blob: f217b53475253759112202666c68a6d8028b8ae1 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of _interceptors;
/// Interceptor class for all Dart [num] implementations.
///
/// JavaScript numbers (doubles) are used to represent both Dart [int] and Dart
/// [double] values. Some values, e.g. `3.0` are both Dart [int] values and Dart
/// [double] values. Other values are just [double] values, e.g. `3.1`.
///
/// There are two disjoint subclasses of [JSNumber]: [JSInt] and [JSNumNotInt].
///
/// Most methods are on [JSNumber]. Since some values can 'be' (i.e. implement)
/// both [int] and [double], the int and double operations have to be the same.
/// Consider the JavaScript value `0`. This is both Dart int 0, and Dart double
/// 0.0. From the dynamic type we can't tell the intention, so the
/// `0.0.toString()` on the web returns `0`, and not `0.0` like on the Dart VM
/// implementation. For `toString` we prefer the `int` version. For negation, we
/// prefer the `double` version (returning `-0.0`, not `0`). This is usually
/// hidden because the JavaScript `-0.0` value is also considered to implement
/// [int].
///
/// Note that none of the methods in [JSNumber] delegate to a method defined on
/// JSInt (or JSNumNotInt). This is exploited in
/// [tryComputeConstantInterceptor] to avoid most interceptor lookups on
/// numbers.
class JSNumber extends Interceptor implements double {
const JSNumber();
int compareTo(num b) {
if (b is! num) throw argumentErrorValue(b);
if (this < b) {
return -1;
} else if (this > b) {
return 1;
} else if (this == b) {
if (this == 0) {
bool bIsNegative = b.isNegative;
if (isNegative == bIsNegative) return 0;
if (isNegative) return -1;
return 1;
}
return 0;
} else if (isNaN) {
if (b.isNaN) {
return 0;
}
return 1;
} else {
return -1;
}
}
bool get isNegative => (this == 0) ? (1 / this) < 0 : this < 0;
bool get isNaN => JS(
'returns:bool;effects:none;depends:none;throws:never;gvn:true',
r'isNaN(#)',
this);
bool get isInfinite {
return JS('bool', r'# == (1/0)', this) || JS('bool', r'# == (-1/0)', this);
}
bool get isFinite => JS(
'returns:bool;effects:none;depends:none;throws:never;gvn:true',
r'isFinite(#)',
this);
JSNumber remainder(num b) {
if (b is! num) throw argumentErrorValue(b);
return JS('num', r'# % #', this, b);
}
// Use invoke_dynamic_specializer instead of inlining.
@pragma('dart2js:noInline')
JSNumber abs() => JS(
'returns:num;effects:none;depends:none;throws:never;gvn:true',
r'Math.abs(#)',
this);
JSNumber get sign => (this > 0
? 1
: this < 0
? -1
: this) as JSNumber;
static const int _MIN_INT32 = -0x80000000;
static const int _MAX_INT32 = 0x7FFFFFFF;
int toInt() {
if (this >= _MIN_INT32 && this <= _MAX_INT32) {
// 0 and -0.0 handled here.
return JS('int', '# | 0', this);
}
if (JS('bool', r'isFinite(#)', this)) {
return JS('int', r'# + 0', truncateToDouble()); // Converts -0.0 to +0.0.
}
// [this] is either NaN, Infinity or -Infinity.
throw new UnsupportedError(JS('String', '"" + # + ".toInt()"', this));
}
int truncate() => toInt();
int ceil() {
if (this >= 0) {
if (this <= _MAX_INT32) {
int truncated = JS('int', '# | 0', this); // converts -0.0 to 0.
return this == truncated ? truncated : truncated + 1;
}
} else {
if (this >= _MIN_INT32) {
return JS('int', '# | 0', this);
}
}
var d = JS('num', 'Math.ceil(#)', this);
if (JS('bool', r'isFinite(#)', d)) {
return JS('int', r'#', d);
}
// [this] is either NaN, Infinity or -Infinity.
throw new UnsupportedError(JS('String', '"" + # + ".ceil()"', this));
}
int floor() {
if (this >= 0) {
if (this <= _MAX_INT32) {
return JS('int', '# | 0', this);
}
} else {
if (this >= _MIN_INT32) {
int truncated = JS('int', '# | 0', this);
return this == truncated ? truncated : truncated - 1;
}
}
var d = JS('num', 'Math.floor(#)', this);
if (JS('bool', r'isFinite(#)', d)) {
return JS('int', r'#', d);
}
// [this] is either NaN, Infinity or -Infinity.
throw new UnsupportedError(JS('String', '"" + # + ".floor()"', this));
}
int round() {
if (this > 0) {
// This path excludes the special cases -0.0, NaN and -Infinity, leaving
// only +Infinity, for which a direct test is faster than [isFinite].
if (JS('bool', r'# !== (1/0)', this)) {
return JS('int', r'Math.round(#)', this);
}
} else if (JS('bool', '# > (-1/0)', this)) {
// This test excludes NaN and -Infinity, leaving only -0.0.
