart/resolver/annotation_resolver.dart';
import 'package:analyzer/src/dart/resolver/assignment_expression_resolver.dart';
import 'package:analyzer/src/dart/resolver/binary_expression_resolver.dart';
import 'package:analyzer/src/dart/resolver/body_inference_context.dart';
import 'package:analyzer/src/dart/resolver/constructor_reference_resolver.dart';
import 'package:analyzer/src/dart/resolver/extension_member_resolver.dart';
import 'package:analyzer/src/dart/resolver/flow_analysis_visitor.dart';
import 'package:analyzer/src/dart/resolver/for_resolver.dart';
import 'package:analyzer/src/dart/resolver/function_expression_invocation_resolver.dart';
import 'package:analyzer/src/dart/resolver/function_expression_resolver.dart';
import 'package:analyzer/src/dart/resolver/function_reference_resolver.dart';
import 'package:analyzer/src/dart/resolver/instance_creation_expression_resolver.dart';
import 'package:analyzer/src/dart/resolver/invocation_inference_helper.dart';
import 'package:analyzer/src/dart/resolver/invocation_inferrer.dart';
import 'package:analyzer/src/dart/resolver/lexical_lookup.dart';
import 'package:analyzer/src/dart/resolver/list_pattern_resolver.dart';
import 'package:analyzer/src/dart/resolver/postfix_expression_resolver.dart';
import 'package:analyzer/src/dart/resolver/prefix_expression_resolver.dart';
import 'package:analyzer/src/dart/resolver/prefixed_identifier_resolver.dart';
import 'package:analyzer/src/dart/resolver/property_element_resolver.dart';
import 'package:analyzer/src/dart/resolver/record_literal_resolver.dart';
import 'package:analyzer/src/dart/resolver/scope.dart';
import 'package:analyzer/src/dart/resolver/shared_type_analyzer.dart';
import 'package:analyzer/src/dart/resolver/simple_identifier_resolver.dart';
import 'package:analyzer/src/dart/resolver/this_lookup.dart';
import 'package:analyzer/src/dart/resolver/type_property_resolver.dart';
import 'package:analyzer/src/dart/resolver/typed_literal_resolver.dart';
import 'package:analyzer/src/dart/resolver/variable_declaration_resolver.dart';
import 'package:analyzer/src/dart/resolver/yield_statement_resolver.dart';
import 'package:analyzer/src/diagnostic/diagnostic.dart';
import 'package:analyzer/src/error/base_or_final_type_verifier.dart';
import 'package:analyzer/src/error/bool_expression_verifier.dart';
import 'package:analyzer/src/error/codes.dart';
import 'package:analyzer/src/error/dead_code_verifier.dart';
import 'package:analyzer/src/error/nullable_dereference_verifier.dart';
import 'package:analyzer/src/error/super_formal_parameters_verifier.dart';
import 'package:analyzer/src/generated/element_resolver.dart';
import 'package:analyzer/src/generated/engine.dart';
import 'package:analyzer/src/generated/error_detection_helpers.dart';
import 'package:analyzer/src/generated/static_type_analyzer.dart';
import 'package:analyzer/src/generated/utilities_dart.dart';
import 'package:analyzer/src/generated/variable_type_provider.dart';
import 'package:analyzer/src/task/inference_error.dart';
import 'package:analyzer/src/util/ast_data_extractor.dart';
typedef SharedMatchContext = shared.MatchContext<AstNode, Expression,
DartPattern, DartType, PromotableElement>;
typedef SharedPatternField
= shared.RecordPatternField<PatternFieldImpl, DartPatternImpl>;
/// A function which returns [NonPromotionReason]s that various types are not
/// promoted.
typedef WhyNotPromotedGetter = Map<DartType, NonPromotionReason> Function();
/// The context shared between different units of the same library.
final class LibraryResolutionContext {
/// The declarations for [VariableElement]s.
final Map<VariableElement, VariableDeclaration> _variableNodes =
Map.identity();
}
/// Instances of the class `ResolverVisitor` are used to resolve the nodes
/// within a single compilation unit.
class ResolverVisitor extends ThrowingAstVisitor<void>
with
ErrorDetectionHelpers,
TypeAnalyzer<
AstNode,
Statement,
Expression,
PromotableElement,
DartType,
DartPattern,
void,
DartType,
TypeParameterElement,
InterfaceType,
InterfaceElement> {
/// Debug-only: if `true`, manipulations of [_rewriteStack] performed by
/// [popRewrite], [pushRewrite], and [replaceExpression] will be printed.
static const bool _debugRewriteStack = false;
/// The element for the library containing the compilation unit being visited.
final LibraryElementImpl definingLibrary;
/// The context shared between different units of the same library.
final LibraryResolutionContext libraryResolutionContext;
/// If the resolver visitor is visiting a switch statement and patterns
/// support is disabled, the tracker that determines whether the switch is
/// exhaustive.
SwitchExhaustiveness? legacySwitchExhaustiveness;
@override
final TypeAnalyzerOptions options;
@override
late final SharedTypeAnalyzerErrors errors =
SharedTypeAnalyzerErrors(errorReporter);
/// The source representing the compilation unit being visited.
final Source source;
/// The object used to access the types from the core library.
final TypeProviderImpl typeProvider;
@override
final ErrorReporter errorReporter;
/// The analysis options used by this resolver.
final AnalysisOptionsImpl analysisOptions;
/// The class containing the AST nodes being visited,
/// or `null` if we are not in the scope of a class.
InterfaceElement? enclosingClass;
/// The element representing the extension containing the AST nodes being
/// visited, or `null` if we are not in the scope of an extension.
ExtensionElement? enclosingExtension;
/// The element representing the function containing the current node, or
/// `null` if the current node is not contained in a function.
ExecutableElement? _enclosingFunction;
/// The element that can be referenced by the `augmented` expression.
AugmentableElement? _enclosingAugmentation;
/// The manager for the inheritance mappings.
final InheritanceManager3 inheritance;
/// The feature set that is enabled for the current unit.
final FeatureSet _featureSet;
/// Helper for checking that subtypes of a base or final type must be base,
/// final, or sealed.
late final BaseOrFinalTypeVerifier baseOrFinalTypeVerifier;
/// Helper for checking expression that should have the `bool` type.
late final BoolExpressionVerifier boolExpressionVerifier;
/// Helper for checking potentially nullable dereferences.
late final NullableDereferenceVerifier nullableDereferenceVerifier;
/// Helper for extension method resolution.
late final ExtensionMemberResolver extensionResolver;
/// Helper for resolving properties on types.
late final TypePropertyResolver typePropertyResolver;
/// Helper for resolving [ListLiteral] and [SetOrMapLiteral].
late final TypedLiteralResolver _typedLiteralResolver;
late final AssignmentExpressionResolver _assignmentExpressionResolver;
late final BinaryExpressionResolver _binaryExpressionResolver;
late final ConstructorReferenceResolver _constructorReferenceResolver =
ConstructorReferenceResolver(this);
late final FunctionExpressionInvocationResolver
_functionExpressionInvocationResolver;
late final FunctionExpressionResolver _functionExpressionResolver;
late final ForResolver _forResolver;
late final PostfixExpressionResolver _postfixExpressionResolver;
late final PrefixedIdentifierResolver _prefixedIdentifierResolver;
late final PrefixExpressionResolver _prefixExpressionResolver;
late final VariableDeclarationResolver _variableDeclarationResolver;
late final YieldStatementResolver _yieldStatementResolver;
late final NullSafetyDeadCodeVerifier nullSafetyDeadCodeVerifier;
late final InvocationInferenceHelper inferenceHelper;
/// The object used to resolve the element associated with the current node.
late final ElementResolver elementResolver;
/// The object used to compute the type associated with the current node.
late final StaticTypeAnalyzer typeAnalyzer;
/// The type system in use during resolution.
@override
final TypeSystemImpl typeSystem;
/// Inference context information for the current function body, if the
/// current node is inside a function body.
BodyInferenceContext? _bodyContext;
/// If a class, or mixin, is being resolved, the type of the class.
/// Otherwise `null`.
DartType? _thisType;
final FlowAnalysisHelper flowAnalysis;
/// A comment before a function should be resolved in the context of the
/// function. But when we incrementally resolve a comment, we don't want to
/// resolve the whole function.
///
/// So, this flag is set to `true`, when just context of the function should
/// be built and the comment resolved.
bool resolveOnlyCommentInFunctionBody = false;
/// Stack of expressions which we have not yet finished visiting, that should
/// terminate a null-shorting expression.
///
/// The stack contains a `null` sentinel as its first entry so that it is
/// always safe to use `.last` to examine the top of the stack.
final List<Expression?> _unfinishedNullShorts = [null];
late final FunctionReferenceResolver _functionReferenceResolver;
late final InstanceCreationExpressionResolver
_instanceCreationExpressionResolver =
InstanceCreationExpressionResolver(this);
late final SimpleIdentifierResolver _simpleIdentifierResolver =
SimpleIdentifierResolver(this);
late final PropertyElementResolver _propertyElementResolver =
PropertyElementResolver(this);
late final RecordLiteralResolver _recordLiteralResolver =
RecordLiteralResolver(resolver: this);
late final AnnotationResolver _annotationResolver = AnnotationResolver(this);
late final ListPatternResolver listPatternResolver =
ListPatternResolver(this);
final bool genericMetadataIsEnabled;
/// Stack for obtaining rewritten expressions. Prior to visiting an
/// expression, a caller may push the expression on this stack; if
/// [replaceExpression] is later called, it will update the top of the stack
/// to point to the rewritten expression.
///
/// The stack sometimes contains `null`s. These account for situations where
/// it's necessary to push a value onto the stack to balance a later pop, but
/// there is no suitable expression to push.
final List<ExpressionImpl?> _rewriteStack = [];
/// Debug-only expando mapping AST nodes to the nodes they were replaced with
/// by [replaceExpression]. This is used by [dispatchExpression] as a sanity
/// check to make sure the expression it pops off the [_rewriteStack] is
/// actually correct.
late final Expando<AstNode> _replacements = Expando();
/// Initialize a newly created visitor to resolve the nodes in an AST node.
///
/// The [definingLibrary] is the element for the library containing the node
/// being visited. The [source] is the source representing the compilation
/// unit containing the node being visited. The [typeProvider] is the object
/// used to access the types from the core library. The [errorListener] is the
/// error listener that will be informed of any errors that are found during
/// resolution.
///
// TODO(paulberry): make [featureSet] a required parameter (this will be a
// breaking change).
ResolverVisitor(
InheritanceManager3 inheritanceManager,
LibraryElementImpl definingLibrary,
LibraryResolutionContext libraryResolutionContext,
Source source,
TypeProvider typeProvider,
AnalysisErrorListener errorListener,
{required FeatureSet featureSet,
required AnalysisOptionsImpl analysisOptions,
required FlowAnalysisHelper flowAnalysisHelper})
: this._(
inheritanceManager,
definingLibrary,
libraryResolutionContext,
source,
definingLibrary.typeSystem,
typeProvider as TypeProviderImpl,
errorListener,
featureSet,
analysisOptions,
flowAnalysisHelper);
ResolverVisitor._(
this.inheritance,
this.definingLibrary,
this.libraryResolutionContext,
this.source,
this.typeSystem,
this.typeProvider,
AnalysisErrorListener errorListener,
FeatureSet featureSet,
this.analysisOptions,
this.flowAnalysis)
: errorReporter = ErrorReporter(errorListener, source),
_featureSet = featureSet,
genericMetadataIsEnabled =
definingLibrary.featureSet.isEnabled(Feature.generic_metadata),
options = TypeAnalyzerOptions(
nullSafetyEnabled: true,
patternsEnabled:
definingLibrary.featureSet.isEnabled(Feature.patterns),
inferenceUpdate3Enabled: definingLibrary.featureSet
.isEnabled(Feature.inference_update_3)) {
nullableDereferenceVerifier = NullableDereferenceVerifier(
typeSystem: typeSystem,
errorReporter: errorReporter,
resolver: this,
);
baseOrFinalTypeVerifier = BaseOrFinalTypeVerifier(
definingLibrary: definingLibrary, errorReporter: errorReporter);
boolExpressionVerifier = BoolExpressionVerifier(
resolver: this,
errorReporter: errorReporter,
nullableDereferenceVerifier: nullableDereferenceVerifier,
);
_typedLiteralResolver =
TypedLiteralResolver(this, typeSystem, typeProvider, analysisOptions);
extensionResolver = ExtensionMemberResolver(this);
typePropertyResolver = TypePropertyResolver(this);
inferenceHelper = InvocationInferenceHelper(
resolver: this,
errorReporter: errorReporter,
typeSystem: typeSystem,
dataForTesting: flowAnalysis.dataForTesting != null
? TypeConstraintGenerationDataForTesting()
: null,
);
_assignmentExpressionResolver = AssignmentExpressionResolver(
resolver: this,
);
_binaryExpressionResolver = BinaryExpressionResolver(
resolver: this,
);
_functionExpressionInvocationResolver =
FunctionExpressionInvocationResolver(
resolver: this,
);
_functionExpressionResolver = FunctionExpressionResolver(resolver: this);
_forResolver = ForResolver(
resolver: this,
);
_postfixExpressionResolver = PostfixExpressionResolver(
resolver: this,
);
_prefixedIdentifierResolver = PrefixedIdentifierResolver(this);
_prefixExpressionResolver = PrefixExpressionResolver(
resolver: this,
);
_variableDeclarationResolver = VariableDeclarationResolver(
resolver: this,
strictInference: analysisOptions.strictInference,
);
_yieldStatementResolver = YieldStatementResolver(
resolver: this,
);
nullSafetyDeadCodeVerifier = NullSafetyDeadCodeVerifier(
typeSystem,
errorReporter,
flowAnalysis,
);
elementResolver = ElementResolver(this);
typeAnalyzer = StaticTypeAnalyzer(this);
_functionReferenceResolver = FunctionReferenceResolver(this);
}
/// Inference context information for the current function body, if the
/// current node is inside a function body.
BodyInferenceContext? get bodyContext => _bodyContext;
/// Return the element representing the function containing the current node,
/// or `null` if the current node is not contained in a function.
///
/// @return the element representing the function containing the current node
ExecutableElement? get enclosingFunction => _enclosingFunction;
@override
FlowAnalysis<AstNode, Statement, Expression, PromotableElement, DartType>
get flow => flowAnalysis.flow!;
bool get isConstructorTearoffsEnabled =>
_featureSet.isEnabled(Feature.constructor_tearoffs);
bool get isInferenceUpdate1Enabled =>
_featureSet.isEnabled(Feature.inference_update_1);
/// Return the object providing promoted or declared types of variables.
LocalVariableTypeProvider get localVariableTypeProvider {
return flowAnalysis.localVariableTypeProvider;
}
@override
shared.TypeAnalyzerOperations<
PromotableElement,
DartType,
DartType,
TypeParameterElement,
InterfaceType,
InterfaceElement> get operations => flowAnalysis.typeOperations;
/// Gets the current depth of the [_rewriteStack]. This may be used in
/// assertions to verify that pushes and pops are properly balanced.
int get rewriteStackDepth => _rewriteStack.length;
@override
bool get strictCasts => analysisOptions.strictCasts;
/// If a class, or mixin, is being resolved, the type of the class.
///
/// If an extension is being resolved, the type of `this`, the declared
/// extended type, or promoted.
///
/// Otherwise `null`.
DartType? get thisType {
return _thisType;
}
List<SharedPatternField> buildSharedPatternFields(
List<PatternFieldImpl> fields, {
required bool mustBeNamed,
}) {
return fields.map((field) {
Token? nameToken;
var fieldName = field.name;
if (fieldName != null) {
nameToken = fieldName.name;
if (nameToken == null) {
var variablePattern = field.pattern.variablePattern;
if (variablePattern != null) {
variablePattern.fieldNameWithImplicitName = fieldName;
nameToken = variablePattern.name;
} else {
errorReporter.atNode(
field,
CompileTimeErrorCode.MISSING_NAMED_PATTERN_FIELD_NAME,
);
}
}
} else if (mustBeNamed) {
errorReporter.atNode(
field,
CompileTimeErrorCode.POSITIONAL_FIELD_IN_OBJECT_PATTERN,
);
}
return shared.RecordPatternField(
node: field,
name: nameToken?.lexeme,
pattern: field.pattern,
);
}).toList();
}
/// Verify that the arguments in the given [argumentList] can be assigned to
/// their corresponding parameters.
///
/// See [CompileTimeErrorCode.ARGUMENT_TYPE_NOT_ASSIGNABLE].
void checkForArgumentTypesNotAssignableInList(ArgumentList argumentList,
List<WhyNotPromotedGetter> whyNotPromotedList) {
var arguments = argumentList.arguments;
for (int i = 0; i < arguments.length; i++) {
checkForArgumentTypeNotAssignableForArgument(arguments[i],
whyNotPromoted:
flowAnalysis.flow == null ? null : whyNotPromotedList[i]);
}
}
void checkForBodyMayCompleteNormally({
required FunctionBodyImpl body,
required SyntacticEntity errorNode,
}) {
if (!flowAnalysis.flow!.isReachable) {
return;
}
var bodyContext = body.bodyContext;
if (bodyContext == null) {
return;
}
var returnType = bodyContext.contextType;
if (returnType == null) {
if (errorNode is BlockFunctionBody) {
_checkForFutureCatchErrorOnError(errorNode);
}
return;
}
if (body is BlockFunctionBody) {
if (body.isGenerator) {
return;
}
if (body.isAsynchronous) {
// Check whether the return type is legal. If not, return rather than
// reporting a second error.
// This is the same check as [ReturnTypeVerifier._isLegalReturnType].
