blob: 64236b30932f23149a3bce4e8778efffd55394b3 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// Patch file for dart:math library.
import 'dart:_foreign_helper' show JS;
import 'dart:_js_helper' show patch, checkNum;
import 'dart:typed_data' show ByteData;
@patch
T min<T extends num>(T a, T b) => JS(
'returns:num;depends:none;effects:none;gvn:true',
r'Math.min(#, #)',
checkNum(a),
checkNum(b));
@patch
T max<T extends num>(T a, T b) => JS(
'returns:num;depends:none;effects:none;gvn:true',
r'Math.max(#, #)',
checkNum(a),
checkNum(b));
@patch
double sqrt(num x) => JS('num', r'Math.sqrt(#)', checkNum(x));
@patch
double sin(num radians) => JS('num', r'Math.sin(#)', checkNum(radians));
@patch
double cos(num radians) => JS('num', r'Math.cos(#)', checkNum(radians));
@patch
double tan(num radians) => JS('num', r'Math.tan(#)', checkNum(radians));
@patch
double acos(num x) => JS('num', r'Math.acos(#)', checkNum(x));
@patch
double asin(num x) => JS('num', r'Math.asin(#)', checkNum(x));
@patch
double atan(num x) => JS('num', r'Math.atan(#)', checkNum(x));
@patch
double atan2(num a, num b) =>
JS('num', r'Math.atan2(#, #)', checkNum(a), checkNum(b));
@patch
double exp(num x) => JS('num', r'Math.exp(#)', checkNum(x));
@patch
double log(num x) => JS('num', r'Math.log(#)', checkNum(x));
@patch
num pow(num x, num exponent) {
checkNum(x);
checkNum(exponent);
return JS('num', r'Math.pow(#, #)', x, exponent);
}
const int _POW2_32 = 0x100000000;
@patch
class Random {
static final Random _secureRandom = _JSSecureRandom();
@patch
factory Random([int? seed]) =>
(seed == null) ? const _JSRandom() : _Random(seed);
@patch
factory Random.secure() => _secureRandom;
}
class _JSRandom implements Random {
// The Dart2JS implementation of Random doesn't use a seed.
const _JSRandom();
int nextInt(int max) {
if (max <= 0 || max > _POW2_32) {
throw new RangeError('max must be in range 0 < max ≤ 2^32, was $max');
}
return JS('int', '(Math.random() * #) >>> 0', max);
}
/// Generates a positive random floating point value uniformly distributed on
/// the range from 0.0, inclusive, to 1.0, exclusive.
double nextDouble() => JS('double', 'Math.random()');
/// Generates a random boolean value.
bool nextBool() => JS('bool', 'Math.random() < 0.5');
}
class _Random implements Random {
// Constants used by the algorithm or masking.
static const double _POW2_53_D = 1.0 * (0x20000000000000);
static const double _POW2_27_D = 1.0 * (1 << 27);
static const int _MASK32 = 0xFFFFFFFF;
// State comprised of two unsigned 32 bit integers.
int _lo = 0;
int _hi = 0;
// Implements:
// uint64_t hash = 0;
// do {
// hash = hash * 1037 ^ mix64((uint64_t)seed);
// seed >>= 64;
// } while (seed != 0 && seed != -1); // Limits for pos/neg seed.
// if (hash == 0) {
// hash = 0x5A17;
// }
// _lo = hash & _MASK_32;
// _hi = hash >> 32;
// and then does four _nextState calls to shuffle bits around.
_Random(int seed) {
int empty_seed = 0;
if (seed < 0) {
empty_seed = -1;
}
do {
int low = seed & _MASK32;
seed = (seed - low) ~/ _POW2_32;
int high = seed & _MASK32;
seed = (seed - high) ~/ _POW2_32;
// Thomas Wang's 64-bit mix function.
// http://www.concentric.net/~Ttwang/tech/inthash.htm
// via. http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
// key = ~key + (key << 21);
int tmplow = low << 21;
int tmphigh = (high << 21) | (low >> 11);
tmplow = (~low & _MASK32) + tmplow;
low = tmplow & _MASK32;
high = (~high + tmphigh + ((tmplow - low) ~/ 0x100000000)) & _MASK32;
// key = key ^ (key >> 24).
tmphigh = high >> 24;
tmplow = (low >> 24) | (high << 8);
low ^= tmplow;
high ^= tmphigh;
// key = key * 265
tmplow = low * 265;
low = tmplow & _MASK32;
high = (high * 265 + (tmplow - low) ~/ 0x100000000) & _MASK32;
// key = key ^ (key >> 14);
tmphigh = high >> 14;
tmplow = (low >> 14) | (high << 18);
low ^= tmplow;
high ^= tmphigh;
// key = key * 21
tmplow = low * 21;
low = tmplow & _MASK32;
high = (high * 21 + (tmplow - low) ~/ 0x100000000) & _MASK32;
// key = key ^ (key >> 28).
tmphigh = high >> 28;
tmplow = (low >> 28) | (high << 4);
low ^= tmplow;
high ^= tmphigh;
// key = key + (key << 31);
tmplow = low << 31;
tmphigh = (high << 31) | (low >> 1);
tmplow += low;
low = tmplow & _MASK32;
high = (high + tmphigh + (tmplow - low) ~/ 0x100000000) & _MASK32;
// Mix end.
