blob: d7a83c01333d05a225fa7ab702a253f6b92c4f6f [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/disassembler.h"
#include "vm/globals.h" // Needed here to get TARGET_ARCH_MIPS.
#if defined(TARGET_ARCH_MIPS)
#include "platform/assert.h"
namespace dart {
class MIPSDecoder : public ValueObject {
public:
MIPSDecoder(char* buffer, size_t buffer_size)
: buffer_(buffer),
buffer_size_(buffer_size),
buffer_pos_(0),
decode_failure_(false) {
buffer_[buffer_pos_] = '\0';
}
~MIPSDecoder() {}
// Writes one disassembled instruction into 'buffer' (0-terminated).
// Returns true if the instruction was successfully decoded, false otherwise.
void InstructionDecode(Instr* instr);
void set_decode_failure(bool b) { decode_failure_ = b; }
bool decode_failure() const { return decode_failure_; }
private:
// Bottleneck functions to print into the out_buffer.
void Print(const char* str);
// Printing of common values.
void PrintRegister(Register reg);
int FormatRegister(Instr* instr, const char* format);
int FormatOption(Instr* instr, const char* format);
void Format(Instr* instr, const char* format);
void Unknown(Instr* instr);
void DecodeSpecial(Instr* instr);
void DecodeSpecial2(Instr* instr);
// Convenience functions.
char* get_buffer() const { return buffer_; }
char* current_position_in_buffer() { return buffer_ + buffer_pos_; }
size_t remaining_size_in_buffer() { return buffer_size_ - buffer_pos_; }
char* buffer_; // Decode instructions into this buffer.
size_t buffer_size_; // The size of the character buffer.
size_t buffer_pos_; // Current character position in buffer.
bool decode_failure_; // Set to true when a failure to decode is detected.
DISALLOW_ALLOCATION();
DISALLOW_COPY_AND_ASSIGN(MIPSDecoder);
};
// Support for assertions in the MIPSDecoder formatting functions.
#define STRING_STARTS_WITH(string, compare_string) \
(strncmp(string, compare_string, strlen(compare_string)) == 0)
// Append the str to the output buffer.
void MIPSDecoder::Print(const char* str) {
char cur = *str++;
while (cur != '\0' && (buffer_pos_ < (buffer_size_ - 1))) {
buffer_[buffer_pos_++] = cur;
cur = *str++;
}
buffer_[buffer_pos_] = '\0';
}
static const char* reg_names[kNumberOfCpuRegisters] = {
"r0" , "r1" , "r2" , "r3" , "r4" , "r5" , "r6" , "r7" ,
"r8" , "r9" , "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
};
void MIPSDecoder::PrintRegister(Register reg) {
ASSERT(0 <= reg);
ASSERT(reg < kNumberOfCpuRegisters);
Print(reg_names[reg]);
}
// Handle all register based formatting in these functions to reduce the
// complexity of FormatOption.
int MIPSDecoder::FormatRegister(Instr* instr, const char* format) {
ASSERT(format[0] == 'r');
switch (format[1]) {
case 's': { // 'rs: Rs register
PrintRegister(instr->RsField());
return 2;
}
case 't': { // 'rt: Rt register
PrintRegister(instr->RtField());
return 2;
}
case 'd': { // 'rd: Rd register
PrintRegister(instr->RdField());
return 2;
}
}
UNREACHABLE();
return -1;
}
// FormatOption takes a formatting string and interprets it based on
// the current instructions. The format string points to the first
// character of the option string (the option escape has already been
// consumed by the caller.) FormatOption returns the number of
// characters that were consumed from the formatting string.
int MIPSDecoder::FormatOption(Instr* instr, const char* format) {
switch (format[0]) {
case 'c': {
ASSERT(STRING_STARTS_WITH(format, "code"));
buffer_pos_ += OS::SNPrint(current_position_in_buffer(),
remaining_size_in_buffer(),
"%d", instr->BreakCodeField());
return 4;
}
case 'h': {
ASSERT(STRING_STARTS_WITH(format, "hint"));
if (instr->SaField() == 0x10) {
// The high bit of the SA field is the only one that means something for
// JALR and JR. TODO(zra): Fill in the other cases for PREF if needed.
buffer_pos_ += OS::SNPrint(current_position_in_buffer(),
remaining_size_in_buffer(),
".hb");
} else if (instr->SaField() != 0) {
buffer_pos_ += OS::SNPrint(current_position_in_buffer(),
remaining_size_in_buffer(),
".unknown");
}
return 4;
}
case 'i': {
ASSERT(STRING_STARTS_WITH(format, "imm"));
if (format[3] == 'u') {
int32_t imm = instr->UImmField();
buffer_pos_ += OS::SNPrint(current_position_in_buffer(),
remaining_size_in_buffer(),
"0x%x",
imm);
} else {
ASSERT(STRING_STARTS_WITH(format, "imms"));
int32_t imm = instr->SImmField();
buffer_pos_ += OS::SNPrint(current_position_in_buffer(),
remaining_size_in_buffer(),
"%d",
imm);
}
return 4;
}
case 'r': {
return FormatRegister(instr, format);
}
case 's': {
ASSERT(STRING_STARTS_WITH(format, "sa"));
buffer_pos_ += OS::SNPrint(current_position_in_buffer(),
remaining_size_in_buffer(),
"%d",
instr->SaField());
return 2;
}
default: {
UNREACHABLE();
}
}
UNREACHABLE();
return -1;
}
// Format takes a formatting string for a whole instruction and prints it into
// the output buffer. All escaped options are handed to FormatOption to be
// parsed further.