// TODO(srawlins): When this check is moved into the resolution stage,
// use the result of that check to determine whether this check should
// be done.
var lowerBound = typeProvider.futureElement.instantiate(
typeArguments: fixedTypeList(NeverTypeImpl.instance),
nullabilitySuffix: NullabilitySuffix.none,
);
var imposedType = bodyContext.imposedType;
if (imposedType != null &&
!typeSystem.isSubtypeOf(lowerBound, imposedType)) {
// [imposedType] is an illegal return type for an asynchronous
// non-generator function; do not report an additional error here.
return;
}
}
ErrorCode errorCode;
if (typeSystem.isPotentiallyNonNullable(returnType)) {
errorCode = CompileTimeErrorCode.BODY_MIGHT_COMPLETE_NORMALLY;
} else {
var returnTypeBase = typeSystem.futureOrBase(returnType);
if (returnTypeBase is DynamicType ||
returnTypeBase is InvalidType ||
returnTypeBase is UnknownInferredType ||
returnTypeBase is VoidType ||
returnTypeBase.isDartCoreNull) {
return;
} else {
errorCode = WarningCode.BODY_MIGHT_COMPLETE_NORMALLY_NULLABLE;
}
}
if (errorNode is ConstructorDeclaration) {
errorReporter.reportErrorForName(
errorCode,
errorNode,
arguments: [returnType],
);
} else if (errorNode is BlockFunctionBody) {
errorReporter.atToken(
errorNode.block.leftBracket,
errorCode,
arguments: [returnType],
);
} else if (errorNode is Token) {
errorReporter.atToken(
errorNode,
errorCode,
arguments: [returnType],
);
}
}
}
/// The client of the resolver should call this method after asking the
/// resolver to visit an AST node. This performs assertions to make sure that
/// temporary resolver state has been properly cleaned up.
void checkIdle() {
assert(_rewriteStack.isEmpty);
}
/// Reports an error if the [pattern] with the [requiredType] cannot
/// match the [DartPatternImpl.matchedValueType].
void checkPatternNeverMatchesValueType({
required SharedMatchContext context,
required DartPatternImpl pattern,
required DartType requiredType,
required DartType matchedValueType,
}) {
if (context.irrefutableContext == null) {
if (!typeSystem.canBeSubtypeOf(matchedValueType, requiredType)) {
AstNodeImpl? errorNode;
if (pattern is CastPatternImpl) {
errorNode = pattern.type;
} else if (pattern is DeclaredVariablePatternImpl) {
errorNode = pattern.type;
} else if (pattern is ObjectPatternImpl) {
errorNode = pattern.type;
} else if (pattern is WildcardPatternImpl) {
errorNode = pattern.type;
}
errorNode ??= pattern;
errorReporter.atNode(
errorNode,
WarningCode.PATTERN_NEVER_MATCHES_VALUE_TYPE,
arguments: [matchedValueType, requiredType],
);
}
}
}
void checkReadOfNotAssignedLocalVariable(
SimpleIdentifier node,
Element? element,
) {
if (flowAnalysis.flow == null) {
return;
}
if (!node.inGetterContext()) {
return;
}
if (element is VariableElement) {
var assigned =
flowAnalysis.isDefinitelyAssigned(node, element as PromotableElement);
var unassigned = flowAnalysis.isDefinitelyUnassigned(node, element);
if (element.isLate) {
if (unassigned) {
errorReporter.atNode(
node,
CompileTimeErrorCode.DEFINITELY_UNASSIGNED_LATE_LOCAL_VARIABLE,
arguments: [node.name],
);
}
return;
}
if (!assigned) {
if (element.isFinal) {
errorReporter.atNode(
node,
CompileTimeErrorCode.READ_POTENTIALLY_UNASSIGNED_FINAL,
arguments: [node.name],
);
return;
}
if (typeSystem.isPotentiallyNonNullable(element.type)) {
errorReporter.atNode(
node,
CompileTimeErrorCode
.NOT_ASSIGNED_POTENTIALLY_NON_NULLABLE_LOCAL_VARIABLE,
arguments: [node.name],
);
return;
}
}
}
}
void checkUnreachableNode(AstNode node) {
nullSafetyDeadCodeVerifier.visitNode(node);
}
@override
List<DiagnosticMessage> computeWhyNotPromotedMessages(
SyntacticEntity errorEntity,
Map<DartType, NonPromotionReason>? whyNotPromoted) {
List<DiagnosticMessage> messages = [];
if (whyNotPromoted != null) {
for (var entry in whyNotPromoted.entries) {
var whyNotPromotedVisitor = _WhyNotPromotedVisitor(
source, errorEntity, flowAnalysis.dataForTesting);
if (typeSystem.isPotentiallyNullable(entry.key)) continue;
messages = entry.value.accept(whyNotPromotedVisitor);
// `messages` will be passed to the ErrorReporter, which might add
// additional entries. So make sure that it's not a `const []`.
assert(_isModifiableList(messages));
if (messages.isNotEmpty) {
if (flowAnalysis.dataForTesting != null) {
var nonPromotionReasonText = entry.value.shortName;
var args = <String>[];
if (whyNotPromotedVisitor.propertyReference != null) {
var id =
computeMemberId(whyNotPromotedVisitor.propertyReference!);
args.add('target: $id');
}
var propertyType = whyNotPromotedVisitor.propertyType;
if (propertyType != null) {
var propertyTypeStr = propertyType.getDisplayString();
args.add('type: $propertyTypeStr');
}
if (args.isNotEmpty) {
nonPromotionReasonText += '(${args.join(', ')})';
}
flowAnalysis.dataForTesting!.nonPromotionReasons[errorEntity] =
nonPromotionReasonText;
}
}
break;
}
}
return messages;
}
@override
void dispatchCollectionElement(
covariant CollectionElementImpl element,
covariant CollectionLiteralContext? context,
) {
element.resolveElement(this, context);
popRewrite();
}
@override
ExpressionTypeAnalysisResult<DartType> dispatchExpression(
covariant ExpressionImpl expression, DartType context) {
int? stackDepth;
assert(() {
stackDepth = rewriteStackDepth;
return true;
}());
// TODO(paulberry): implement null shorting
// Stack: ()
pushRewrite(expression);
// Stack: (Expression)
expression.resolveExpression(this, context);
assert(rewriteStackDepth == stackDepth! + 1);
var replacementExpression = peekRewrite()!;
assert(identical(
_replacements[expression] ?? expression, replacementExpression));
var staticType = replacementExpression.staticType;
if (staticType == null) {
var shouldHaveType = true;
if (replacementExpression is ExtensionOverride) {
shouldHaveType = false;
} else if (replacementExpression is IdentifierImpl) {
var element = replacementExpression.staticElement;
if (element is ExtensionElement || element is InterfaceElement) {
shouldHaveType = false;
}
}
if (shouldHaveType) {
assert(
false,
'No static type for: '
'(${replacementExpression.runtimeType}) $replacementExpression',
);
}
staticType = operations.unknownType;
}
return SimpleTypeAnalysisResult<DartType>(type: staticType);
}
@override
PatternResult<DartType> dispatchPattern(
SharedMatchContext context, AstNode node) {
shared.PatternResult<DartType> analysisResult;
if (node is DartPatternImpl) {
analysisResult = node.resolvePattern(this, context);
node.matchedValueType = analysisResult.matchedValueType;
} else {
// This can occur inside conventional switch statements, since
// [SwitchCase] points directly to an [Expression] rather than to a
// [ConstantPattern]. So we mimic what
// [ConstantPatternImpl.resolvePattern] would do.
analysisResult =
analyzeConstantPattern(context, node, node as Expression);
// Stack: (Expression)
popRewrite();
// Stack: ()
}
return analysisResult;
}
@override
DartType dispatchPatternSchema(covariant DartPatternImpl node) {
return node.computePatternSchema(this);
}
@override
void dispatchStatement(Statement statement) {
statement.accept(this);
}
@override
DartType downwardInferObjectPatternRequiredType({
required DartType matchedType,
required covariant ObjectPatternImpl pattern,
}) {
var typeNode = pattern.type;
if (typeNode.typeArguments == null) {
var typeNameElement = typeNode.element;
if (typeNameElement is InterfaceElement) {
var typeParameters = typeNameElement.typeParameters;
if (typeParameters.isNotEmpty) {
var typeArguments = _inferTypeArguments(
typeParameters: typeParameters,
errorNode: typeNode,
declaredType: typeNameElement.thisType,
contextType: matchedType,
nodeForTesting: pattern,
);
return typeNode.type = typeNameElement.instantiate(
typeArguments: typeArguments,
nullabilitySuffix: NullabilitySuffix.none,
);
}
} else if (typeNameElement is TypeAliasElement) {
var typeParameters = typeNameElement.typeParameters;
if (typeParameters.isNotEmpty) {
var typeArguments = _inferTypeArguments(
typeParameters: typeParameters,
errorNode: typeNode,
declaredType: typeNameElement.aliasedType,
contextType: matchedType,
nodeForTesting: pattern,
);
return typeNode.type = typeNameElement.instantiate(
typeArguments: typeArguments,
nullabilitySuffix: NullabilitySuffix.none,
);
}
}
}
return typeNode.typeOrThrow;
}
@override
void finishExpressionCase(
covariant SwitchExpressionImpl node,
int caseIndex,
) {
var case_ = node.cases[caseIndex];
case_.expression = popRewrite()!;
nullSafetyDeadCodeVerifier.flowEnd(case_);
}
@override
void finishJoinedPatternVariable(
covariant JoinPatternVariableElementImpl variable, {
required JoinedPatternVariableLocation location,
required shared.JoinedPatternVariableInconsistency inconsistency,
required bool isFinal,
required DartType type,
}) {
variable.inconsistency = variable.inconsistency.maxWith(inconsistency);
variable.isFinal = isFinal;
variable.type = type;
if (location == JoinedPatternVariableLocation.sharedCaseScope) {
for (var reference in variable.references) {
if (variable.inconsistency ==
shared.JoinedPatternVariableInconsistency.sharedCaseAbsent) {
errorReporter.atNode(
reference,
CompileTimeErrorCode
.PATTERN_VARIABLE_SHARED_CASE_SCOPE_NOT_ALL_CASES,
arguments: [variable.name],
);
} else if (variable.inconsistency ==
shared.JoinedPatternVariableInconsistency.sharedCaseHasLabel) {
errorReporter.atNode(
reference,
CompileTimeErrorCode.PATTERN_VARIABLE_SHARED_CASE_SCOPE_HAS_LABEL,
arguments: [variable.name],
);
} else if (variable.inconsistency ==
shared.JoinedPatternVariableInconsistency.differentFinalityOrType) {
errorReporter.atNode(
reference,
CompileTimeErrorCode
.PATTERN_VARIABLE_SHARED_CASE_SCOPE_DIFFERENT_FINALITY_OR_TYPE,
arguments: [variable.name],
);
}
}
}
}
@override
shared.MapPatternEntry<Expression, DartPattern>? getMapPatternEntry(
covariant MapPatternElementImpl element,
) {
if (element is MapPatternEntryImpl) {
return shared.MapPatternEntry(
key: element.key,
value: element.value,
);
}
return null;
}
/// Return the static element associated with the given expression whose type
/// can be overridden, or `null` if there is no element whose type can be
/// overridden.
///
/// @param expression the expression with which the element is associated
/// @return the element associated with the given expression
VariableElement? getOverridableStaticElement(Expression expression) {
Element? element;
if (expression is SimpleIdentifier) {
element = expression.staticElement;
} else if (expression is PrefixedIdentifier) {
element = expression.staticElement;
} else if (expression is PropertyAccess) {
element = expression.propertyName.staticElement;
}
if (element is VariableElement) {
return element;
}
return null;
}
@override
DartPattern? getRestPatternElementPattern(
covariant RestPatternElementImpl element,
) {
return element.pattern;
}
@override
SwitchExpressionMemberInfo<AstNode, Expression, PromotableElement>
getSwitchExpressionMemberInfo(
covariant SwitchExpressionImpl node,
int index,
) {
var case_ = node.cases[index];
var guardedPattern = case_.guardedPattern;
return SwitchExpressionMemberInfo(
head: CaseHeadOrDefaultInfo(
pattern: guardedPattern.pattern,
guard: guardedPattern.whenClause?.expression,
variables: guardedPattern.variables,
),
expression: case_.expression,
);
}
@override
SwitchStatementMemberInfo<AstNode, Statement, Expression, PromotableElement>
getSwitchStatementMemberInfo(
covariant SwitchStatementImpl node,
int index,
) {
CaseHeadOrDefaultInfo<AstNode, Expression, PromotableElement> ofMember(
SwitchMemberImpl member,
) {
if (member is SwitchCaseImpl) {
return CaseHeadOrDefaultInfo(
pattern: member.expression,
variables: {},
);
} else if (member is SwitchPatternCaseImpl) {
var guardedPattern = member.guardedPattern;
return CaseHeadOrDefaultInfo(
pattern: guardedPattern.pattern,
variables: guardedPattern.variables,
guard: guardedPattern.whenClause?.expression,
);
} else {
return CaseHeadOrDefaultInfo(
pattern: null,
variables: {},
);
}
}
var group = node.memberGroups[index];
return SwitchStatementMemberInfo(
heads: group.members.map(ofMember).toList(),
body: group.statements,
variables: group.variables,
hasLabels: group.hasLabels,
);
}
@override
void handle_ifElement_conditionEnd(covariant IfElementImpl node) {
// Stack: (Expression condition)
var condition = popRewrite()!;
var whyNotPromoted = flowAnalysis.flow?.whyNotPromoted(condition);
boolExpressionVerifier.checkForNonBoolCondition(condition,
whyNotPromoted: whyNotPromoted);
}
@override
void handle_ifElement_elseEnd(
covariant IfElementImpl node,
covariant CollectionElementImpl ifFalse,
) {
nullSafetyDeadCodeVerifier.flowEnd(ifFalse);
}
@override
void handle_ifElement_thenEnd(
covariant IfElementImpl node,
covariant CollectionElementImpl ifTrue,
) {
nullSafetyDeadCodeVerifier.flowEnd(ifTrue);
}
@override
void handle_ifStatement_conditionEnd(Statement node) {
// Stack: (Expression condition)
var condition = popRewrite()!;
var whyNotPromoted = flowAnalysis.flow?.whyNotPromoted(condition);
boolExpressionVerifier.checkForNonBoolCondition(condition,
whyNotPromoted: whyNotPromoted);
}
@override
void handle_ifStatement_elseEnd(Statement node, Statement ifFalse) {
nullSafetyDeadCodeVerifier.flowEnd(ifFalse);
}
@override
void handle_ifStatement_thenEnd(Statement node, Statement ifTrue) {
nullSafetyDeadCodeVerifier.flowEnd(ifTrue);
}
@override
void handle_logicalOrPattern_afterLhs(covariant LogicalOrPatternImpl node) {
checkUnreachableNode(node.rightOperand);
}
@override
void handleCase_afterCaseHeads(
AstNode node, int caseIndex, Iterable<PromotableElement> variables) {}
@override
void handleCaseHead(
covariant AstNodeImpl node, {
required int caseIndex,
required int subIndex,
}) {
// Stack: (Expression)
popRewrite(); // "when" expression
// Stack: ()
if (node is SwitchStatementImpl) {
var group = node.memberGroups[caseIndex];
legacySwitchExhaustiveness?.visitSwitchMember(group);
nullSafetyDeadCodeVerifier.flowEnd(group.members[subIndex]);
} else if (node is SwitchExpressionImpl) {
legacySwitchExhaustiveness
?.visitSwitchExpressionCase(node.cases[caseIndex]);
}
}
@override
void handleDefault(
covariant SwitchStatementImpl node, {
required int caseIndex,
required int subIndex,
}) {
var group = node.memberGroups[caseIndex];
legacySwitchExhaustiveness?.visitSwitchMember(group);
nullSafetyDeadCodeVerifier.flowEnd(group.members[subIndex]);
}
@override
void handleListPatternRestElement(
DartPattern container,
covariant RestPatternElementImpl restElement,
) {}
@override
void handleMapPatternEntry(
DartPattern container,
covariant MapPatternEntryImpl entry,
DartType keyType,
) {
entry.key = popRewrite()!;
}
@override
void handleMapPatternRestElement(
DartPattern container,
covariant RestPatternElementImpl restElement,
) {}
@override
void handleMergedStatementCase(covariant SwitchStatementImpl node,
{required int caseIndex, required bool isTerminating}) {
nullSafetyDeadCodeVerifier
.flowEnd(node.memberGroups[caseIndex].members.last);
}
@override
void handleNoCollectionElement(AstNode node) {}
@override
void handleNoGuard(AstNode node, int caseIndex) {
// Stack: ()
// We can push `null` here because there is no actual expression associated
// with the lack of a guard, so there's nothing that will need rewriting.
pushRewrite(null);
// Stack: (Expression)
}
@override
void handleNoStatement(Statement node) {}
@override
void handleSwitchBeforeAlternative(
covariant AstNodeImpl node, {
required int caseIndex,
required int subIndex,
}) {
if (node is SwitchExpressionImpl) {
var case_ = node.cases[caseIndex];
checkUnreachableNode(case_);
} else if (node is SwitchStatementImpl) {
var member = node.memberGroups[caseIndex].members[subIndex];
checkUnreachableNode(member);
}
}
@override
void handleSwitchScrutinee(DartType type) {
if (!options.patternsEnabled) {
legacySwitchExhaustiveness = SwitchExhaustiveness(type);
}
}
/// If generic function instantiation should be performed on `expression`,
/// inserts a [FunctionReference] node which wraps [expression].
///
/// If an [FunctionReference] is inserted, returns it; otherwise, returns
/// [expression].
ExpressionImpl insertGenericFunctionInstantiation(Expression expression,
{required DartType contextType}) {
expression as ExpressionImpl;
if (!isConstructorTearoffsEnabled) {
// Temporarily, only create [ImplicitCallReference] nodes under the
// 'constructor-tearoffs' feature.
// TODO(srawlins): When we are ready to make a breaking change release to
// the analyzer package, remove this exception.
return expression;
}
var staticType = expression.staticType;
if (staticType is! FunctionType || staticType.typeFormals.isEmpty) {
return expression;
}
var context = typeSystem.flatten(contextType);
if (context is! FunctionType || context.typeFormals.isNotEmpty) {
return expression;
}
List<DartType> typeArgumentTypes =
typeSystem.inferFunctionTypeInstantiation(
context,
staticType,
errorReporter: errorReporter,
errorNode: expression,
// If the constructor-tearoffs feature is enabled, then so is
// generic-metadata.
genericMetadataIsEnabled: true,
strictInference: analysisOptions.strictInference,
strictCasts: analysisOptions.strictCasts,
typeSystemOperations: flowAnalysis.typeOperations,
dataForTesting: inferenceHelper.dataForTesting,
nodeForTesting: expression,
);
if (typeArgumentTypes.isNotEmpty) {
staticType = staticType.instantiate(typeArgumentTypes);
}
var parent = expression.parent;
var genericFunctionInstantiation = FunctionReferenceImpl(
function: expression,
typeArguments: null,
);
replaceExpression(expression, genericFunctionInstantiation, parent: parent);
genericFunctionInstantiation.typeArgumentTypes = typeArgumentTypes;
genericFunctionInstantiation.staticType = staticType;
return genericFunctionInstantiation;
}
@override
bool isLegacySwitchExhaustive(AstNode node, DartType expressionType) =>
legacySwitchExhaustiveness!.isExhaustive;
@override
bool isRestPatternElement(AstNode node) {
return node is RestPatternElementImpl;
}
@override
bool isVariablePattern(AstNode pattern) => pattern is DeclaredVariablePattern;
/// If we reached a null-shorting termination, and the [node] has null
/// shorting, make the type of the [node] nullable.
void nullShortingTermination(ExpressionImpl node,
{bool discardType = false}) {
if (identical(_unfinishedNullShorts.last, node)) {
do {
_unfinishedNullShorts.removeLast();
flowAnalysis.flow!.nullAwareAccess_end();
} while (identical(_unfinishedNullShorts.last, node));
if (node is! CascadeExpression && !discardType) {
node.staticType = typeSystem.makeNullable(node.staticType as TypeImpl);
}
}
}
/// If it is appropriate to do so, override the current type of the static
/// element associated with the given expression with the given type.
/// Generally speaking, it is appropriate if the given type is more specific
/// than the current type.
///
/// @param expression the expression used to access the static element whose
/// types might be overridden
/// @param potentialType the potential type of the elements
/// @param allowPrecisionLoss see @{code overrideVariable} docs
void overrideExpression(Expression expression, DartType potentialType,
bool allowPrecisionLoss, bool setExpressionType) {
// TODO(brianwilkerson): Remove this method.
}
/// Examines the top entry of [_rewriteStack] but does not pop it.
ExpressionImpl? peekRewrite() => _rewriteStack.last;
/// Pops the top entry off of [_rewriteStack].