// seed = seed * 1037 ^ key;
tmplow = _lo * 1037;
_lo = tmplow & _MASK32;
_hi = (_hi * 1037 + (tmplow - _lo) ~/ 0x100000000) & _MASK32;
_lo ^= low;
_hi ^= high;
} while (seed != empty_seed);
if (_hi == 0 && _lo == 0) {
_lo = 0x5A17;
}
_nextState();
_nextState();
_nextState();
_nextState();
}
// The algorithm used here is Multiply with Carry (MWC) with a Base b = 2^32.
// http://en.wikipedia.org/wiki/Multiply-with-carry
// The constant A (0xFFFFDA61) is selected from "Numerical Recipes 3rd
// Edition" p.348 B1.
// Implements:
// var state = (A * _lo + _hi) & _MASK_64;
// _lo = state & _MASK_32;
// _hi = state >> 32;
void _nextState() {
// Simulate (0xFFFFDA61 * lo + hi) without overflowing 53 bits.
int tmpHi = 0xFFFF0000 * _lo; // At most 48 bits of significant result.
int tmpHiLo = tmpHi & _MASK32; // Get the lower 32 bits.
int tmpHiHi = tmpHi - tmpHiLo; // And just the upper 32 bits.
int tmpLo = 0xDA61 * _lo;
int tmpLoLo = tmpLo & _MASK32;
int tmpLoHi = tmpLo - tmpLoLo;
int newLo = tmpLoLo + tmpHiLo + _hi;
_lo = newLo & _MASK32;
int newLoHi = newLo - _lo;
_hi = ((tmpLoHi + tmpHiHi + newLoHi) ~/ _POW2_32) & _MASK32;
assert(_lo < _POW2_32);
assert(_hi < _POW2_32);
}
int nextInt(int max) {
if (max <= 0 || max > _POW2_32) {
throw new RangeError('max must be in range 0 < max ≤ 2^32, was $max');
}
if ((max & (max - 1)) == 0) {
// Fast case for powers of two.
_nextState();
return _lo & (max - 1);
}
int rnd32;
int result;
do {
_nextState();
rnd32 = _lo;
result = rnd32.remainder(max) as int; // % max;
} while ((rnd32 - result + max) >= _POW2_32);
return result;
}
double nextDouble() {
_nextState();
int bits26 = _lo & ((1 << 26) - 1);
_nextState();
int bits27 = _lo & ((1 << 27) - 1);
return (bits26 * _POW2_27_D + bits27) / _POW2_53_D;
}
bool nextBool() {
_nextState();
return (_lo & 1) == 0;
}
}
class _JSSecureRandom implements Random {
// Reused buffer with room enough for a double.
final _buffer = new ByteData(8);
_JSSecureRandom() {
var crypto = JS('', 'self.crypto');
if (crypto != null) {
var getRandomValues = JS('', '#.getRandomValues', crypto);
if (getRandomValues != null) {
return;
}
}
throw new UnsupportedError(
'No source of cryptographically secure random numbers available.');
}
/// Fill _buffer from [start] to `start + length` with random bytes.
void _getRandomBytes(int start, int length) {
JS('void', 'crypto.getRandomValues(#)',
_buffer.buffer.asUint8List(start, length));
}
bool nextBool() {
_getRandomBytes(0, 1);
return _buffer.getUint8(0).isOdd;
}
double nextDouble() {
_getRandomBytes(1, 7);
// Set top bits 12 of double to 0x3FF which is the exponent for numbers
// between 1.0 and 2.0.
_buffer.setUint8(0, 0x3F);
int highByte = _buffer.getUint8(1);
_buffer.setUint8(1, highByte | 0xF0);
// Buffer now contains double in the range [1.0-2.0)
// with 52 bits of entropy (not 53).
// To get 53 bits, we extract the 53rd bit from higthByte before
// overwriting it, and add that as a least significant bit.
// The getFloat64 method is big-endian as default.
double result = _buffer.getFloat64(0) - 1.0;
if (highByte & 0x10 != 0) {
result += 1.1102230246251565e-16; // pow(2,-53).
}
return result;
}
int nextInt(int max) {
if (max <= 0 || max > _POW2_32) {
throw new RangeError('max must be in range 0 < max ≤ 2^32, was $max');
}
int byteCount = 1;
if (max > 0xFF) {
byteCount++;
if (max > 0xFFFF) {
byteCount++;
if (max > 0xFFFFFF) {
byteCount++;
}
}
}
_buffer.setUint32(0, 0);
int start = 4 - byteCount;
int randomLimit = pow(256, byteCount) as int;
while (true) {
_getRandomBytes(start, byteCount);
// The getUint32 method is big-endian as default.
int random = _buffer.getUint32(0);
if (max & (max - 1) == 0) {
// Max is power of 2.
return random & (max - 1);
}
int result = random.remainder(max) as int;
// Ensure results have equal probability by rejecting values in the
// last range of k*max .. 256**byteCount.
// TODO: Consider picking a higher byte count if the last range is a
// significant portion of the entire range - a 50% chance of having
// to use two more bytes is no worse than always using one more.
if (random - result + max < randomLimit) {
return result;
}
}
}
}