void MIPSDecoder::Format(Instr* instr, const char* format) {
char cur = *format++;
while ((cur != 0) && (buffer_pos_ < (buffer_size_ - 1))) {
if (cur == '\'') { // Single quote is used as the formatting escape.
format += FormatOption(instr, format);
} else {
buffer_[buffer_pos_++] = cur;
}
cur = *format++;
}
buffer_[buffer_pos_] = '\0';
}
// For currently unimplemented decodings the disassembler calls Unknown(instr)
// which will just print "unknown" of the instruction bits.
void MIPSDecoder::Unknown(Instr* instr) {
Format(instr, "unknown");
set_decode_failure(true);
}
void MIPSDecoder::DecodeSpecial(Instr* instr) {
ASSERT(instr->OpcodeField() == SPECIAL);
switch (instr->FunctionField()) {
case ADDU: {
Format(instr, "addu 'rd, 'rs, 'rt");
break;
}
case AND: {
Format(instr, "and 'rd, 'rs, 'rt");
break;
}
case BREAK: {
Format(instr, "break 'code");
break;
}
case DIV: {
Format(instr, "div 'rs, 'rt");
break;
}
case DIVU: {
Format(instr, "divu 'rs, 'rt");
break;
}
case MFHI: {
Format(instr, "mfhi 'rd");
break;
}
case MFLO: {
Format(instr, "mflo 'rd");
break;
}
case SLL: {
if ((instr->RdField() == R0) &&
(instr->RtField() == R0) &&
(instr->SaField() == 0)) {
Format(instr, "nop");
} else {
Format(instr, "sll 'rd, 'rt, 'sa");
}
break;
}
case JR: {
Format(instr, "jr'hint 'rs");
break;
}
default: {
Unknown(instr);
break;
}
}
}
void MIPSDecoder::DecodeSpecial2(Instr* instr) {
ASSERT(instr->OpcodeField() == SPECIAL2);
switch (instr->FunctionField()) {
case CLO: {
Format(instr, "clo 'rd, 'rs");
break;
}
case CLZ: {
Format(instr, "clz 'rd, 'rs");
break;
}
default: {
Unknown(instr);
break;
}
}
}
void MIPSDecoder::InstructionDecode(Instr* instr) {
switch (instr->OpcodeField()) {
case SPECIAL: {
DecodeSpecial(instr);
break;
}
case SPECIAL2: {
DecodeSpecial2(instr);
break;
}
case ADDIU: {
Format(instr, "addiu 'rt, 'rs, 'imms");
break;
}
case ANDI: {
Format(instr, "andi 'rt, 'rs, 'immu");
break;
}
case LB: {
Format(instr, "lb 'rt, 'imms('rs)");
break;
}
case LBU: {
Format(instr, "lbu 'rt, 'imms('rs)");
break;
}
case LH: {
Format(instr, "lh 'rt, 'imms('rs)");
break;
}
case LUI: {
Format(instr, "lui 'rt, 'immu");
break;
}
case LW: {
Format(instr, "lw 'rt, 'imms('rs)");
break;
}
case ORI: {
Format(instr, "ori 'rt, 'rs, 'immu");
break;
}
case SB: {
Format(instr, "sb 'rt, 'imms('rs)");
break;
}
case SH: {
Format(instr, "sh 'rt, 'imms('rs)");
break;
}
case SW: {
Format(instr, "sw 'rt, 'imms('rs)");
break;
}
default: {
Unknown(instr);
break;
}
}
}
bool Disassembler::DecodeInstruction(char* hex_buffer, intptr_t hex_size,
char* human_buffer, intptr_t human_size,
int *out_instr_len, uword pc) {
MIPSDecoder decoder(human_buffer, human_size);
Instr* instr = Instr::At(pc);
decoder.InstructionDecode(instr);
OS::SNPrint(hex_buffer, hex_size, "%08x", instr->InstructionBits());
if (out_instr_len) {
*out_instr_len = Instr::kInstrSize;
}
return !decoder.decode_failure();
}
bool Disassembler::Disassemble(uword start,
uword end,
DisassemblyFormatter* formatter,
const Code::Comments& comments) {
ASSERT(formatter != NULL);
bool success = true;
char hex_buffer[kHexadecimalBufferSize]; // Instruction in hexadecimal form.
char human_buffer[kUserReadableBufferSize]; // Human-readable instruction.
uword pc = start;
intptr_t comment_finger = 0;
while (pc < end) {
const intptr_t offset = pc - start;
while (comment_finger < comments.Length() &&
comments.PCOffsetAt(comment_finger) <= offset) {
formatter->Print(
" ;; %s\n",
String::Handle(comments.CommentAt(comment_finger)).ToCString());
comment_finger++;
}
int instruction_length;
bool res = DecodeInstruction(hex_buffer, sizeof(hex_buffer),
human_buffer, sizeof(human_buffer),
&instruction_length, pc);
if (!res) {
success = false;
}
formatter->ConsumeInstruction(hex_buffer,
sizeof(hex_buffer),
human_buffer,
sizeof(human_buffer),
pc);
pc += instruction_length;
}
return success;
}
} // namespace dart
#endif // defined TARGET_ARCH_MIPS