ExpressionImpl? popRewrite() {
var expression = _rewriteStack.removeLast();
if (_debugRewriteStack) {
assert(_debugPrint('POP ${expression.runtimeType} $expression'));
}
return expression;
}
/// Set information about enclosing declarations.
void prepareEnclosingDeclarations({
InterfaceElement? enclosingClassElement,
ExecutableElement? enclosingExecutableElement,
}) {
enclosingClass = enclosingClassElement;
_setupThisType();
_enclosingFunction = enclosingExecutableElement;
}
/// We are going to resolve [node], without visiting its parent.
/// Do necessary preparations - set enclosing elements, scopes, etc.
/// This [ResolverVisitor] instance is fresh, just created.
///
/// Return `true` if we were able to do this, or `false` if it is not
/// possible to resolve only [node].
bool prepareForResolving(AstNode node) {
var parent = node.parent;
if (parent is CompilationUnit) {
return node is ClassDeclaration ||
node is Directive ||
node is ExtensionDeclaration ||
node is FunctionDeclaration ||
node is TopLevelVariableDeclaration;
}
void forClassElement(InterfaceElement parentElement) {
enclosingClass = parentElement;
}
if (parent is ClassDeclaration) {
forClassElement(parent.declaredElement!);
return true;
}
if (parent is ExtensionDeclaration) {
enclosingExtension = parent.declaredElement!;
return true;
}
if (parent is MixinDeclaration) {
forClassElement(parent.declaredElement!);
return true;
}
return false;
}
/// Pushes an entry onto [_rewriteStack].
void pushRewrite(ExpressionImpl? expression) {
if (_debugRewriteStack) {
assert(_debugPrint('PUSH ${expression.runtimeType} $expression'));
}
_rewriteStack.add(expression);
}
/// Replaces the expression [oldNode] with [newNode], updating the node's
/// parent as appropriate.
///
/// If [newNode] is the parent of [oldNode] already (because [newNode] became
/// the parent of [oldNode] in its constructor), this action will loop
/// infinitely; pass [oldNode]'s previous parent as [parent] to avoid this.
void replaceExpression(Expression oldNode, ExpressionImpl newNode,
{AstNode? parent}) {
assert(() {
assert(_replacements[oldNode] == null);
_replacements[oldNode] = newNode;
return true;
}());
if (_rewriteStack.isNotEmpty && identical(peekRewrite(), oldNode)) {
if (_debugRewriteStack) {
assert(_debugPrint('REPLACE ${newNode.runtimeType} $newNode'));
}
_rewriteStack.last = newNode;
}
NodeReplacer.replace(oldNode, newNode, parent: parent);
}
PatternResult<DartType> resolveAssignedVariablePattern({
required AssignedVariablePatternImpl node,
required SharedMatchContext context,
}) {
var element = node.element;
if (element is! PromotableElement) {
return PatternResult(matchedValueType: InvalidTypeImpl.instance);
}
if (element.isFinal) {
final flow = this.flow;
if (element.isLate) {
if (flow.isAssigned(element)) {
errorReporter.atToken(
node.name,
CompileTimeErrorCode.LATE_FINAL_LOCAL_ALREADY_ASSIGNED,
);
}
} else {
if (!flow.isUnassigned(element)) {
errorReporter.atToken(
node.name,
CompileTimeErrorCode.ASSIGNMENT_TO_FINAL_LOCAL,
arguments: [node.name.lexeme],
);
}
}
}
return analyzeAssignedVariablePattern(context, node, element);
}
/// Resolve LHS [node] of an assignment, an explicit [AssignmentExpression],
/// or implicit [PrefixExpression] or [PostfixExpression].
PropertyElementResolverResult resolveForWrite({
required Expression node,
required bool hasRead,
}) {
if (node is AugmentedExpressionImpl) {
var augmentation = _enclosingAugmentation;
var augmentationTarget = augmentation?.augmentationTarget;
if (augmentation is PropertyAccessorElementImpl &&
augmentation.isSetter &&
augmentationTarget is PropertyAccessorElementImpl &&
augmentationTarget.isSetter) {
node.element = augmentationTarget;
return PropertyElementResolverResult(
writeElementRequested: augmentationTarget,
);
}
return PropertyElementResolverResult();
} else if (node is IndexExpression) {
var target = node.target;
if (target != null) {
analyzeExpression(target, UnknownInferredType.instance);
popRewrite();
}
startNullAwareIndexExpression(node);
var result = _propertyElementResolver.resolveIndexExpression(
node: node,
hasRead: hasRead,
hasWrite: true,
);
analyzeExpression(node.index, result.indexContextType);
popRewrite();
var whyNotPromoted = flowAnalysis.flow?.whyNotPromoted(node.index);
checkIndexExpressionIndex(
node.index,
readElement: hasRead ? result.readElement as ExecutableElement? : null,
writeElement: result.writeElement as ExecutableElement?,
whyNotPromoted: whyNotPromoted,
);
return result;
} else if (node is PrefixedIdentifierImpl) {
var prefix = node.prefix;
prefix.accept(this);
// TODO(scheglov): It would be nice to rewrite all such cases.
if (prefix.staticType is RecordType) {
var propertyAccess = PropertyAccessImpl(
target: prefix,
operator: node.period,
propertyName: node.identifier,
);
NodeReplacer.replace(node, propertyAccess);
return resolveForWrite(
node: propertyAccess,
hasRead: hasRead,
);
}
return _propertyElementResolver.resolvePrefixedIdentifier(
node: node,
hasRead: hasRead,
hasWrite: true,
);
} else if (node is PropertyAccess) {
node.target?.accept(this);
startNullAwarePropertyAccess(node);
return _propertyElementResolver.resolvePropertyAccess(
node: node,
hasRead: hasRead,
hasWrite: true,
);
} else if (node is SimpleIdentifierImpl) {
var result = _propertyElementResolver.resolveSimpleIdentifier(
node: node,
hasRead: hasRead,
hasWrite: true,
);
if (hasRead && result.readElementRequested == null) {
errorReporter.atNode(
node,
CompileTimeErrorCode.UNDEFINED_IDENTIFIER,
arguments: [node.name],
);
}
return result;
} else {
analyzeExpression(node, UnknownInferredType.instance);
popRewrite();
return PropertyElementResolverResult();
}
}
PatternResult<DartType> resolveMapPattern({
required MapPatternImpl node,
required SharedMatchContext context,
}) {
({DartType keyType, DartType valueType})? typeArguments;
var typeArgumentsList = node.typeArguments;
if (typeArgumentsList != null) {
typeArgumentsList.accept(this);
// Check that we have exactly two type arguments.
var length = typeArgumentsList.arguments.length;
if (length == 2) {
typeArguments = (
keyType: typeArgumentsList.arguments[0].typeOrThrow,
valueType: typeArgumentsList.arguments[1].typeOrThrow,
);
} else {
errorReporter.atNode(
typeArgumentsList,
CompileTimeErrorCode.EXPECTED_TWO_MAP_PATTERN_TYPE_ARGUMENTS,
arguments: [length],
);
}
}
var result = analyzeMapPattern(
context,
node,
typeArguments: typeArguments,
elements: node.elements,
);
node.requiredType = result.requiredType;
checkPatternNeverMatchesValueType(
context: context,
pattern: node,
requiredType: result.requiredType,
matchedValueType: result.matchedValueType,
);
return result;
}
@override
(ExecutableElement?, DartType) resolveObjectPatternPropertyGet({
required covariant ObjectPatternImpl objectPattern,
required DartType receiverType,
required covariant SharedPatternField field,
}) {
var fieldNode = field.node;
var nameToken = fieldNode.name?.name;
nameToken ??= field.pattern.variablePattern?.name;
if (nameToken == null) {
return (null, typeProvider.dynamicType);
}
var result = typePropertyResolver.resolve(
receiver: null,
receiverType: receiverType,
name: nameToken.lexeme,
propertyErrorEntity: objectPattern.type,
nameErrorEntity: nameToken,
);
if (result.needsGetterError) {
errorReporter.atToken(
nameToken,
CompileTimeErrorCode.UNDEFINED_GETTER,
arguments: [nameToken.lexeme, receiverType],
);
}
var getter = result.getter;
if (getter != null) {
fieldNode.element = getter;
if (getter is PropertyAccessorElement) {
return (getter, getter.returnType);
} else {
return (getter, getter.type);
}
}
var recordField = result.recordField;
if (recordField != null) {
return (null, recordField.type);
}
return (null, typeProvider.dynamicType);
}
@override
RelationalOperatorResolution<DartType>? resolveRelationalPatternOperator(
covariant RelationalPatternImpl node,
DartType matchedType,
) {
var operatorLexeme = node.operator.lexeme;
RelationalOperatorKind kind;
String methodName;
if (operatorLexeme == '==') {
kind = RelationalOperatorKind.equals;
methodName = '==';
} else if (operatorLexeme == '!=') {
kind = RelationalOperatorKind.notEquals;
methodName = '==';
} else {
kind = RelationalOperatorKind.other;
methodName = operatorLexeme;
}
var result = typePropertyResolver.resolve(
receiver: null,
receiverType: matchedType,
name: methodName,
propertyErrorEntity: node.operator,
nameErrorEntity: node,
parentNode: node,
);
if (result.needsGetterError) {
errorReporter.atToken(
node.operator,
CompileTimeErrorCode.UNDEFINED_OPERATOR,
arguments: [methodName, matchedType],
);
}
var element = result.getter as MethodElement?;
node.element = element;
if (element == null) {
return null;
}
var parameterType = element.firstParameterType;
if (parameterType == null) {
return null;
}
return RelationalOperatorResolution(
kind: kind,
parameterType: parameterType,
returnType: element.returnType,
);
}
void setReadElement(
Expression node,
Element? element, {
required bool atDynamicTarget,
}) {
DartType readType =
atDynamicTarget ? DynamicTypeImpl.instance : InvalidTypeImpl.instance;
if (node is IndexExpression) {
if (element is MethodElement) {
readType = element.returnType;
}
} else if (node is PrefixedIdentifier ||
node is PropertyAccess ||
node is SimpleIdentifier) {
if (element is PropertyAccessorElement && element.isGetter) {
readType = element.returnType;
} else if (element is VariableElement) {
readType = localVariableTypeProvider.getType(node as SimpleIdentifier,
isRead: true);
}
}
var parent = node.parent;
if (parent is AssignmentExpressionImpl && parent.leftHandSide == node) {
parent.readElement = element;
parent.readType = readType;
} else if (parent is PostfixExpressionImpl &&
parent.operator.type.isIncrementOperator) {
parent.readElement = element;
parent.readType = readType;
} else if (parent is PrefixExpressionImpl &&
parent.operator.type.isIncrementOperator) {
parent.readElement = element;
parent.readType = readType;
}
}
@override
void setVariableType(PromotableElement variable, DartType type) {
if (variable is LocalVariableElementImpl) {
variable.type = type;
} else {
throw UnimplementedError('TODO(paulberry)');
}
}
void setWriteElement(
Expression node,
Element? element, {
required bool atDynamicTarget,
}) {
DartType writeType =
atDynamicTarget ? DynamicTypeImpl.instance : InvalidTypeImpl.instance;
if (node is AugmentedExpression) {
if (element is PropertyAccessorElement && element.isSetter) {
if (element.parameters case [var valueParameter]) {
writeType = valueParameter.type;
}
}
} else if (node is IndexExpression) {
if (element is MethodElement) {
var parameters = element.parameters;
if (parameters.length == 2) {
writeType = parameters[1].type;
}
}
} else if (node is PrefixedIdentifier ||
node is PropertyAccess ||
node is SimpleIdentifier) {
if (element is PropertyAccessorElement && element.isSetter) {
if (element.isSynthetic) {
var variable = element.variable2;
if (variable != null) {
writeType = variable.type;
}
} else {
var parameters = element.parameters;
if (parameters.length == 1) {
writeType = parameters[0].type;
}
}
} else if (element is VariableElement) {
writeType = element.type;
}
}
var parent = node.parent;
if (parent is AssignmentExpressionImpl && parent.leftHandSide == node) {
parent.writeElement = element;
parent.writeType = writeType;
} else if (parent is PostfixExpressionImpl &&
parent.operator.type.isIncrementOperator) {
parent.writeElement = element;
parent.writeType = writeType;
} else if (parent is PrefixExpressionImpl &&
parent.operator.type.isIncrementOperator) {
parent.writeElement = element;
parent.writeType = writeType;
}
}
void startNullAwareIndexExpression(IndexExpression node) {
if (node.isNullAware) {
var flow = flowAnalysis.flow;
if (flow != null) {
flow.nullAwareAccess_rightBegin(node.target,
node.realTarget.staticType ?? typeProvider.dynamicType);
_unfinishedNullShorts.add(node.nullShortingTermination);
}
}
}
void startNullAwarePropertyAccess(PropertyAccess node) {
if (node.isNullAware) {
var flow = flowAnalysis.flow;
if (flow != null) {
var target = node.target;
if (target is SimpleIdentifier &&
target.staticElement is InterfaceElement) {
// `?.` to access static methods is equivalent to `.`, so do nothing.
} else {
flow.nullAwareAccess_rightBegin(
target, node.realTarget.staticType ?? typeProvider.dynamicType);
_unfinishedNullShorts.add(node.nullShortingTermination);
}
}
}
}
/// Returns the result of an implicit `this.` lookup for the identifier string
/// [id] in a getter context, or `null` if no match was found.
LexicalLookupResult? thisLookupGetter(SimpleIdentifier node) {
return ThisLookup.lookupGetter(this, node);
}
/// Returns the result of an implicit `this.` lookup for the identifier string
/// [id] in a setter context, or `null` if no match was found.
LexicalLookupResult? thisLookupSetter(SimpleIdentifier node) {
return ThisLookup.lookupSetter(this, node);
}
@override
DartType variableTypeFromInitializerType(DartType type) {
if (type.isDartCoreNull) {
return DynamicTypeImpl.instance;
}
return typeSystem.demoteType(type);
}
@override
void visitAdjacentStrings(AdjacentStrings node) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitAdjacentStrings(node as AdjacentStringsImpl);
}
@override
void visitAnnotation(covariant AnnotationImpl node) {
// Annotations can contain expressions, so we need flow analysis to be
// available to process those expressions.
var isTopLevel = flowAnalysis.flow == null;
if (isTopLevel) {
flowAnalysis.topLevelDeclaration_enter(node, null);
}
assert(flowAnalysis.flow != null);
var whyNotPromotedList = <Map<DartType, NonPromotionReason> Function()>[];
_annotationResolver.resolve(node, whyNotPromotedList);
var arguments = node.arguments;
if (arguments != null) {
checkForArgumentTypesNotAssignableInList(arguments, whyNotPromotedList);
}
if (isTopLevel) {
flowAnalysis.topLevelDeclaration_exit();
}
}
@override
void visitAsExpression(
covariant AsExpressionImpl node, {
DartType contextType = UnknownInferredType.instance,
}) {
checkUnreachableNode(node);
analyzeExpression(node.expression, UnknownInferredType.instance);
popRewrite();
node.type.accept(this);
typeAnalyzer.visitAsExpression(node);
flowAnalysis.asExpression(node);
_insertImplicitCallReference(
insertGenericFunctionInstantiation(node, contextType: contextType),
contextType: contextType);
var expression = node.expression;
var staticType = node.staticType;
if (staticType != null && expression is SimpleIdentifier) {
var simpleIdentifier = expression as SimpleIdentifier;
var element = simpleIdentifier.staticElement;
if (element is PromotableElement &&
!expression.typeOrThrow.isDartCoreNull &&
typeSystem.isNullable(element.type) &&
typeSystem.isNonNullable(staticType) &&
flowAnalysis.isDefinitelyUnassigned(simpleIdentifier, element)) {
errorReporter.atNode(
simpleIdentifier,
WarningCode.CAST_FROM_NULLABLE_ALWAYS_FAILS,
arguments: [simpleIdentifier.name],
);
}
}
}
@override
void visitAssertInitializer(AssertInitializer node) {
flowAnalysis.flow?.assert_begin();
analyzeExpression(node.condition, typeProvider.boolType);
popRewrite();
boolExpressionVerifier.checkForNonBoolExpression(
node.condition,
errorCode: CompileTimeErrorCode.NON_BOOL_EXPRESSION,
whyNotPromoted: flowAnalysis.flow?.whyNotPromoted(node.condition),
);
flowAnalysis.flow?.assert_afterCondition(node.condition);
node.message?.accept(this);
flowAnalysis.flow?.assert_end();
}
@override
void visitAssertStatement(AssertStatement node) {
checkUnreachableNode(node);
flowAnalysis.flow?.assert_begin();
analyzeExpression(node.condition, typeProvider.boolType);
popRewrite();
boolExpressionVerifier.checkForNonBoolExpression(
node.condition,
errorCode: CompileTimeErrorCode.NON_BOOL_EXPRESSION,
whyNotPromoted: flowAnalysis.flow?.whyNotPromoted(node.condition),
);
flowAnalysis.flow?.assert_afterCondition(node.condition);
node.message?.accept(this);
flowAnalysis.flow?.assert_end();
}
@override
void visitAssignmentExpression(AssignmentExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
_assignmentExpressionResolver.resolve(node as AssignmentExpressionImpl,
contextType: contextType);
_insertImplicitCallReference(
insertGenericFunctionInstantiation(node, contextType: contextType),
contextType: contextType);
}
@override
void visitAugmentationImportDirective(
covariant AugmentationImportDirectiveImpl node,
) {
node.visitChildren(this);
elementResolver.visitAugmentationImportDirective(node);
}
@override
void visitAugmentedExpression(covariant AugmentedExpressionImpl node) {
if (_enclosingAugmentation case var augmentation?) {
var augmentedElement = augmentation.augmentationTarget;
if (augmentation is PropertyAccessorElementImpl &&
augmentation.isGetter &&
augmentedElement is PropertyAccessorElementImpl &&
augmentedElement.isGetter) {
node.element = augmentedElement;
node.staticType = augmentedElement.returnType;
return;
}
if (augmentation is PropertyInducingElementImpl &&
augmentedElement is PropertyInducingElementImpl) {
node.element = augmentedElement;
var augmentedNode =
libraryResolutionContext._variableNodes[augmentedElement];
if (augmentedNode != null) {
if (augmentedNode.initializer case var augmentedInitializer?) {
node.staticType = augmentedInitializer.staticType;
return;
}
}
}
}
node.staticType = InvalidTypeImpl.instance;
}
@override
void visitAugmentedInvocation(
covariant AugmentedInvocationImpl node, {
DartType contextType = UnknownInferredType.instance,
}) {
checkUnreachableNode(node);
var whyNotPromotedList = <Map<DartType, NonPromotionReason> Function()>[];
var enclosingAugmentation = _enclosingAugmentation;
var augmentationTarget = enclosingAugmentation?.augmentationTarget;
FunctionType? rawType;
if (augmentationTarget is ExecutableElementImpl) {
node.element = augmentationTarget;
rawType = augmentationTarget.type;
}
var returnType = AugmentedInvocationInferrer(
resolver: this,
node: node,
argumentList: node.arguments,
contextType: contextType,
whyNotPromotedList: whyNotPromotedList,
).resolveInvocation(rawType: rawType);
if (augmentationTarget is ExecutableElementImpl) {
node.staticType = returnType;
} else {
node.staticType = InvalidTypeImpl.instance;
}
}
@override
void visitAwaitExpression(AwaitExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
analyzeExpression(node.expression, _createFutureOr(contextType));
popRewrite();
typeAnalyzer.visitAwaitExpression(node as AwaitExpressionImpl);
_insertImplicitCallReference(
insertGenericFunctionInstantiation(node, contextType: contextType),
contextType: contextType);
}
@override
void visitBinaryExpression(BinaryExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
_binaryExpressionResolver.resolve(node as BinaryExpressionImpl,
contextType: contextType);
_insertImplicitCallReference(
insertGenericFunctionInstantiation(node, contextType: contextType),
contextType: contextType);
}
@override
void visitBlock(Block node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
DartType visitBlockFunctionBody(covariant BlockFunctionBodyImpl node,
{DartType? imposedType}) {
var oldBodyContext = _bodyContext;
try {
_bodyContext = BodyInferenceContext(
typeSystem: typeSystem, node: node, imposedType: imposedType);
checkUnreachableNode(node);
node.visitChildren(this);
return _finishFunctionBodyInference();
} finally {
_bodyContext = oldBodyContext;
}
}
@override
void visitBooleanLiteral(BooleanLiteral node) {
flowAnalysis.flow?.booleanLiteral(node, node.value);
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitBooleanLiteral(node as BooleanLiteralImpl);
}
@override
void visitBreakStatement(BreakStatement node) {
//
// We do not visit the label because it needs to be visited in the context
// of the statement.
//
checkUnreachableNode(node);
flowAnalysis.breakStatement(node);
}
@override
void visitCascadeExpression(covariant CascadeExpressionImpl node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
analyzeExpression(node.target, contextType);
var targetType = node.target.staticType ?? typeProvider.dynamicType;
popRewrite();
flowAnalysis.flow!.cascadeExpression_afterTarget(node.target, targetType,
isNullAware: node.isNullAware);
if (node.isNullAware) {
flowAnalysis.flow!.nullAwareAccess_rightBegin(node.target, targetType);
_unfinishedNullShorts.add(node.nullShortingTermination);
}
node.cascadeSections.accept(this);
typeAnalyzer.visitCascadeExpression(node);
nullShortingTermination(node);
flowAnalysis.flow!.cascadeExpression_end(node);
_insertImplicitCallReference(node, contextType: contextType);
nullSafetyDeadCodeVerifier.verifyCascadeExpression(node);
}
@override
void visitCatchClause(CatchClause node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitCatchClauseParameter(CatchClauseParameter node) {
node.visitChildren(this);
}
@override
void visitClassDeclaration(covariant ClassDeclarationImpl node) {
//
// Continue the class resolution.
//
var outerType = enclosingClass;
try {
enclosingClass = node.declaredElement;
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitClassDeclaration(node);
} finally {
enclosingClass = outerType;
}
baseOrFinalTypeVerifier.checkElement(
node.declaredElement!, node.implementsClause);
}
@override
void visitClassTypeAlias(covariant ClassTypeAliasImpl node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitClassTypeAlias(node);
baseOrFinalTypeVerifier.checkElement(
node.declaredElement!, node.implementsClause);
}
@override
void visitComment(Comment node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitCommentReference(CommentReference node) {
//
// We do not visit the expression because it needs to be visited in the
// context of the reference.
//
elementResolver.visitCommentReference(node);
}
@override
void visitCompilationUnit(CompilationUnit node) {
NodeList<Directive> directives = node.directives;
int directiveCount = directives.length;
for (int i = 0; i < directiveCount; i++) {
directives[i].accept(this);
}
NodeList<CompilationUnitMember> declarations = node.declarations;
int declarationCount = declarations.length;
for (int i = 0; i < declarationCount; i++) {
declarations[i].accept(this);
}
checkIdle();
}
@override
void visitConditionalExpression(ConditionalExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
Expression condition = node.condition;
var flow = flowAnalysis.flow;
flow?.conditional_conditionBegin();
analyzeExpression(node.condition, typeProvider.boolType);
condition = popRewrite()!;
var whyNotPromoted = flowAnalysis.flow?.whyNotPromoted(condition);
boolExpressionVerifier.checkForNonBoolCondition(condition,
whyNotPromoted: whyNotPromoted);
if (flow != null) {
flow.conditional_thenBegin(condition, node);
checkUnreachableNode(node.thenExpression);
}
analyzeExpression(node.thenExpression, contextType);
popRewrite();
nullSafetyDeadCodeVerifier.flowEnd(node.thenExpression);
Expression elseExpression = node.elseExpression;
if (flow != null) {
flow.conditional_elseBegin(
node.thenExpression, node.thenExpression.typeOrThrow);
checkUnreachableNode(elseExpression);
analyzeExpression(elseExpression, contextType);
} else {
analyzeExpression(elseExpression, contextType);
}
elseExpression = popRewrite()!;
typeAnalyzer.visitConditionalExpression(node as ConditionalExpressionImpl,
contextType: contextType);
if (flow != null) {
flow.conditional_end(
node, node.typeOrThrow, elseExpression, elseExpression.typeOrThrow);
nullSafetyDeadCodeVerifier.flowEnd(elseExpression);
}
_insertImplicitCallReference(node, contextType: contextType);
}
@override
void visitConfiguration(Configuration node) {
// Don't visit the children. For the time being we don't resolve anything
// inside the configuration.
}
@override
void visitConstructorDeclaration(covariant ConstructorDeclarationImpl node) {
var element = node.declaredElement!;
flowAnalysis.topLevelDeclaration_enter(node, node.parameters);
flowAnalysis.executableDeclaration_enter(node, node.parameters,
isClosure: false);
var returnType = element.type.returnType;
var outerFunction = _enclosingFunction;
var outerAugmentation = _enclosingAugmentation;
try {
_enclosingFunction = element;
_enclosingAugmentation = element;
assert(_thisType == null);
_setupThisType();
checkUnreachableNode(node);
node.documentationComment?.accept(this);
node.metadata.accept(this);
node.returnType.accept(this);
node.parameters.accept(this);
node.initializers.accept(this);
node.redirectedConstructor?.accept(this);
node.body.resolve(this, returnType is DynamicType ? null : returnType);
elementResolver.visitConstructorDeclaration(node);
} finally {
_enclosingFunction = outerFunction;
_enclosingAugmentation = outerAugmentation;
_thisType = null;
}
if (node.factoryKeyword != null) {
checkForBodyMayCompleteNormally(
body: node.body,
errorNode: node,
);
}
flowAnalysis.executableDeclaration_exit(node.body, false);
flowAnalysis.topLevelDeclaration_exit();
nullSafetyDeadCodeVerifier.flowEnd(node);
}
@override
void visitConstructorFieldInitializer(
covariant ConstructorFieldInitializerImpl node,
) {
var augmented = enclosingClass!.augmented;
//
// We visit the expression, but do not visit the field name because it needs
// to be visited in the context of the constructor field initializer node.
//
var fieldName = node.fieldName;
var fieldElement = augmented.getField(fieldName.name);
fieldName.staticElement = fieldElement;
var fieldType = fieldElement?.type ?? UnknownInferredType.instance;
var expression = node.expression;
analyzeExpression(expression, fieldType);
expression = popRewrite()!;
var whyNotPromoted = flowAnalysis.flow?.whyNotPromoted(expression);
if (fieldElement != null) {
var enclosingConstructor = enclosingFunction as ConstructorElement;
checkForFieldInitializerNotAssignable(node, fieldElement,
isConstConstructor: enclosingConstructor.isConst,
whyNotPromoted: whyNotPromoted);
}
}
@override
void visitConstructorName(ConstructorName node) {
node.type.accept(this);
elementResolver.visitConstructorName(node as ConstructorNameImpl);
}
@override
void visitConstructorReference(covariant ConstructorReferenceImpl node,
{DartType contextType = UnknownInferredType.instance}) {
_constructorReferenceResolver.resolve(node, contextType: contextType);
_insertImplicitCallReference(node, contextType: contextType);
}
@override
void visitConstructorSelector(ConstructorSelector node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitContinueStatement(ContinueStatement node) {
//
// We do not visit the label because it needs to be visited in the context
// of the statement.
//
checkUnreachableNode(node);
flowAnalysis.continueStatement(node);
}
@override
void visitDeclaredIdentifier(DeclaredIdentifier node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitDeclaredIdentifier(node);
}
@override
void visitDefaultFormalParameter(
covariant DefaultFormalParameterImpl node,
) {
checkUnreachableNode(node);
node.parameter.accept(this);
var defaultValue = node.defaultValue;
if (defaultValue != null) {
analyzeExpression(defaultValue,
node.declaredElement?.type ?? UnknownInferredType.instance);
popRewrite();
}
ParameterElement element = node.declaredElement!;
if (element is DefaultParameterElementImpl && node.isOfLocalFunction) {
element.constantInitializer = defaultValue;
}
}
@override
void visitDoStatement(DoStatement node) {
checkUnreachableNode(node);
var condition = node.condition;
flowAnalysis.flow?.doStatement_bodyBegin(node);
node.body.accept(this);
flowAnalysis.flow?.doStatement_conditionBegin();
analyzeExpression(condition, typeProvider.boolType);
condition = popRewrite()!;
var whyNotPromoted = flowAnalysis.flow?.whyNotPromoted(condition);
boolExpressionVerifier.checkForNonBoolCondition(condition,
whyNotPromoted: whyNotPromoted);
flowAnalysis.flow?.doStatement_end(condition);
}
@override
void visitDoubleLiteral(DoubleLiteral node) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitDoubleLiteral(node as DoubleLiteralImpl);
}
@override
DartType visitEmptyFunctionBody(EmptyFunctionBody node,
{DartType? imposedType}) {
if (!resolveOnlyCommentInFunctionBody) {
checkUnreachableNode(node);
node.visitChildren(this);
}
return imposedType ?? typeProvider.dynamicType;
}
@override
void visitEmptyStatement(EmptyStatement node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitEnumConstantArguments(EnumConstantArguments node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitEnumConstantDeclaration(
covariant EnumConstantDeclarationImpl node,
) {
node.documentationComment?.accept(this);
node.metadata.accept(this);
checkUnreachableNode(node);
var element = node.declaredElement!;
var initializer = element.constantInitializer;
if (initializer is InstanceCreationExpression) {
var constructorName = initializer.constructorName;
var constructorElement = constructorName.staticElement;
if (constructorElement != null) {
node.constructorElement = constructorElement;
if (constructorElement.isFactory) {
var constructorName = node.arguments?.constructorSelector?.name;
var errorTarget = constructorName ?? node.name;
errorReporter.atOffset(
offset: errorTarget.offset,
length: errorTarget.length,
errorCode:
CompileTimeErrorCode.ENUM_CONSTANT_INVOKES_FACTORY_CONSTRUCTOR,
);
}
} else {
if (constructorName.type.element is EnumElementImpl) {
var nameNode = node.arguments?.constructorSelector?.name;
if (nameNode != null) {
errorReporter.atNode(
nameNode,
CompileTimeErrorCode.UNDEFINED_ENUM_CONSTRUCTOR_NAMED,
arguments: [nameNode.name],
);
} else {
errorReporter.atToken(
node.name,
CompileTimeErrorCode.UNDEFINED_ENUM_CONSTRUCTOR_UNNAMED,
);
}
}
}
if (constructorElement != null) {
var arguments = node.arguments;
if (arguments != null) {
var argumentList = arguments.argumentList;
argumentList.correspondingStaticParameters =
ResolverVisitor.resolveArgumentsToParameters(
argumentList: argumentList,
parameters: constructorElement.parameters,
errorReporter: errorReporter,
);
} else if (definingLibrary.featureSet
.isEnabled(Feature.enhanced_enums)) {
var requiredParameterCount = constructorElement.parameters
.where((e) => e.isRequiredPositional)
.length;
if (requiredParameterCount != 0) {
_reportNotEnoughPositionalArguments(
token: node.name,
requiredParameterCount: requiredParameterCount,
actualArgumentCount: 0,
nameNode: node,
errorReporter: errorReporter);
}
}
}
}
var arguments = node.arguments;
if (arguments != null) {
var argumentList = arguments.argumentList;
for (var argument in argumentList.arguments) {
analyzeExpression(
argument,
argument.staticParameterElement?.type ??
UnknownInferredType.instance);
popRewrite();
}
arguments.typeArguments?.accept(this);
var whyNotPromotedList = <Map<DartType, NonPromotionReason> Function()>[];
checkForArgumentTypesNotAssignableInList(
argumentList, whyNotPromotedList);
}
elementResolver.visitEnumConstantDeclaration(node);
}
@override
void visitEnumDeclaration(EnumDeclaration node) {
//
// Continue the enum resolution.
//
var outerType = enclosingClass;
try {
enclosingClass = node.declaredElement;
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitEnumDeclaration(node);
} finally {
enclosingClass = outerType;
}
}
@override
void visitExportDirective(ExportDirective node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitExportDirective(node);
}
@override
DartType visitExpressionFunctionBody(
covariant ExpressionFunctionBodyImpl node,
{DartType? imposedType}) {
if (resolveOnlyCommentInFunctionBody) {
return imposedType ?? typeProvider.dynamicType;
}
var oldBodyContext = _bodyContext;
try {
var bodyContext = _bodyContext = BodyInferenceContext(
typeSystem: typeSystem, node: node, imposedType: imposedType);
checkUnreachableNode(node);
analyzeExpression(
node.expression,
bodyContext.contextType ?? UnknownInferredType.instance,
);
popRewrite();
flowAnalysis.flow?.handleExit();
bodyContext.addReturnExpression(node.expression);
return _finishFunctionBodyInference();
} finally {
_bodyContext = oldBodyContext;
}
}
@override
void visitExpressionStatement(ExpressionStatement node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitExtendsClause(ExtendsClause node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitExtensionDeclaration(ExtensionDeclaration node) {
var outerExtension = enclosingExtension;
try {
enclosingExtension = node.declaredElement!;
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitExtensionDeclaration(node);
} finally {
enclosingExtension = outerExtension;
}
}
@override
void visitExtensionOnClause(ExtensionOnClause node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitExtensionOverride(covariant ExtensionOverrideImpl node) {
var whyNotPromotedList = <Map<DartType, NonPromotionReason> Function()>[];
node.typeArguments?.accept(this);
var receiverContextType =
ExtensionMemberResolver(this).computeOverrideReceiverContextType(node);
InvocationInferrer<ExtensionOverrideImpl>(
resolver: this,
node: node,
argumentList: node.argumentList,
contextType: UnknownInferredType.instance,
whyNotPromotedList: whyNotPromotedList)
.resolveInvocation(
rawType: receiverContextType == null
? null
: FunctionTypeImpl(
typeFormals: const [],
parameters: [
ParameterElementImpl.synthetic(
null, receiverContextType, ParameterKind.REQUIRED)
],
returnType: DynamicTypeImpl.instance,
nullabilitySuffix: NullabilitySuffix.none));
extensionResolver.resolveOverride(node, whyNotPromotedList);
}
@override
void visitExtensionTypeDeclaration(
covariant ExtensionTypeDeclarationImpl node,
) {
var outerType = enclosingClass;
try {
enclosingClass = node.declaredElement;
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitExtensionTypeDeclaration(node);
} finally {
enclosingClass = outerType;
}
}
@override
void visitFieldDeclaration(FieldDeclaration node) {
try {
assert(_thisType == null);
_setupThisType();
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitFieldDeclaration(node);
} finally {
_thisType = null;
}
}
@override
void visitFieldFormalParameter(FieldFormalParameter node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitFieldFormalParameter(node);
}
@override
void visitForElement(
covariant ForElementImpl node, {
CollectionLiteralContext? context,
}) {
_forResolver.resolveElement(node, context);
}
@override
void visitFormalParameterList(FormalParameterList node) {
// Formal parameter lists can contain default values, which in turn contain
// expressions, so we need flow analysis to be available to process those
// expressions.
var isTopLevel = flowAnalysis.flow == null;
if (isTopLevel) {
flowAnalysis.topLevelDeclaration_enter(node, null);
}
checkUnreachableNode(node);
node.visitChildren(this);
if (isTopLevel) {
flowAnalysis.topLevelDeclaration_exit();
}
}
@override
void visitForStatement(ForStatement node) {
checkUnreachableNode(node);
_forResolver.resolveStatement(node as ForStatementImpl);
nullSafetyDeadCodeVerifier.flowEnd(node.body);
}
@override
void visitFunctionDeclaration(covariant FunctionDeclarationImpl node) {
bool isLocal = node.parent is FunctionDeclarationStatement;
var element = node.declaredElement!;
if (isLocal) {
flowAnalysis.flow!.functionExpression_begin(node);
} else {
flowAnalysis.topLevelDeclaration_enter(
node, node.functionExpression.parameters);
}
flowAnalysis.executableDeclaration_enter(
node,
node.functionExpression.parameters,
isClosure: isLocal,
);
var functionType = node.declaredElement!.type;
var outerFunction = _enclosingFunction;
var outerAugmentation = _enclosingAugmentation;
try {
_enclosingFunction = element;
if (!isLocal) {
if (element case AugmentableElement enclosingAugmentation) {
_enclosingAugmentation = enclosingAugmentation;
}
}
checkUnreachableNode(node);
node.documentationComment?.accept(this);
node.metadata.accept(this);
node.returnType?.accept(this);
analyzeExpression(node.functionExpression, functionType);
popRewrite();
elementResolver.visitFunctionDeclaration(node);
} finally {
_enclosingFunction = outerFunction;
_enclosingAugmentation = outerAugmentation;
}
if (!node.isSetter) {
checkForBodyMayCompleteNormally(
body: node.functionExpression.body,
errorNode: node.name,
);
}
flowAnalysis.executableDeclaration_exit(
node.functionExpression.body,
isLocal,
);
if (isLocal) {
flowAnalysis.flow!.functionExpression_end();
} else {
flowAnalysis.topLevelDeclaration_exit();
}
nullSafetyDeadCodeVerifier.flowEnd(node);
}
@override
void visitFunctionDeclarationStatement(FunctionDeclarationStatement node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitFunctionExpression(covariant FunctionExpressionImpl node,
{DartType contextType = UnknownInferredType.instance}) {
var outerFunction = _enclosingFunction;
_enclosingFunction = node.declaredElement;
_functionExpressionResolver.resolve(node, contextType: contextType);
insertGenericFunctionInstantiation(node, contextType: contextType);
_enclosingFunction = outerFunction;
}
@override
void visitFunctionExpressionInvocation(
covariant FunctionExpressionInvocationImpl node, {
DartType contextType = UnknownInferredType.instance,
}) {
analyzeExpression(node.function, UnknownInferredType.instance);
node.function = popRewrite()!;
var whyNotPromotedList = <Map<DartType, NonPromotionReason> Function()>[];
_functionExpressionInvocationResolver.resolve(node, whyNotPromotedList,
contextType: contextType);
nullShortingTermination(node);
var replacement =
insertGenericFunctionInstantiation(node, contextType: contextType);
checkForArgumentTypesNotAssignableInList(
node.argumentList, whyNotPromotedList);
_insertImplicitCallReference(replacement, contextType: contextType);
}
@override
void visitFunctionReference(FunctionReference node) {
_functionReferenceResolver.resolve(node as FunctionReferenceImpl);
}
@override
void visitFunctionTypeAlias(FunctionTypeAlias node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitFunctionTypeAlias(node);
}
@override
void visitFunctionTypedFormalParameter(FunctionTypedFormalParameter node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitFunctionTypedFormalParameter(node);
}
@override
void visitGenericFunctionType(GenericFunctionType node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitGenericTypeAlias(GenericTypeAlias node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitGenericTypeAlias(node);
}
@override
void visitHideCombinator(HideCombinator node) {}
@override
void visitIfElement(
covariant IfElementImpl node, {
CollectionLiteralContext? context,
}) {
var caseClause = node.caseClause;
if (caseClause != null) {
var guardedPattern = caseClause.guardedPattern;
analyzeIfCaseElement(
node: node,
expression: node.expression,
pattern: guardedPattern.pattern,
variables: guardedPattern.variables,
guard: guardedPattern.whenClause?.expression,
ifTrue: node.thenElement,
ifFalse: node.elseElement,
context: context,
);
// Stack: (Expression, Guard)
popRewrite(); // guard
popRewrite()!; // expression
} else {
analyzeIfElement(
node: node,
condition: node.expression,
ifTrue: node.thenElement,
ifFalse: node.elseElement,
context: context,
);
}
}
@override
void visitIfStatement(covariant IfStatementImpl node) {
checkUnreachableNode(node);
var caseClause = node.caseClause;
if (caseClause != null) {
var guardedPattern = caseClause.guardedPattern;
analyzeIfCaseStatement(
node,
node.expression,
guardedPattern.pattern,
guardedPattern.whenClause?.expression,
node.thenStatement,
node.elseStatement,
guardedPattern.variables,
);
// Stack: (Expression, Guard)
popRewrite(); // guard
popRewrite()!; // expression
} else {
analyzeIfStatement(
node,
node.expression,
node.thenStatement,
node.elseStatement,
);
}
}
@override
void visitImplementsClause(ImplementsClause node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitImplicitCallReference(ImplicitCallReference node) {
checkUnreachableNode(node);
analyzeExpression(node.expression, UnknownInferredType.instance);
popRewrite();
node.typeArguments?.accept(this);
}
@override
void visitImportDirective(ImportDirective node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitImportDirective(node as ImportDirectiveImpl);
}
@override
void visitIndexExpression(covariant IndexExpressionImpl node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
var target = node.target;
if (target != null) {
analyzeExpression(target, UnknownInferredType.instance);
popRewrite();
}
var targetType = node.realTarget.staticType;
startNullAwareIndexExpression(node);
var result = _propertyElementResolver.resolveIndexExpression(
node: node,
hasRead: true,
hasWrite: false,
);
var element = result.readElement;
node.staticElement = element as MethodElement?;
analyzeExpression(node.index, result.indexContextType);
popRewrite();
var whyNotPromoted = flowAnalysis.flow?.whyNotPromoted(node.index);
checkIndexExpressionIndex(
node.index,
readElement: result.readElement as ExecutableElement?,
writeElement: null,
whyNotPromoted: whyNotPromoted,
);
DartType type;
if (identical(targetType, NeverTypeImpl.instance)) {
type = NeverTypeImpl.instance;
} else if (element is MethodElement) {
type = element.returnType;
} else if (targetType is DynamicType) {
type = DynamicTypeImpl.instance;
} else {
type = InvalidTypeImpl.instance;
}
inferenceHelper.recordStaticType(node, type);
var replacement =
insertGenericFunctionInstantiation(node, contextType: contextType);
nullShortingTermination(node);
_insertImplicitCallReference(replacement, contextType: contextType);
nullSafetyDeadCodeVerifier.verifyIndexExpression(node);
}
@override
void visitInstanceCreationExpression(
covariant InstanceCreationExpressionImpl node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
_instanceCreationExpressionResolver.resolve(node, contextType: contextType);
_insertImplicitCallReference(node, contextType: contextType);
}
@override
void visitIntegerLiteral(IntegerLiteral node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitIntegerLiteral(node as IntegerLiteralImpl,
contextType: contextType);
}
@override
void visitInterpolationExpression(InterpolationExpression node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitInterpolationString(InterpolationString node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitIsExpression(covariant IsExpressionImpl node) {
checkUnreachableNode(node);
analyzeExpression(node.expression, UnknownInferredType.instance);
popRewrite();
node.type.accept(this);
typeAnalyzer.visitIsExpression(node);
flowAnalysis.isExpression(node);
}
@override
void visitLabel(Label node) {}
@override
void visitLabeledStatement(LabeledStatement node) {
flowAnalysis.labeledStatement_enter(node);
checkUnreachableNode(node);
node.visitChildren(this);
flowAnalysis.labeledStatement_exit(node);
}
@override
void visitLibraryAugmentationDirective(LibraryAugmentationDirective node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitLibraryAugmentationDirective(node);
}
@override
void visitLibraryDirective(LibraryDirective node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitLibraryDirective(node);
}
@override
void visitLibraryIdentifier(LibraryIdentifier node) {}
@override
void visitListLiteral(covariant ListLiteralImpl node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
_typedLiteralResolver.resolveListLiteral(node, contextType: contextType);
}
@override
void visitMapLiteralEntry(MapLiteralEntry node,
{CollectionLiteralContext? context}) {
checkUnreachableNode(node);
analyzeExpression(
node.key, context?.keyType ?? UnknownInferredType.instance);
popRewrite();
analyzeExpression(
node.value, context?.valueType ?? UnknownInferredType.instance);
popRewrite();
}
@override
void visitMethodDeclaration(covariant MethodDeclarationImpl node) {
var element = node.declaredElement!;
flowAnalysis.topLevelDeclaration_enter(node, node.parameters);
flowAnalysis.executableDeclaration_enter(node, node.parameters,
isClosure: false);
DartType returnType = element.returnType;
var outerFunction = _enclosingFunction;
var outerAugmentation = _enclosingAugmentation;
try {
_enclosingFunction = element;
if (element case AugmentableElement enclosingAugmentation) {
_enclosingAugmentation = enclosingAugmentation;
}
assert(_thisType == null);
_setupThisType();
checkUnreachableNode(node);
node.documentationComment?.accept(this);
node.metadata.accept(this);
node.returnType?.accept(this);
node.typeParameters?.accept(this);
node.parameters?.accept(this);
node.body.resolve(this, returnType is DynamicType ? null : returnType);
elementResolver.visitMethodDeclaration(node);
} finally {
_enclosingFunction = outerFunction;
_enclosingAugmentation = outerAugmentation;
_thisType = null;
}
if (!node.isSetter) {
checkForBodyMayCompleteNormally(
body: node.body,
errorNode: node.name,
);
}
flowAnalysis.executableDeclaration_exit(node.body, false);
flowAnalysis.topLevelDeclaration_exit();
nullSafetyDeadCodeVerifier.flowEnd(node);
}
@override
void visitMethodInvocation(covariant MethodInvocationImpl node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
var whyNotPromotedList = <Map<DartType, NonPromotionReason> Function()>[];
var target = node.target;
target?.accept(this);
target = node.target;
if (node.isNullAware) {
var flow = flowAnalysis.flow;
if (flow != null) {
if (target is SimpleIdentifierImpl &&
target.staticElement is InterfaceElement) {
// `?.` to access static methods is equivalent to `.`, so do nothing.
} else {
flow.nullAwareAccess_rightBegin(
target, node.realTarget!.staticType ?? typeProvider.dynamicType);
_unfinishedNullShorts.add(node.nullShortingTermination);
}
}
}
node.typeArguments?.accept(this);
var functionRewrite = elementResolver.visitMethodInvocation(node,
whyNotPromotedList: whyNotPromotedList, contextType: contextType);
if (functionRewrite != null) {
_resolveRewrittenFunctionExpressionInvocation(
functionRewrite, whyNotPromotedList,
contextType: contextType);
nullShortingTermination(node, discardType: true);
} else {
nullShortingTermination(node);
}
var replacement =
insertGenericFunctionInstantiation(node, contextType: contextType);
checkForArgumentTypesNotAssignableInList(
node.argumentList, whyNotPromotedList);
_insertImplicitCallReference(replacement, contextType: contextType);
nullSafetyDeadCodeVerifier.verifyMethodInvocation(node);
}
@override
void visitMixinDeclaration(covariant MixinDeclarationImpl node) {
//
// Continue the class resolution.
//
var outerType = enclosingClass;
try {
enclosingClass = node.declaredElement!;
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitMixinDeclaration(node);
} finally {
enclosingClass = outerType;
}
baseOrFinalTypeVerifier.checkElement(
node.declaredElement!, node.implementsClause);
}
@override
void visitMixinOnClause(MixinOnClause node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitNamedExpression(NamedExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
node.name.accept(this);
analyzeExpression(node.expression, contextType);
popRewrite();
typeAnalyzer.visitNamedExpression(node as NamedExpressionImpl);
// Any "why not promoted" information that flow analysis had associated with
// `node.expression` now needs to be forwarded to `node`, so that when
// `visitArgumentList` iterates through the arguments, it will find it.
flowAnalysis.flow?.forwardExpression(node, node.expression);
}
@override
void visitNamedType(NamedType node) {
// All TypeName(s) are already resolved, so we don't resolve it here.
// But there might be type arguments with Expression(s), such as default
// values for formal parameters of GenericFunctionType(s). These are
// invalid, but if they exist, they should be resolved.
node.typeArguments?.accept(this);
}
@override
void visitNativeClause(NativeClause node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
DartType visitNativeFunctionBody(NativeFunctionBody node,
{DartType? imposedType}) {
checkUnreachableNode(node);
node.visitChildren(this);
return imposedType ?? typeProvider.dynamicType;
}
@override
void visitNullLiteral(NullLiteral node) {
node.visitChildren(this);
typeAnalyzer.visitNullLiteral(node as NullLiteralImpl);
flowAnalysis.flow?.nullLiteral(node, node.typeOrThrow);
checkUnreachableNode(node);
}
@override
void visitParenthesizedExpression(ParenthesizedExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
analyzeExpression(node.expression, contextType);
popRewrite();
typeAnalyzer
.visitParenthesizedExpression(node as ParenthesizedExpressionImpl);
flowAnalysis.flow?.parenthesizedExpression(node, node.expression);
}
@override
void visitPartDirective(PartDirective node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitPartDirective(node);
}
@override
void visitPartOfDirective(PartOfDirective node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitPartOfDirective(node);
}
@override
void visitPatternAssignment(covariant PatternAssignmentImpl node) {
checkUnreachableNode(node);
var analysisResult =
analyzePatternAssignment(node, node.pattern, node.expression);
node.patternTypeSchema = analysisResult.patternSchema;
node.staticType = analysisResult.resolveShorting();
popRewrite(); // expression
}
@override
void visitPatternVariableDeclaration(
covariant PatternVariableDeclarationImpl node,
) {
var patternSchema = analyzePatternVariableDeclaration(
node, node.pattern, node.expression,
isFinal: node.keyword.keyword == Keyword.FINAL)
.patternSchema;
node.patternTypeSchema = patternSchema;
popRewrite(); // expression
}
@override
void visitPatternVariableDeclarationStatement(
PatternVariableDeclarationStatement node) {
checkUnreachableNode(node);
node.declaration.accept(this);
}
@override
void visitPostfixExpression(PostfixExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
_postfixExpressionResolver.resolve(node as PostfixExpressionImpl,
contextType: contextType);
_insertImplicitCallReference(
insertGenericFunctionInstantiation(node, contextType: contextType),
contextType: contextType);
}
@override
void visitPrefixedIdentifier(covariant PrefixedIdentifierImpl node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
var rewrittenPropertyAccess =
_prefixedIdentifierResolver.resolve(node, contextType: contextType);
if (rewrittenPropertyAccess != null) {
visitPropertyAccess(rewrittenPropertyAccess, contextType: contextType);
// We did record that `node` was replaced with `rewrittenPropertyAccess`.
// But if `rewrittenPropertyAccess` was itself rewritten, replace the
// rewrite result of `node`.
assert(() {
var rewrite = _replacements[rewrittenPropertyAccess];
if (rewrite != null) {
_replacements[node] = rewrite;
}
return true;
}());
return;
}
_insertImplicitCallReference(
insertGenericFunctionInstantiation(node, contextType: contextType),
contextType: contextType);
}
@override
void visitPrefixExpression(PrefixExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
_prefixExpressionResolver.resolve(node as PrefixExpressionImpl,
contextType: contextType);
_insertImplicitCallReference(
insertGenericFunctionInstantiation(node, contextType: contextType),
contextType: contextType);
}
@override
void visitPropertyAccess(covariant PropertyAccessImpl node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
var target = node.target;
if (target != null) {
analyzeExpression(target, UnknownInferredType.instance);
popRewrite();
}
startNullAwarePropertyAccess(node);
var result = _propertyElementResolver.resolvePropertyAccess(
node: node,
hasRead: true,
hasWrite: false,
);
var element = result.readElement;
var propertyName = node.propertyName;
propertyName.staticElement = element;
DartType type;
if (element is MethodElement) {
type = element.type;
} else if (element is PropertyAccessorElement && element.isGetter) {
type = result.getType!;
} else if (result.functionTypeCallType != null) {
type = result.functionTypeCallType!;
} else if (result.recordField != null) {
type = result.recordField!.type;
} else if (result.atDynamicTarget) {
type = DynamicTypeImpl.instance;
} else {
type = InvalidTypeImpl.instance;
}
if (!isConstructorTearoffsEnabled) {
// Only perform a generic function instantiation on a [PrefixedIdentifier]
// in pre-constructor-tearoffs code. In constructor-tearoffs-enabled code,
// generic function instantiation is performed at assignability check
// sites.
// TODO(srawlins): Switch all resolution to use the latter method, in a
// breaking change release.
type = inferenceHelper.inferTearOff(node, propertyName, type,
contextType: contextType);
}
inferenceHelper.recordStaticType(propertyName, type);
inferenceHelper.recordStaticType(node, type);
var replacement =
insertGenericFunctionInstantiation(node, contextType: contextType);
nullShortingTermination(node);
_insertImplicitCallReference(replacement, contextType: contextType);
nullSafetyDeadCodeVerifier.verifyPropertyAccess(node);
}
@override
void visitRecordLiteral(
covariant RecordLiteralImpl node, {
DartType contextType = UnknownInferredType.instance,
}) {
checkUnreachableNode(node);
_recordLiteralResolver.resolve(node, contextType: contextType);
}
@override
void visitRecordTypeAnnotation(covariant RecordTypeAnnotationImpl node) {
// All RecordTypeAnnotation(s) are already resolved, so we don't resolve
// it here. But there might be types with Expression(s), such as default
// values for formal parameters of GenericFunctionType(s). These are
// invalid, but if they exist, they should be resolved.
node.visitChildren(this);
}
@override
void visitRecordTypeAnnotationNamedField(
RecordTypeAnnotationNamedField node,
) {
node.visitChildren(this);
elementResolver.visitRecordTypeAnnotationNamedField(node);
}
@override
void visitRecordTypeAnnotationNamedFields(
RecordTypeAnnotationNamedFields node,
) {
node.visitChildren(this);
}
@override
void visitRecordTypeAnnotationPositionalField(
RecordTypeAnnotationPositionalField node,
) {
node.visitChildren(this);
elementResolver.visitRecordTypeAnnotationPositionalField(node);
}
@override
void visitRedirectingConstructorInvocation(
RedirectingConstructorInvocation node) {
//
// We visit the argument list, but do not visit the optional identifier
// because it needs to be visited in the context of the constructor
// invocation.
//
var whyNotPromotedList = <Map<DartType, NonPromotionReason> Function()>[];
elementResolver.visitRedirectingConstructorInvocation(
node as RedirectingConstructorInvocationImpl);
InvocationInferrer<RedirectingConstructorInvocationImpl>(
resolver: this,
node: node,
argumentList: node.argumentList,
contextType: UnknownInferredType.instance,
whyNotPromotedList: whyNotPromotedList)
.resolveInvocation(rawType: node.staticElement?.type);
checkForArgumentTypesNotAssignableInList(
node.argumentList, whyNotPromotedList);
}
@override
void visitRepresentationConstructorName(RepresentationConstructorName node) {}
@override
void visitRepresentationDeclaration(RepresentationDeclaration node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitRepresentationDeclaration(node);
}
@override
void visitRethrowExpression(RethrowExpression node) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitRethrowExpression(node as RethrowExpressionImpl);
flowAnalysis.flow?.handleExit();
}
@override
void visitReturnStatement(ReturnStatement node) {
checkUnreachableNode(node);
var expression = node.expression;
if (expression != null) {
analyzeExpression(
expression,
bodyContext?.contextType ?? UnknownInferredType.instance,
);
// Pick up the expression again in case it was rewritten.
expression = popRewrite();
}
bodyContext?.addReturnExpression(expression);
flowAnalysis.flow?.handleExit();
}
@override
void visitSetOrMapLiteral(SetOrMapLiteral node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
_typedLiteralResolver.resolveSetOrMapLiteral(node,
contextType: contextType);
}
@override
void visitShowCombinator(ShowCombinator node) {}
@override
void visitSimpleFormalParameter(SimpleFormalParameter node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitSimpleFormalParameter(node);
}
@override
void visitSimpleIdentifier(covariant SimpleIdentifierImpl node,
{DartType contextType = UnknownInferredType.instance}) {
_simpleIdentifierResolver.resolve(node, contextType: contextType);
_insertImplicitCallReference(
insertGenericFunctionInstantiation(node, contextType: contextType),
contextType: contextType);
}
@override
void visitSimpleStringLiteral(SimpleStringLiteral node) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitSimpleStringLiteral(node as SimpleStringLiteralImpl);
}
@override
void visitSpreadElement(SpreadElement node,
{CollectionLiteralContext? context}) {
var iterableType = context?.iterableType;
if (iterableType != null && node.isNullAware) {
iterableType = typeSystem.makeNullable(iterableType);
}
checkUnreachableNode(node);
analyzeExpression(
node.expression, iterableType ?? UnknownInferredType.instance);
popRewrite();
if (!node.isNullAware) {
nullableDereferenceVerifier.expression(
CompileTimeErrorCode.UNCHECKED_USE_OF_NULLABLE_VALUE_IN_SPREAD,
node.expression,
);
}
}
@override
void visitStringInterpolation(StringInterpolation node) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitStringInterpolation(node as StringInterpolationImpl);
}
@override
void visitSuperConstructorInvocation(SuperConstructorInvocation node) {
//
// We visit the argument list, but do not visit the optional identifier
// because it needs to be visited in the context of the constructor
// invocation.
//
var whyNotPromotedList = <Map<DartType, NonPromotionReason> Function()>[];
elementResolver.visitSuperConstructorInvocation(
node as SuperConstructorInvocationImpl);
InvocationInferrer<SuperConstructorInvocationImpl>(
resolver: this,
node: node,
argumentList: node.argumentList,
contextType: UnknownInferredType.instance,
whyNotPromotedList: whyNotPromotedList)
.resolveInvocation(rawType: node.staticElement?.type);
checkForArgumentTypesNotAssignableInList(
node.argumentList, whyNotPromotedList);
}
@override
void visitSuperExpression(SuperExpression node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitSuperExpression(node);
typeAnalyzer.visitSuperExpression(node as SuperExpressionImpl);
}
@override
void visitSuperFormalParameter(SuperFormalParameter node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitSwitchExpression(
covariant SwitchExpressionImpl node, {
DartType contextType = UnknownInferredType.instance,
}) {
analyzeExpression(node, contextType);
popRewrite();
}
@override
void visitSwitchStatement(covariant SwitchStatementImpl node) {
// Stack: ()
checkUnreachableNode(node);
var previousExhaustiveness = legacySwitchExhaustiveness;
analyzeSwitchStatement(node, node.expression, node.memberGroups.length);
// Stack: (Expression)
popRewrite();
// Stack: ()
legacySwitchExhaustiveness = previousExhaustiveness;
}
@override
void visitSymbolLiteral(SymbolLiteral node) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitSymbolLiteral(node as SymbolLiteralImpl);
}
@override
void visitThisExpression(ThisExpression node,
{DartType contextType = UnknownInferredType.instance}) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitThisExpression(node as ThisExpressionImpl);
_insertImplicitCallReference(node, contextType: contextType);
}
@override
void visitThrowExpression(ThrowExpression node) {
checkUnreachableNode(node);
node.visitChildren(this);
typeAnalyzer.visitThrowExpression(node as ThrowExpressionImpl);
flowAnalysis.flow?.handleExit();
}
@override
void visitTopLevelVariableDeclaration(TopLevelVariableDeclaration node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitTopLevelVariableDeclaration(node);
}
@override
void visitTryStatement(TryStatement node) {
checkUnreachableNode(node);
var flow = flowAnalysis.flow!;
var body = node.body;
var catchClauses = node.catchClauses;
var finallyBlock = node.finallyBlock;
if (finallyBlock != null) {
flow.tryFinallyStatement_bodyBegin();
}
if (catchClauses.isNotEmpty) {
flow.tryCatchStatement_bodyBegin();
}
body.accept(this);
nullSafetyDeadCodeVerifier.flowEnd(node.body);
nullSafetyDeadCodeVerifier.tryStatementEnter(node);
if (catchClauses.isNotEmpty) {
flow.tryCatchStatement_bodyEnd(body);
var catchLength = catchClauses.length;
for (var i = 0; i < catchLength; ++i) {
var catchClause = catchClauses[i];
nullSafetyDeadCodeVerifier.verifyCatchClause(catchClause);
flow.tryCatchStatement_catchBegin(
catchClause.exceptionParameter?.declaredElement,
catchClause.stackTraceParameter?.declaredElement,
);
catchClause.accept(this);
flow.tryCatchStatement_catchEnd();
nullSafetyDeadCodeVerifier.flowEnd(catchClause.body);
}
flow.tryCatchStatement_end();
}
nullSafetyDeadCodeVerifier.tryStatementExit(node);
if (finallyBlock != null) {
flow.tryFinallyStatement_finallyBegin(
catchClauses.isNotEmpty ? node : body);
finallyBlock.accept(this);
flow.tryFinallyStatement_end();
}
}
@override
void visitTypeArgumentList(TypeArgumentList node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitTypeLiteral(TypeLiteral node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitTypeParameter(TypeParameter node) {
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitTypeParameter(node);
}
@override
void visitTypeParameterList(TypeParameterList node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitVariableDeclaration(covariant VariableDeclarationImpl node) {
var element = node.declaredElement!;
var outerAugmentation = _enclosingAugmentation;
try {
if (element case AugmentableElement enclosingAugmentation) {
_enclosingAugmentation = enclosingAugmentation;
}
libraryResolutionContext._variableNodes[element] = node;
_variableDeclarationResolver.resolve(node);
} finally {
_enclosingAugmentation = outerAugmentation;
}
var initializer = node.initializer;
if (initializer != null) {
var parent = node.parent as VariableDeclarationList;
var declaredType = parent.type;
var initializerStaticType = initializer.typeOrThrow;
flowAnalysis.flow?.initialize(
element as PromotableElement, initializerStaticType, initializer,
isFinal: parent.isFinal,
isLate: parent.isLate,
isImplicitlyTyped: declaredType == null);
}
_checkTopLevelCycle(node);
}
@override
void visitVariableDeclarationList(VariableDeclarationList node) {
flowAnalysis.variableDeclarationList(node);
checkUnreachableNode(node);
node.visitChildren(this);
elementResolver.visitVariableDeclarationList(node);
}
@override
void visitVariableDeclarationStatement(VariableDeclarationStatement node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitWhileStatement(WhileStatement node) {
checkUnreachableNode(node);
Expression condition = node.condition;
flowAnalysis.flow?.whileStatement_conditionBegin(node);
analyzeExpression(condition, typeProvider.boolType);
condition = popRewrite()!;
var whyNotPromoted = flowAnalysis.flow?.whyNotPromoted(condition);
boolExpressionVerifier.checkForNonBoolCondition(node.condition,
whyNotPromoted: whyNotPromoted);
flowAnalysis.flow?.whileStatement_bodyBegin(node, condition);
node.body.accept(this);
flowAnalysis.flow?.whileStatement_end();
nullSafetyDeadCodeVerifier.flowEnd(node.body);
// TODO(brianwilkerson): If the loop can only be exited because the condition
// is false, then propagateFalseState(condition);
}
@override
void visitWithClause(WithClause node) {
checkUnreachableNode(node);
node.visitChildren(this);
}
@override
void visitYieldStatement(YieldStatement node) {
checkUnreachableNode(node);
_yieldStatementResolver.resolve(node);
}
/// Check whether [errorNode] is an `onError` callback in a
/// [Future.catchError] call, which might return an implicit `null`.
void _checkForFutureCatchErrorOnError(BlockFunctionBody errorNode) {
// Check for "body might complete normally" in a `Future.catchError`'s
//`onError` callback.
var parent = errorNode.parent?.parent;
if (parent is! ArgumentList) {
return;
}
var invocation = parent.parent;
if (invocation is! MethodInvocation) {
return;
}
var targetType = invocation.realTarget?.staticType;
if (invocation.methodName.name == 'catchError' &&
targetType is InterfaceType) {
var instanceOfFuture =
targetType.asInstanceOf(typeProvider.futureElement);
if (instanceOfFuture != null) {
var targetFutureType = instanceOfFuture.typeArguments.first;
var expectedReturnType = typeProvider.futureOrType(targetFutureType);
var returnTypeBase = typeSystem.futureOrBase(expectedReturnType);
if (returnTypeBase is DynamicType ||
returnTypeBase is UnknownInferredType ||
returnTypeBase is VoidType ||
returnTypeBase.isDartCoreNull) {
return;
}
errorReporter.atToken(
errorNode.block.leftBracket,
WarningCode.BODY_MIGHT_COMPLETE_NORMALLY_CATCH_ERROR,
arguments: [returnTypeBase],
);
}
}
}
void _checkTopLevelCycle(VariableDeclaration node) {
var element = node.declaredElement;
if (element is! PropertyInducingElementImpl) {
return;
}
// Errors on const are reported separately with
// [CompileTimeErrorCode.RECURSIVE_COMPILE_TIME_CONSTANT].
if (element.isConst) {
return;
}
var error = element.typeInferenceError;
if (error == null) {
return;
}
if (error.kind == TopLevelInferenceErrorKind.dependencyCycle) {
var argumentsText = error.arguments.join(', ');
errorReporter.atToken(
node.name,
CompileTimeErrorCode.TOP_LEVEL_CYCLE,
arguments: [node.name.lexeme, argumentsText],
);
}
}
/// Creates a union of `T | Future<T>`, unless `T` is already a
/// future-union, in which case it simply returns `T`.
DartType _createFutureOr(DartType type) {
if (type.isDartAsyncFutureOr) {
return type;
}
return typeProvider.futureOrType(type);
}
/// Helper function used to print information to the console in debug mode.
/// This method returns `true` so that it can be conveniently called inside of
/// an `assert` statement.
bool _debugPrint(String s) {
print(s);
return true;
}
DartType _finishFunctionBodyInference() {
var flow = flowAnalysis.flow;
return _bodyContext!.computeInferredReturnType(
endOfBlockIsReachable: flow == null || flow.isReachable,
);
}
/// Infers type arguments corresponding to [typeParameters] used it the
/// [declaredType], so that thr resulting type is a subtype of [contextType].
List<DartType> _inferTypeArguments({
required List<TypeParameterElement> typeParameters,
required AstNode errorNode,
required DartType declaredType,
required DartType contextType,
required AstNode? nodeForTesting,
}) {
var inferrer = GenericInferrer(
typeSystem,
typeParameters,
errorNode: errorNode,
genericMetadataIsEnabled: genericMetadataIsEnabled,
strictInference: analysisOptions.strictInference,
typeSystemOperations: flowAnalysis.typeOperations,
dataForTesting: inferenceHelper.dataForTesting,
);
inferrer.constrainReturnType(declaredType, contextType,
nodeForTesting: nodeForTesting);
return inferrer.chooseFinalTypes();
}
/// If `expression` should be treated as `expression.call`, inserts an
/// [ImplicitCallReference] node which wraps [expression].
void _insertImplicitCallReference(ExpressionImpl expression,
{required DartType contextType}) {
var parent = expression.parent;
if (_shouldSkipImplicitCallReferenceDueToForm(expression, parent)) {
return;
}
var staticType = expression.staticType;
if (staticType == null) {
return;
}
DartType context;
if (parent is AssignmentExpression) {
if (parent.writeType == null) return;
context = parent.writeType!;
} else {
context = contextType;
}
var callMethod = getImplicitCallMethod(staticType, context, expression);
if (callMethod == null) {
return;
}
// `expression` is to be treated as `expression.call`.
context = typeSystem.flatten(context);
var callMethodType = callMethod.type;
List<DartType> typeArgumentTypes;
if (isConstructorTearoffsEnabled &&
callMethodType.typeFormals.isNotEmpty &&
context is FunctionType) {
typeArgumentTypes = typeSystem.inferFunctionTypeInstantiation(
context,
callMethodType,
errorReporter: errorReporter,
errorNode: expression,
// If the constructor-tearoffs feature is enabled, then so is
// generic-metadata.
genericMetadataIsEnabled: true,
strictInference: analysisOptions.strictInference,
strictCasts: analysisOptions.strictCasts,
typeSystemOperations: flowAnalysis.typeOperations,
dataForTesting: inferenceHelper.dataForTesting,
nodeForTesting: expression,
);
if (typeArgumentTypes.isNotEmpty) {
callMethodType = callMethodType.instantiate(typeArgumentTypes);
}
} else {
typeArgumentTypes = [];
}
var callReference = ImplicitCallReferenceImpl(
expression: expression,
staticElement: callMethod,
typeArguments: null,
typeArgumentTypes: typeArgumentTypes,
);
replaceExpression(expression, callReference, parent: parent);
callReference.staticType = callMethodType;
}
/// Continues resolution of a [FunctionExpressionInvocation] that was created
/// from a rewritten [MethodInvocation]. The target function is already
/// resolved.
///
/// The specification says that `target.getter()` should be treated as an
/// ordinary method invocation. So, we need to perform the same null shorting
/// as for method invocations.
void _resolveRewrittenFunctionExpressionInvocation(
FunctionExpressionInvocation node,
List<WhyNotPromotedGetter> whyNotPromotedList,
{required DartType contextType}) {
var function = node.function;
if (function is PropertyAccess && function.isNullAware) {
var target = function.target;
if (target is SimpleIdentifier &&
target.staticElement is InterfaceElement) {
// `?.` to access static methods is equivalent to `.`, so do nothing.
} else {
flowAnalysis.flow!.nullAwareAccess_rightBegin(function,
function.realTarget.staticType ?? typeProvider.dynamicType);
_unfinishedNullShorts.add(node.nullShortingTermination);
}
}
_functionExpressionInvocationResolver.resolve(
node as FunctionExpressionInvocationImpl, whyNotPromotedList,
contextType: contextType);
nullShortingTermination(node);
}
void _setupThisType() {
final enclosingClass = this.enclosingClass;
if (enclosingClass != null) {
var augmented = enclosingClass.augmented;
_thisType = augmented.declaration.thisType;
} else {
final enclosingExtension = this.enclosingExtension;
if (enclosingExtension != null) {
_thisType = enclosingExtension.extendedType;
}
}
}
bool _shouldSkipImplicitCallReferenceDueToForm(
Expression expression, AstNode? parent) {
while (parent is ParenthesizedExpression) {
expression = parent;
parent = expression.parent;
}
if (parent is CascadeExpression && parent.target == expression) {
// Do not perform an "implicit tear-off conversion" here. It should only
// be performed on [parent]. See
// https://github.com/dart-lang/language/issues/1873.
return true;
}
if (parent is ConditionalExpression &&
(parent.thenExpression == expression ||
parent.elseExpression == expression)) {
// Do not perform an "implicit tear-off conversion" on the branches of a
// conditional expression.
return true;
}
if (parent is BinaryExpression &&
parent.operator.type == TokenType.QUESTION_QUESTION) {
// Do not perform an "implicit tear-off conversion" on the branches of a
// `??` operator.
return true;
}
return false;
}
/// Given an [argumentList] and the [parameters] related to the element that
/// will be invoked using those arguments, compute the list of parameters that
/// correspond to the list of arguments.
///
/// Returns the parameters that correspond to the arguments. If no parameter
/// matched an argument, that position will be `null` in the list.
static List<ParameterElement?> resolveArgumentsToParameters({
required ArgumentList argumentList,
required List<ParameterElement> parameters,
ErrorReporter? errorReporter,
ConstructorDeclaration? enclosingConstructor,
}) {
int requiredParameterCount = 0;
int unnamedParameterCount = 0;
List<ParameterElement> unnamedParameters = <ParameterElement>[];
Map<String, ParameterElement>? namedParameters;
int length = parameters.length;
for (int i = 0; i < length; i++) {
ParameterElement parameter = parameters[i];
if (parameter.isRequiredPositional) {
unnamedParameters.add(parameter);
unnamedParameterCount++;
requiredParameterCount++;
} else if (parameter.isOptionalPositional) {
unnamedParameters.add(parameter);
unnamedParameterCount++;
} else {
namedParameters ??= HashMap<String, ParameterElement>();
namedParameters[parameter.name] = parameter;
}
}
int unnamedIndex = 0;
NodeList<Expression> arguments = argumentList.arguments;
int argumentCount = arguments.length;
List<ParameterElement?> resolvedParameters =
List<ParameterElement?>.filled(argumentCount, null);
int positionalArgumentCount = 0;
bool noBlankArguments = true;
Expression? firstUnresolvedArgument;
Expression? lastPositionalArgument;
for (int i = 0; i < argumentCount; i++) {
Expression argument = arguments[i];
if (argument is! NamedExpression) {
if (argument is SimpleIdentifier && argument.name.isEmpty) {
noBlankArguments = false;
}
positionalArgumentCount++;
if (unnamedIndex < unnamedParameterCount) {
resolvedParameters[i] = unnamedParameters[unnamedIndex++];
} else {
firstUnresolvedArgument ??= argument;
}
lastPositionalArgument = argument;
}
}
Set<String>? usedNames;
if (enclosingConstructor != null) {
var result = verifySuperFormalParameters(
constructor: enclosingConstructor,
hasExplicitPositionalArguments: positionalArgumentCount != 0,
errorReporter: errorReporter,
);
positionalArgumentCount += result.positionalArgumentCount;
if (result.namedArgumentNames.isNotEmpty) {
usedNames = result.namedArgumentNames.toSet();
}
}
for (int i = 0; i < argumentCount; i++) {
Expression argument = arguments[i];
if (argument is NamedExpressionImpl) {
var nameNode = argument.name.label;
String name = nameNode.name;
var element = namedParameters != null ? namedParameters[name] : null;
if (element == null) {
errorReporter?.atNode(
nameNode,
CompileTimeErrorCode.UNDEFINED_NAMED_PARAMETER,
arguments: [name],
);
} else {
resolvedParameters[i] = element;
nameNode.staticElement = element;
}
usedNames ??= <String>{};
if (!usedNames.add(name)) {
errorReporter?.atNode(
nameNode,
CompileTimeErrorCode.DUPLICATE_NAMED_ARGUMENT,
arguments: [name],
);
}
}
}
if (positionalArgumentCount < requiredParameterCount && noBlankArguments) {
var parent = argumentList.parent;
if (errorReporter != null && parent != null) {
var token = lastPositionalArgument?.endToken.next ??
argumentList.leftParenthesis.next ??
argumentList.rightParenthesis;
_reportNotEnoughPositionalArguments(
token: token,
requiredParameterCount: requiredParameterCount,
actualArgumentCount: positionalArgumentCount,
nameNode: parent,
errorReporter: errorReporter);
}
} else if (positionalArgumentCount > unnamedParameterCount &&
noBlankArguments) {
ErrorCode errorCode;
int namedParameterCount = namedParameters?.length ?? 0;
int namedArgumentCount = usedNames?.length ?? 0;
if (namedParameterCount > namedArgumentCount) {
errorCode =
CompileTimeErrorCode.EXTRA_POSITIONAL_ARGUMENTS_COULD_BE_NAMED;
} else {
errorCode = CompileTimeErrorCode.EXTRA_POSITIONAL_ARGUMENTS;
}
if (firstUnresolvedArgument != null) {
errorReporter?.atNode(
firstUnresolvedArgument,
errorCode,
arguments: [unnamedParameterCount, positionalArgumentCount],
);
}
}
return resolvedParameters;
}
/// Debug-only: verifies that [list] is a modifiable list by setting its
/// length to itself.
///
/// For a normal list this is a no-op; for an unmodifiable (i.e. const) list,
/// this will cause an exception to be thrown.
static bool _isModifiableList(List<Object?> list) {
try {
list.length = list.length;
} catch (_) {
return false;
}
return true;
}
/// Report [CompileTimeErrorCode.NOT_ENOUGH_POSITIONAL_ARGUMENTS] or one of
/// its derivatives at the specified [token], considering the name of the
/// [nameNode].
static void _reportNotEnoughPositionalArguments(
{required Token token,
required int requiredParameterCount,
required int actualArgumentCount,
required AstNode nameNode,
required ErrorReporter errorReporter}) {
String? name;
if (nameNode is InstanceCreationExpression) {
var constructorName = nameNode.constructorName;
name = constructorName.name?.name ??
'${constructorName.type.name2.lexeme}.new';
} else if (nameNode is RedirectingConstructorInvocation) {
name = nameNode.constructorName?.name;
if (name == null) {
var staticElement = nameNode.staticElement;
if (staticElement != null) {
name = '${staticElement.returnType.getDisplayString()}.new';
}
}
} else if (nameNode is SuperConstructorInvocation) {
name = nameNode.constructorName?.name;
if (name == null) {
var staticElement = nameNode.staticElement;
if (staticElement != null) {
name = '${staticElement.returnType.getDisplayString()}.new';
}
}
} else if (nameNode is MethodInvocation) {
name = nameNode.methodName.name;
} else if (nameNode is FunctionExpressionInvocation) {
var function = nameNode.function;
if (function is SimpleIdentifier) {
name = function.name;
}
} else if (nameNode is EnumConstantArguments) {
var parent = nameNode.parent;
if (parent is EnumConstantDeclaration) {
var declaredElement = parent.declaredElement!;
name = declaredElement.type.getDisplayString();
}
} else if (nameNode is EnumConstantDeclaration) {
var declaredElement = nameNode.declaredElement!;
name = declaredElement.type.getDisplayString();
} else if (nameNode is Annotation) {
var nameNodeName = nameNode.name;
name = nameNodeName is PrefixedIdentifier
? nameNodeName.identifier.name
: '${nameNodeName.name}.new';
} else {
throw UnimplementedError('(${nameNode.runtimeType}) $nameNode');
}
var isPlural = requiredParameterCount > 1;
var arguments = <Object>[];
if (isPlural) {
arguments.add(requiredParameterCount);
arguments.add(actualArgumentCount);
}
ErrorCode errorCode;
if (name == null) {
errorCode = isPlural
? CompileTimeErrorCode.NOT_ENOUGH_POSITIONAL_ARGUMENTS_PLURAL
: CompileTimeErrorCode.NOT_ENOUGH_POSITIONAL_ARGUMENTS_SINGULAR;
} else {
errorCode = isPlural
? CompileTimeErrorCode.NOT_ENOUGH_POSITIONAL_ARGUMENTS_NAME_PLURAL
: CompileTimeErrorCode.NOT_ENOUGH_POSITIONAL_ARGUMENTS_NAME_SINGULAR;
arguments.add(name);
}
errorReporter.atToken(
token,
errorCode,
arguments: arguments,
);
}
}
/// Instances of the class `ScopeResolverVisitor` are used to resolve
/// [SimpleIdentifier]s to declarations using scoping rules.
///
// TODO(paulberry): migrate the responsibility for all scope resolution into
// this visitor.
class ScopeResolverVisitor extends UnifyingAstVisitor<void> {
/// The element for the library containing the compilation unit being visited.
final LibraryElementImpl definingLibrary;
/// The source representing the compilation unit being visited.
final Source source;
/// The object used to access the types from the core library.
final TypeProviderImpl typeProvider;
/// The error reporter that will be informed of any errors that are found
/// during resolution.
final ErrorReporter errorReporter;
/// The scope used to resolve identifiers.
Scope nameScope;
/// The scope of libraries imported by `@docImport`s.
final DocImportScope _docImportScope;
/// The scope used to resolve unlabeled `break` and `continue` statements.
ImplicitLabelScope _implicitLabelScope = ImplicitLabelScope.ROOT;
/// The scope used to resolve labels for `break` and `continue` statements, or
/// `null` if no labels have been defined in the current context.
LabelScope? labelScope;
/// The container with information about local variables.
final LocalVariableInfo _localVariableInfo = LocalVariableInfo();
/// If the current function is contained within a closure (a local function or
/// function expression inside another executable declaration), the element
/// representing the closure; otherwise `null`.
ExecutableElement? _enclosingClosure;
/// Initialize a newly created visitor to resolve the nodes in an AST node.
///
/// [definingLibrary] is the element for the library containing the node being
/// visited.
/// [source] is the source representing the compilation unit containing the
/// node being visited.
/// [typeProvider] is the object used to access the types from the core
/// library.
/// [errorListener] is the error listener that will be informed of any errors
/// that are found during resolution.
/// [nameScope] is the scope used to resolve identifiers in the node that will
/// first be visited.
/// [docImportLibraries] are the `@docImport` imported elements of this node's
/// library.
ScopeResolverVisitor(
this.definingLibrary,
this.source,
this.typeProvider,
AnalysisErrorListener errorListener, {
required this.nameScope,
List<LibraryElement> docImportLibraries = const [],
}) : errorReporter = ErrorReporter(errorListener, source),
_docImportScope = DocImportScope(nameScope, docImportLibraries);
/// Return the implicit label scope in which the current node is being
/// resolved.
ImplicitLabelScope get implicitLabelScope => _implicitLabelScope;
@override
void visitAssignedVariablePattern(AssignedVariablePattern node) {
var element = node.element;
if (element is PromotableElement) {
_localVariableInfo.potentiallyMutatedInScope.add(element);
}
}
@override
void visitBlock(covariant BlockImpl node) {
_withDeclaredLocals(node, node.statements, () {
super.visitBlock(node);
});
}
@override
void visitBlockFunctionBody(BlockFunctionBody node) {
ImplicitLabelScope implicitOuterScope = _implicitLabelScope;
try {
_implicitLabelScope = ImplicitLabelScope.ROOT;
super.visitBlockFunctionBody(node);
} finally {
_implicitLabelScope = implicitOuterScope;
}
}
@override
void visitBreakStatement(covariant BreakStatementImpl node) {
node.target = _lookupBreakOrContinueTarget(node, node.label, false);
}
@override
void visitCatchClause(CatchClause node) {
var exception = node.exceptionParameter;
if (exception != null) {
Scope outerScope = nameScope;
try {
nameScope = LocalScope(nameScope);
_define(exception.declaredElement!);
var stackTrace = node.stackTraceParameter;
if (stackTrace != null) {
_define(stackTrace.declaredElement!);
}
super.visitCatchClause(node);
} finally {
nameScope = outerScope;
}
} else {
super.visitCatchClause(node);
}
}
@override
void visitClassDeclaration(covariant ClassDeclarationImpl node) {
Scope outerScope = nameScope;
try {
ClassElement element = node.declaredElement!;
node.metadata.accept(this);
nameScope = TypeParameterScope(
nameScope,
element.typeParameters,
);
node.nameScope = nameScope;
visitClassDeclarationInScope(node);
nameScope = InterfaceScope(nameScope, element);
visitClassMembersInScope(node);
} finally {
nameScope = outerScope;
}
}
void visitClassDeclarationInScope(ClassDeclaration node) {
node.typeParameters?.accept(this);
node.extendsClause?.accept(this);
node.withClause?.accept(this);
node.implementsClause?.accept(this);
node.nativeClause?.accept(this);
}
void visitClassMembersInScope(ClassDeclarationImpl node) {
visitDocumentationComment(node.documentationComment);
node.members.accept(this);
}
@override
void visitClassTypeAlias(covariant ClassTypeAliasImpl node) {
node.metadata.accept(this);
Scope outerScope = nameScope;
try {
ClassElement element = node.declaredElement!;
nameScope = InterfaceScope(
TypeParameterScope(nameScope, element.typeParameters),
element,
);
visitClassTypeAliasInScope(node);
} finally {
nameScope = outerScope;
}
}
void visitClassTypeAliasInScope(ClassTypeAliasImpl node) {
// Note: we don't visit metadata because it's not inside the class type
// alias's type parameter scope. It was already visited in
// [visitClassTypeAlias].
visitDocumentationComment(node.documentationComment);
node.typeParameters?.accept(this);
node.superclass.accept(this);
node.withClause.accept(this);
node.implementsClause?.accept(this);
}
@override
void visitCompilationUnit(covariant CompilationUnitImpl node) {
node.nameScope = nameScope;
super.visitCompilationUnit(node);
}
@override
void visitConstructorDeclaration(covariant ConstructorDeclarationImpl node) {
node.body.localVariableInfo = _localVariableInfo;
Scope outerScope = nameScope;
try {
ConstructorElement element = node.declaredElement!;
node.metadata.accept(this);
node.returnType.accept(this);
node.parameters.accept(this);
try {
nameScope = ConstructorInitializerScope(
nameScope,
element,
);
node.initializers.accept(this);
visitDocumentationComment(node.documentationComment);
} finally {
nameScope = outerScope;
}
node.redirectedConstructor?.accept(this);
nameScope = FormalParameterScope(
nameScope,
element.parameters,
);
node.body.accept(this);
} finally {
nameScope = outerScope;
}
}
@override
void visitContinueStatement(covariant ContinueStatementImpl node) {
node.target = _lookupBreakOrContinueTarget(node, node.label, true);
}
@override
void visitDeclaredIdentifier(DeclaredIdentifier node) {
_define(node.declaredElement!);
super.visitDeclaredIdentifier(node);
}
/// Visits a documentation comment with a [DocImportScope] that encloses the
/// current [nameScope].
void visitDocumentationComment(CommentImpl? node) {
if (node == null) return;
Scope outerScope = nameScope;
Scope docImportInnerScope = _docImportScope.innerScope;
try {
_docImportScope.innerScope = nameScope;
nameScope = _docImportScope;
node.nameScope = nameScope;
node.accept(this);
} finally {
nameScope = outerScope;
_docImportScope.innerScope = docImportInnerScope;
}
}
@override
void visitDoStatement(DoStatement node) {
ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
try {
_implicitLabelScope = _implicitLabelScope.nest(node);
visitDoStatementInScope(node);
} finally {
_implicitLabelScope = outerImplicitScope;
}
}
void visitDoStatementInScope(DoStatement node) {
visitStatementInScope(node.body);
node.condition.accept(this);
}
@override
void visitEnumDeclaration(covariant EnumDeclarationImpl node) {
Scope outerScope = nameScope;
try {
var element = node.declaredElement!;
node.metadata.accept(this);
nameScope = TypeParameterScope(
nameScope,
element.typeParameters,
);
node.nameScope = nameScope;
visitEnumDeclarationInScope(node);
nameScope = InterfaceScope(nameScope, element);
visitEnumMembersInScope(node);
} finally {
nameScope = outerScope;
}
}
void visitEnumDeclarationInScope(EnumDeclaration node) {
node.typeParameters?.accept(this);
node.withClause?.accept(this);
node.implementsClause?.accept(this);
}
void visitEnumMembersInScope(covariant EnumDeclarationImpl node) {
visitDocumentationComment(node.documentationComment);
node.constants.accept(this);
node.members.accept(this);
}
@override
void visitExpressionFunctionBody(covariant ExpressionFunctionBodyImpl node) {
node.nameScope = nameScope;
super.visitExpressionFunctionBody(node);
}
@override
void visitExtensionDeclaration(covariant ExtensionDeclarationImpl node) {
Scope outerScope = nameScope;
try {
ExtensionElement element = node.declaredElement!;
node.metadata.accept(this);
nameScope = TypeParameterScope(
nameScope,
element.typeParameters,
);
node.nameScope = nameScope;
visitExtensionDeclarationInScope(node);
nameScope = ExtensionScope(nameScope, element);
visitExtensionMembersInScope(node);
} finally {
nameScope = outerScope;
}
}
void visitExtensionDeclarationInScope(ExtensionDeclaration node) {
node.typeParameters?.accept(this);
node.onClause?.accept(this);
}
void visitExtensionMembersInScope(ExtensionDeclarationImpl node) {
visitDocumentationComment(node.documentationComment);
node.members.accept(this);
}
@override
void visitExtensionTypeDeclaration(
covariant ExtensionTypeDeclarationImpl node,
) {
Scope outerScope = nameScope;
try {
var element = node.declaredElement!;
node.metadata.accept(this);
nameScope = TypeParameterScope(
nameScope,
element.typeParameters,
);
node.nameScope = nameScope;
node.typeParameters?.accept(this);
node.representation.accept(this);
node.implementsClause?.accept(this);
nameScope = InterfaceScope(nameScope, element);
visitDocumentationComment(node.documentationComment);
node.members.accept(this);
} finally {
nameScope = outerScope;
}
}
@override
void visitForEachPartsWithDeclaration(ForEachPartsWithDeclaration node) {
//
// We visit the iterator before the loop variable because the loop variable
// cannot be in scope while visiting the iterator.
//
node.iterable.accept(this);
node.loopVariable.accept(this);
}
@override
void visitForEachPartsWithPattern(
covariant ForEachPartsWithPatternImpl node,
) {
//
// We visit the iterator before the pattern because the pattern variables
// cannot be in scope while visiting the iterator.
//
node.iterable.accept(this);
for (var variable in node.variables) {
_define(variable);
}
node.pattern.accept(this);
}
@override
void visitForElement(covariant ForElementImpl node) {
Scope outerNameScope = nameScope;
try {
nameScope = LocalScope(nameScope);
node.nameScope = nameScope;
visitForElementInScope(node);
} finally {
nameScope = outerNameScope;
}
}
/// Visit the given [node] after it's scope has been created. This replaces
/// the normal call to the inherited visit method so that ResolverVisitor can
/// intervene when type propagation is enabled.
void visitForElementInScope(ForElement node) {
// TODO(brianwilkerson): Investigate the possibility of removing the
// visit...InScope methods now that type propagation is no longer done.
node.forLoopParts.accept(this);
node.body.accept(this);
}
@override
void visitFormalParameterList(FormalParameterList node) {
super.visitFormalParameterList(node);
// We finished resolving function signature, now include formal parameters
// scope. Note: we must not do this if the parent is a
// FunctionTypedFormalParameter, because in that case we aren't finished
// resolving the full function signature, just a part of it.
var parent = node.parent;
if (parent is FunctionExpression) {
nameScope = FormalParameterScope(
nameScope,
parent.declaredElement!.parameters,
);
} else if (parent is FunctionTypeAlias) {
var aliasedElement = parent.declaredElement!.aliasedElement;
var functionElement = aliasedElement as GenericFunctionTypeElement;
nameScope = FormalParameterScope(
nameScope,
functionElement.parameters,
);
} else if (parent is MethodDeclaration) {
nameScope = FormalParameterScope(
nameScope,
parent.declaredElement!.parameters,
);
}
}
@override
void visitForStatement(covariant ForStatementImpl node) {
Scope outerNameScope = nameScope;
ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
try {
nameScope = LocalScope(nameScope);
_implicitLabelScope = _implicitLabelScope.nest(node);
node.nameScope = nameScope;
visitForStatementInScope(node);
} finally {
nameScope = outerNameScope;
_implicitLabelScope = outerImplicitScope;
}
}
/// Visit the given [node] after it's scope has been created. This replaces
/// the normal call to the inherited visit method so that ResolverVisitor can
/// intervene when type propagation is enabled.
void visitForStatementInScope(ForStatement node) {
// TODO(brianwilkerson): Investigate the possibility of removing the
// visit...InScope methods now that type propagation is no longer done.
node.forLoopParts.accept(this);
visitStatementInScope(node.body);
}
@override
void visitFunctionDeclaration(covariant FunctionDeclarationImpl node) {
node.functionExpression.body.localVariableInfo = _localVariableInfo;
var outerClosure = _enclosingClosure;
Scope outerScope = nameScope;
try {
_enclosingClosure = node.parent is FunctionDeclarationStatement
? node.declaredElement
: null;
node.metadata.accept(this);
var element = node.declaredElement!;
nameScope = TypeParameterScope(
nameScope,
element.typeParameters,
);
node.nameScope = nameScope;
visitFunctionDeclarationInScope(node);
} finally {
nameScope = outerScope;
_enclosingClosure = outerClosure;
}
}
void visitFunctionDeclarationInScope(FunctionDeclaration node) {
// Note: we don't visit metadata because it's not inside the function's type
// parameter scope. It was already visited in [visitFunctionDeclaration].
node.returnType?.accept(this);
node.functionExpression.accept(this);
}
@override
void visitFunctionExpression(FunctionExpression node) {
var outerClosure = _enclosingClosure;
Scope outerScope = nameScope;
try {
if (node.parent is! FunctionDeclaration) {
(node.body as FunctionBodyImpl).localVariableInfo = _localVariableInfo;
_enclosingClosure = node.declaredElement;
}
var parent = node.parent;
if (parent is FunctionDeclarationImpl) {
// We have already created a function scope and don't need to do so again.
super.visitFunctionExpression(node);
visitDocumentationComment(parent.documentationComment);
return;
}
ExecutableElement element = node.declaredElement!;
nameScope = FormalParameterScope(
TypeParameterScope(nameScope, element.typeParameters),
element.parameters,
);
super.visitFunctionExpression(node);
} finally {
nameScope = outerScope;
_enclosingClosure = outerClosure;
}
}
@override
void visitFunctionTypeAlias(covariant FunctionTypeAliasImpl node) {
node.metadata.accept(this);
Scope outerScope = nameScope;
try {
var element = node.declaredElement!;
nameScope = TypeParameterScope(nameScope, element.typeParameters);
visitFunctionTypeAliasInScope(node);
} finally {
nameScope = outerScope;
}
}
void visitFunctionTypeAliasInScope(covariant FunctionTypeAliasImpl node) {
// Note: we don't visit metadata because it's not inside the function type
// alias's type parameter scope. It was already visited in
// [visitFunctionTypeAlias].
node.returnType?.accept(this);
node.typeParameters?.accept(this);
node.parameters.accept(this);
// Visiting the parameters added them to the scope as a side effect. So it
// is safe to visit the documentation comment now.
visitDocumentationComment(node.documentationComment);
}
@override
void visitFunctionTypedFormalParameter(
covariant FunctionTypedFormalParameterImpl node) {
node.metadata.accept(this);
Scope outerScope = nameScope;
try {
ParameterElement element = node.declaredElement!;
nameScope = TypeParameterScope(
nameScope,
element.typeParameters,
);
visitFunctionTypedFormalParameterInScope(node);
} finally {
nameScope = outerScope;
}
}
void visitFunctionTypedFormalParameterInScope(
FunctionTypedFormalParameterImpl node) {
// Note: we don't visit metadata because it's not inside the function typed
// formal parameter's type parameter scope. It was already visited in
// [visitFunctionTypedFormalParameter].
visitDocumentationComment(node.documentationComment);
node.returnType?.accept(this);
node.typeParameters?.accept(this);
node.parameters.accept(this);
}
@override
void visitGenericFunctionType(covariant GenericFunctionTypeImpl node) {
var type = node.type;
if (type == null) {
// The function type hasn't been resolved yet, so we can't create a scope
// for its parameters.
super.visitGenericFunctionType(node);
return;
}
Scope outerScope = nameScope;
try {
GenericFunctionTypeElement element = node.declaredElement!;
nameScope = TypeParameterScope(nameScope, element.typeParameters);
node.nameScope = nameScope;
super.visitGenericFunctionType(node);
} finally {
nameScope = outerScope;
}
}
@override
void visitGenericTypeAlias(covariant GenericTypeAliasImpl node) {
node.metadata.accept(this);
Scope outerScope = nameScope;
try {
var element = node.declaredElement as TypeAliasElement;
nameScope = TypeParameterScope(nameScope, element.typeParameters);
node.nameScope = nameScope;
visitGenericTypeAliasInScope(node);
var aliasedElement = element.aliasedElement;
if (aliasedElement is GenericFunctionTypeElement) {
nameScope = FormalParameterScope(
TypeParameterScope(nameScope, aliasedElement.typeParameters),
aliasedElement.parameters);
}
visitDocumentationComment(node.documentationComment);
} finally {
nameScope = outerScope;
}
}
void visitGenericTypeAliasInScope(GenericTypeAlias node) {
// Note: we don't visit metadata because it's not inside the generic type
// alias's type parameter scope. It was already visited in
// [visitGenericTypeAlias].
node.typeParameters?.accept(this);
node.type.accept(this);
}
@override
void visitGuardedPattern(covariant GuardedPatternImpl node) {
var patternVariables = node.variables.values.toList();
for (var variable in patternVariables) {
_define(variable);
}
node.pattern.accept(this);
for (var variable in patternVariables) {
variable.isVisitingWhenClause = true;
}
node.whenClause?.accept(this);
for (var variable in patternVariables) {
variable.isVisitingWhenClause = false;
}
}
@override
void visitIfElement(covariant IfElementImpl node) {
_visitIf(node);
}
@override
void visitIfStatement(covariant IfStatementImpl node) {
_visitIf(node);
}
@override
void visitLabeledStatement(LabeledStatement node) {
var outerScope = _addScopesFor(node.labels, node.unlabeled);
try {
super.visitLabeledStatement(node);
} finally {
labelScope = outerScope;
}
}
@override
void visitMethodDeclaration(covariant MethodDeclarationImpl node) {
node.body.localVariableInfo = _localVariableInfo;
node.metadata.accept(this);
Scope outerScope = nameScope;
try {
ExecutableElement element = node.declaredElement!;
nameScope = TypeParameterScope(
nameScope,
element.typeParameters,
);
node.nameScope = nameScope;
visitMethodDeclarationInScope(node);
} finally {
nameScope = outerScope;
}
}
void visitMethodDeclarationInScope(MethodDeclarationImpl node) {
// Note: we don't visit metadata because it's not inside the method's type
// parameter scope. It was already visited in [visitMethodDeclaration].
node.returnType?.accept(this);
node.typeParameters?.accept(this);
node.parameters?.accept(this);
// Visiting the parameters added them to the scope as a side effect. So it
// is safe to visit the documentation comment now.
visitDocumentationComment(node.documentationComment);
node.body.accept(this);
}
@override
void visitMethodInvocation(MethodInvocation node) {
// Only visit the method name if there's no real target (so this is an
// unprefixed function invocation, outside a cascade). This is the only
// circumstance in which the method name is meant to be looked up in the
// current scope.
node.target?.accept(this);
if (node.realTarget == null) {
node.methodName.accept(this);
}
node.typeArguments?.accept(this);
node.argumentList.accept(this);
}
@override
void visitMixinDeclaration(covariant MixinDeclarationImpl node) {
Scope outerScope = nameScope;
try {
var element = node.declaredElement!;
node.metadata.accept(this);
nameScope = TypeParameterScope(nameScope, element.typeParameters);
node.nameScope = nameScope;
visitMixinDeclarationInScope(node);
nameScope = InterfaceScope(nameScope, element);
visitMixinMembersInScope(node);
} finally {
nameScope = outerScope;
}
}
void visitMixinDeclarationInScope(MixinDeclaration node) {
node.typeParameters?.accept(this);
node.onClause?.accept(this);
node.implementsClause?.accept(this);
}
void visitMixinMembersInScope(MixinDeclarationImpl node) {
visitDocumentationComment(node.documentationComment);
node.members.accept(this);
}
@override
void visitNamedType(NamedType node) {
// All TypeName(s) are already resolved, so we don't resolve it here.
// But there might be type arguments with Expression(s), such as
// annotations on formal parameters of GenericFunctionType(s).
node.typeArguments?.accept(this);
}
@override
void visitPatternVariableDeclaration(
covariant PatternVariableDeclarationImpl node,
) {
for (var variable in node.elements) {
_define(variable);
}
super.visitPatternVariableDeclaration(node);
}
@override
void visitPrefixedIdentifier(PrefixedIdentifier node) {
// Do not visit the identifier after the `.`, since it is not meant to be
// looked up in the current scope.
node.prefix.accept(this);
}
@override
void visitPropertyAccess(PropertyAccess node) {
// Do not visit the property name, since it is not meant to be looked up in
// the current scope.
node.target?.accept(this);
}
@override
void visitSimpleIdentifier(covariant SimpleIdentifierImpl node) {
// Ignore if already resolved - declaration or type.
if (node.inDeclarationContext()) {
return;
}
// Ignore if qualified.
var parent = node.parent;
var scopeLookupResult = nameScope.lookup(node.name);
node.scopeLookupResult = scopeLookupResult;
// Ignore if it cannot be a reference to a local variable.
if (parent is FieldFormalParameter) {
return;
} else if (parent is ConstructorDeclaration && parent.returnType == node) {
return;
} else if (parent is ConstructorFieldInitializer &&
parent.fieldName == node) {
return;
}
if (parent is ConstructorName) {
return;
}
if (parent is Label) {
return;
}
// Prepare VariableElement.
var element = scopeLookupResult.getter;
if (element is! VariableElement) {
return;
}
// Must be local or parameter.
ElementKind kind = element.kind;
if (kind == ElementKind.LOCAL_VARIABLE || kind == ElementKind.PARAMETER) {
node.staticElement = element;
if (node.inSetterContext()) {
if (element is PatternVariableElementImpl &&
element.isVisitingWhenClause) {
errorReporter.atNode(
node,
CompileTimeErrorCode.PATTERN_VARIABLE_ASSIGNMENT_INSIDE_GUARD,
);
}
_localVariableInfo.potentiallyMutatedInScope.add(element);
}
}
if (element is JoinPatternVariableElementImpl) {
element.references.add(node);
}
}
/// Visit the given statement after it's scope has been created. This is used
/// by ResolverVisitor to correctly visit the 'then' and 'else' statements of
/// an 'if' statement.
///
/// @param node the statement to be visited
void visitStatementInScope(Statement? node) {
if (node is BlockImpl) {
// Don't create a scope around a block because the block will create it's
// own scope.
visitBlock(node);
} else if (node != null) {
Scope outerNameScope = nameScope;
try {
nameScope = LocalScope(nameScope);
node.accept(this);
} finally {
nameScope = outerNameScope;
}
}
}
@override
void visitSwitchExpression(covariant SwitchExpressionImpl node) {
node.expression.accept(this);
for (var case_ in node.cases) {
_withNameScope(() {
case_.nameScope = nameScope;
var guardedPattern = case_.guardedPattern;
var variables = guardedPattern.variables;
for (var variable in variables.values) {
_define(variable);
}
case_.accept(this);
});
}
}
@override
void visitSwitchStatement(covariant SwitchStatementImpl node) {
var outerScope = labelScope;
ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
try {
_implicitLabelScope = _implicitLabelScope.nest(node);
for (SwitchMember member in node.members) {
for (Label label in member.labels) {
SimpleIdentifier labelName = label.label;
LabelElement labelElement = labelName.staticElement as LabelElement;
labelScope =
LabelScope(labelScope, labelName.name, member, labelElement);
}
}
node.expression.accept(this);
for (var group in node.memberGroups) {
for (var member in group.members) {
if (member is SwitchCaseImpl) {
member.expression.accept(this);
} else if (member is SwitchPatternCaseImpl) {
_withNameScope(() {
member.guardedPattern.accept(this);
});
}
}
if (group.members.isEmpty) {
return;
}
var lastMember = group.members.last;
_withDeclaredLocals(lastMember, lastMember.statements, () {
for (var variable in group.variables.values) {
_define(variable);
}
lastMember.statements.accept(this);
});
}
} finally {
labelScope = outerScope;
_implicitLabelScope = outerImplicitScope;
}
}
@override
void visitVariableDeclaration(VariableDeclaration node) {
super.visitVariableDeclaration(node);
if (node.parent!.parent is ForParts) {
_define(node.declaredElement!);
}
}
@override
void visitWhileStatement(WhileStatement node) {
node.condition.accept(this);
ImplicitLabelScope outerImplicitScope = _implicitLabelScope;
try {
_implicitLabelScope = _implicitLabelScope.nest(node);
visitStatementInScope(node.body);
} finally {
_implicitLabelScope = outerImplicitScope;
}
}
/// Add scopes for each of the given labels.
///
/// @param labels the labels for which new scopes are to be added
/// @return the scope that was in effect before the new scopes were added
LabelScope? _addScopesFor(NodeList<Label> labels, AstNode node) {
var outerScope = labelScope;
for (Label label in labels) {
SimpleIdentifier labelNameNode = label.label;
String labelName = labelNameNode.name;
LabelElement labelElement = labelNameNode.staticElement as LabelElement;
labelScope = LabelScope(labelScope, labelName, node, labelElement);
}
return outerScope;
}
void _define(Element element) {
(nameScope as LocalScope).add(element);
}
/// Return the target of a break or continue statement, and update the static
/// element of its label (if any). The [parentNode] is the AST node of the
/// break or continue statement. The [labelNode] is the label contained in
/// that statement (if any). The flag [isContinue] is `true` if the node being
/// visited is a continue statement.
AstNode? _lookupBreakOrContinueTarget(
AstNode parentNode, SimpleIdentifierImpl? labelNode, bool isContinue) {
if (labelNode == null) {
return implicitLabelScope.getTarget(isContinue);
} else {
final labelScope = this.labelScope;
if (labelScope == null) {
// There are no labels in scope, so by definition the label is
// undefined.
errorReporter.atNode(
labelNode,
CompileTimeErrorCode.LABEL_UNDEFINED,
arguments: [labelNode.name],
);
return null;
}
var definingScope = labelScope.lookup(labelNode.name);
if (definingScope == null) {
// No definition of the given label name could be found in any
// enclosing scope.
errorReporter.atNode(
labelNode,
CompileTimeErrorCode.LABEL_UNDEFINED,
arguments: [labelNode.name],
);
return null;
}
// The target has been found.
labelNode.staticElement = definingScope.element;
ExecutableElement? labelContainer =
definingScope.element.thisOrAncestorOfType();
if (_enclosingClosure != null &&
!identical(labelContainer, _enclosingClosure)) {
errorReporter.atNode(
labelNode,
CompileTimeErrorCode.LABEL_IN_OUTER_SCOPE,
arguments: [labelNode.name],
);
}
var node = definingScope.node;
if (isContinue &&
node is! DoStatement &&
node is! ForStatement &&
node is! SwitchMember &&
node is! WhileStatement) {
errorReporter.atNode(
parentNode,
CompileTimeErrorCode.CONTINUE_LABEL_INVALID,
);
}
return node;
}
}
void _visitIf(IfElementOrStatementImpl node) {
node.expression.accept(this);
var caseClause = node.caseClause;
if (caseClause != null) {
var guardedPattern = caseClause.guardedPattern;
_withNameScope(() {
guardedPattern.accept(this);
node.ifTrue.accept(this);
});
node.ifFalse?.accept(this);
} else {
node.ifTrue.accept(this);
node.ifFalse?.accept(this);
}
}
void _withDeclaredLocals(
AstNodeWithNameScopeMixin node,
List<Statement> statements,
void Function() f,
) {
var outerScope = nameScope;
try {
var enclosedScope = LocalScope(nameScope);
BlockScope.elementsInStatements(statements).forEach(enclosedScope.add);
nameScope = enclosedScope;
node.nameScope = nameScope;
f();
} finally {
nameScope = outerScope;
}
}
/// Run [f] with the new name scope.
void _withNameScope(void Function() f) {
var current = nameScope;
try {
nameScope = LocalScope(current);
f();
} finally {
nameScope = current;
}
}
/// Return the [Scope] to use while resolving inside the [node].
///
/// Not every node has the scope set, for example we set the scopes for
/// blocks, but statements don't have separate scopes. The compilation unit
/// has the library scope.
static Scope? getNodeNameScope(AstNode node) =>
node is AstNodeWithNameScopeMixin ? node.nameScope : null;
}
/// Tracker for whether a `switch` statement has `default` or is on an
/// enumeration, and all the enum constants are covered.
class SwitchExhaustiveness {
/// If the switch is on an enumeration, the set of enum constants to cover.
/// Otherwise `null`.
final Set<FieldElement>? _enumConstants;
/// If the switch is on an enumeration, is `true` if the null value is
/// covered, because the switch expression type is non-nullable, or `null`
/// was covered explicitly.
bool _isNullEnumValueCovered = false;
bool isExhaustive = false;
factory SwitchExhaustiveness(DartType expressionType) {
if (expressionType is InterfaceType) {
var enum_ = expressionType.element;
if (enum_ is EnumElementImpl) {
return SwitchExhaustiveness._(
enum_.constants.toSet(),
expressionType.nullabilitySuffix == NullabilitySuffix.none,
);
}
}
return SwitchExhaustiveness._(null, false);
}
SwitchExhaustiveness._(this._enumConstants, this._isNullEnumValueCovered);
void visitSwitchExpressionCase(SwitchExpressionCaseImpl node) {
if (_enumConstants != null) {
ExpressionImpl? caseConstant;
var guardedPattern = node.guardedPattern;
if (guardedPattern.whenClause == null) {
var pattern = guardedPattern.pattern.unParenthesized;
if (pattern is ConstantPatternImpl) {
caseConstant = pattern.expression;
}
}
_handleCaseConstant(caseConstant);
}
}
void visitSwitchMember(SwitchStatementCaseGroup group) {
for (var node in group.members) {
if (_enumConstants != null) {
ExpressionImpl? caseConstant;
if (node is SwitchCaseImpl) {
caseConstant = node.expression;
} else if (node is SwitchPatternCaseImpl) {
var guardedPattern = node.guardedPattern;
if (guardedPattern.whenClause == null) {
var pattern = guardedPattern.pattern.unParenthesized;
if (pattern is ConstantPatternImpl) {
caseConstant = pattern.expression;
}
}
}
_handleCaseConstant(caseConstant);
} else if (node is SwitchDefault) {
isExhaustive = true;
}
}
}
void _handleCaseConstant(ExpressionImpl? caseConstant) {
if (caseConstant != null) {
var element = _referencedElement(caseConstant);
if (element is PropertyAccessorElement) {
_enumConstants!.remove(element.variable2);
}
if (caseConstant is NullLiteral) {
_isNullEnumValueCovered = true;
}
if (_enumConstants!.isEmpty && _isNullEnumValueCovered) {
isExhaustive = true;
}
}
}
static Element? _referencedElement(Expression expression) {
if (expression is ParenthesizedExpression) {
return _referencedElement(expression.expression);
} else if (expression is PrefixedIdentifier) {
return expression.staticElement;
} else if (expression is PropertyAccess) {
return expression.propertyName.staticElement;
} else if (expression is SimpleIdentifier) {
return expression.staticElement;
}
return null;
}
}
class _WhyNotPromotedVisitor
implements
NonPromotionReasonVisitor<List<DiagnosticMessage>, AstNode,
PromotableElement, DartType> {
final Source source;
final SyntacticEntity _errorEntity;
final FlowAnalysisDataForTesting? _dataForTesting;
PropertyAccessorElement? propertyReference;
DartType? propertyType;
_WhyNotPromotedVisitor(this.source, this._errorEntity, this._dataForTesting);
@override
List<DiagnosticMessage> visitDemoteViaExplicitWrite(
DemoteViaExplicitWrite<PromotableElement> reason) {
var node = reason.node as AstNode;
if (node is ForEachPartsWithIdentifier) {
node = node.identifier;
}
if (_dataForTesting != null) {
_dataForTesting.nonPromotionReasonTargets[node] = reason.shortName;
}
var variableName = reason.variable.name;
return [_contextMessageForWrite(variableName, node, reason)];
}
@override
List<DiagnosticMessage> visitPropertyNotPromotedForInherentReason(
PropertyNotPromotedForInherentReason<DartType> reason) {
var receiverElement = reason.propertyMember;
if (receiverElement is PropertyAccessorElement) {
var property = propertyReference = receiverElement;
propertyType = reason.staticType;
var propertyName = reason.propertyName;
String message = switch (reason.whyNotPromotable) {
shared.PropertyNonPromotabilityReason.isNotField =>
"'$propertyName' refers to a getter so it couldn't be promoted.",
shared.PropertyNonPromotabilityReason.isNotPrivate =>
"'$propertyName' refers to a public property so it couldn't be "
"promoted.",
shared.PropertyNonPromotabilityReason.isExternal =>
"'$propertyName' refers to an external field so it couldn't be "
"promoted.",
shared.PropertyNonPromotabilityReason.isNotFinal =>
"'$propertyName' refers to a non-final field so it couldn't be "
"promoted."
};
return [
DiagnosticMessageImpl(
filePath: property.source.fullName,
message: message,
offset: property.nonSynthetic.nameOffset,
length: property.nameLength,
url: reason.documentationLink.url),
if (!reason.fieldPromotionEnabled)
_fieldPromotionUnavailableMessage(property, propertyName)
];
} else {
assert(receiverElement == null,
'Unrecognized property element: ${receiverElement.runtimeType}');
return [];
}
}
@override
List<DiagnosticMessage> visitPropertyNotPromotedForNonInherentReason(
PropertyNotPromotedForNonInherentReason<DartType> reason) {
var receiverElement = reason.propertyMember;
if (receiverElement is PropertyAccessorElement) {
var property = propertyReference = receiverElement;
propertyType = reason.staticType;
var propertyName = reason.propertyName;
var library = receiverElement.library as LibraryElementImpl;
var fieldNonPromotabilityInfo = library.fieldNameNonPromotabilityInfo;
var fieldNameInfo = fieldNonPromotabilityInfo[reason.propertyName];
var messages = <DiagnosticMessage>[];
void addConflictMessage(
{required Element conflictingElement,
required String kind,
required Element enclosingElement,
required NonPromotionDocumentationLink link}) {
var enclosingKindName = enclosingElement.kind.displayName;
var enclosingName = enclosingElement.name;
var message = "'$propertyName' couldn't be promoted because there is a "
"conflicting $kind in $enclosingKindName '$enclosingName'";
var nonSyntheticElement = conflictingElement.nonSynthetic;
messages.add(DiagnosticMessageImpl(
filePath: nonSyntheticElement.source!.fullName,
message: message,
offset: nonSyntheticElement.nameOffset,
length: nonSyntheticElement.nameLength,
url: link.url));
}
if (fieldNameInfo != null) {
for (var field in fieldNameInfo.conflictingFields) {
addConflictMessage(
conflictingElement: field,
kind: 'non-promotable field',
enclosingElement: field.enclosingElement,
link:
NonPromotionDocumentationLink.conflictingNonPromotableField);
}
for (var getter in fieldNameInfo.conflictingGetters) {
addConflictMessage(
conflictingElement: getter,
kind: 'getter',
enclosingElement: getter.enclosingElement,
link: NonPromotionDocumentationLink.conflictingGetter);
}
for (var nsmClass in fieldNameInfo.conflictingNsmClasses) {
addConflictMessage(
conflictingElement: nsmClass,
kind: 'noSuchMethod forwarder',
enclosingElement: nsmClass,
link: NonPromotionDocumentationLink
.conflictingNoSuchMethodForwarder);
}
}
if (reason.fieldPromotionEnabled) {
// The only possible non-inherent reasons for field promotion to fail
// are because of conflicts and because field promotion is disabled. So
// if field promotion is enabled, the loops above should have found a
// conflict.
assert(messages.isNotEmpty);
} else {
messages.add(_fieldPromotionUnavailableMessage(property, propertyName));
}
return messages;
} else {
assert(receiverElement == null,
'Unrecognized property element: ${receiverElement.runtimeType}');
return [];
}
}
@override
List<DiagnosticMessage> visitThisNotPromoted(ThisNotPromoted reason) {
return [
DiagnosticMessageImpl(
filePath: source.fullName,
message: "'this' can't be promoted",
offset: _errorEntity.offset,
length: _errorEntity.length,
url: reason.documentationLink.url)
];
}
DiagnosticMessageImpl _contextMessageForWrite(String variableName,
AstNode node, DemoteViaExplicitWrite<PromotableElement> reason) {
return DiagnosticMessageImpl(
filePath: source.fullName,
message: "Variable '$variableName' could not be promoted due to an "
"assignment",
offset: node.offset,
length: node.length,
url: reason.documentationLink.url);
}
DiagnosticMessageImpl _fieldPromotionUnavailableMessage(
PropertyAccessorElement property, String propertyName) {
return DiagnosticMessageImpl(
filePath: property.source.fullName,
message: "'$propertyName' couldn't be promoted "
"because field promotion is only available in Dart 3.2 and "
"above.",
offset: property.nonSynthetic.nameOffset,
length: property.nameLength,
url: NonPromotionDocumentationLink.fieldPromotionUnavailable.url);
}
}