//
// Subtraction from zero rather than negation forces -0.0 to 0.0 so code
// inside Math.round and code to handle result never sees -0.0, which on
// some JavaScript VMs can be a slow path.
return JS('int', r'0 - Math.round(0 - #)', this);
}
// [this] is either NaN, Infinity or -Infinity.
throw new UnsupportedError(JS('String', '"" + # + ".round()"', this));
}
double ceilToDouble() => JS('num', r'Math.ceil(#)', this);
double floorToDouble() => JS('num', r'Math.floor(#)', this);
double roundToDouble() {
if (this < 0) {
return JS('num', r'-Math.round(-#)', this);
} else {
return JS('num', r'Math.round(#)', this);
}
}
double truncateToDouble() => this < 0 ? ceilToDouble() : floorToDouble();
num clamp(lowerLimit, upperLimit) {
if (lowerLimit is! num) throw argumentErrorValue(lowerLimit);
if (upperLimit is! num) throw argumentErrorValue(upperLimit);
if (lowerLimit.compareTo(upperLimit) > 0) {
throw argumentErrorValue(lowerLimit);
}
if (this.compareTo(lowerLimit) < 0) return lowerLimit;
if (this.compareTo(upperLimit) > 0) return upperLimit;
return this;
}
// The return type is intentionally omitted to avoid type checker warnings
// from assigning JSNumber to double.
toDouble() => this;
String toStringAsFixed(int fractionDigits) {
checkInt(fractionDigits);
if (fractionDigits < 0 || fractionDigits > 20) {
throw new RangeError.range(fractionDigits, 0, 20, 'fractionDigits');
}
String result = JS('String', r'#.toFixed(#)', this, fractionDigits);
if (this == 0 && isNegative) return '-$result';
return result;
}
String toStringAsExponential([int? fractionDigits]) {
String result;
if (fractionDigits != null) {
checkInt(fractionDigits);
if (fractionDigits < 0 || fractionDigits > 20) {
throw new RangeError.range(fractionDigits, 0, 20, 'fractionDigits');
}
result = JS('String', r'#.toExponential(#)', this, fractionDigits);
} else {
result = JS('String', r'#.toExponential()', this);
}
if (this == 0 && isNegative) return '-$result';
return result;
}
String toStringAsPrecision(int precision) {
checkInt(precision);
if (precision < 1 || precision > 21) {
throw new RangeError.range(precision, 1, 21, 'precision');
}
String result = JS('String', r'#.toPrecision(#)', this, precision);
if (this == 0 && isNegative) return '-$result';
return result;
}
String toRadixString(int radix) {
checkInt(radix);
if (radix < 2 || radix > 36) {
throw new RangeError.range(radix, 2, 36, 'radix');
}
String result = JS('String', r'#.toString(#)', this, radix);
const int rightParenCode = 0x29;
if (result.codeUnitAt(result.length - 1) != rightParenCode) {
return result;
}
return _handleIEtoString(result);
}
static String _handleIEtoString(String result) {
// Result is probably IE's untraditional format for large numbers,
// e.g., "8.0000000000008(e+15)" for 0x8000000000000800.toString(16).
List? match = JS('JSArray|Null',
r'/^([\da-z]+)(?:\.([\da-z]+))?\(e\+(\d+)\)$/.exec(#)', result);
if (match == null) {
// Then we don't know how to handle it at all.
throw new UnsupportedError('Unexpected toString result: $result');
}
result = JS('String', '#', match[1]);
int exponent = JS('int', '+#', match[3]);
if (match[2] != null) {
result = JS('String', '# + #', result, match[2]);
exponent -= JS<int>('int', '#.length', match[2]);
}
return result + '0' * exponent;
}
// Note: if you change this, also change the function [S].
String toString() {
if (this == 0 && JS('bool', '(1 / #) < 0', this)) {
return '-0.0';
} else {
return JS('String', r'"" + (#)', this);
}
}
int get hashCode {
int intValue = JS('int', '# | 0', this);
// Fast exit for integers in signed 32-bit range. Masking converts -0.0 to 0
// and ensures that result fits in JavaScript engine's Smi range.
if (this == intValue) return 0x1FFFFFFF & intValue;
// We would like to access the exponent and mantissa as integers but there
// are no JavaScript operations that do this, so use log2-floor-pow-divide
// to extract the values.
num absolute = JS('num', 'Math.abs(#)', this);
num lnAbsolute = JS('num', 'Math.log(#)', absolute);
num log2 = lnAbsolute / ln2;
// Floor via '# | 0' converts NaN to zero so the final result is not NaN.
int floorLog2 = JS('int', '# | 0', log2);
num factor = JS('num', 'Math.pow(2, #)', floorLog2);
num scaled = absolute < 1 ? absolute / factor : factor / absolute;
// [scaled] is in the range [0.5, 1].
// Multiply and truncate to pick up all the mantissa bits. Multiplying by
// 0x20000000000000 (which has 53 zero bits) converts the mantissa into an
// integer. There are interesting subsets where all the bit variance is in
// the most significant bits of the mantissa (e.g. 0.5, 0.625, 0.75), so we
// need to mix in the most significant bits. We do this by scaling with a
// constant that has many bits set to use the multiplier to mix in bits from
// all over the mantissa into low positions.
num rescaled1 = scaled * 0x20000000000000;
num rescaled2 = scaled * 0x0C95A6C285A6C9;
int d1 = JS('int', '# | 0', rescaled1);
int d2 = JS('int', '# | 0', rescaled2);
// Mix in exponent to distinguish e.g. 1.25 from 2.5.
int d3 = floorLog2;
int h = 0x1FFFFFFF & ((d1 + d2) * (601 * 997) + d3 * (1259));
return h;
}
JSNumber operator -() => JS('num', r'-#', this);
JSNumber operator +(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('num', '# + #', this, other);
}
JSNumber operator -(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('num', '# - #', this, other);
}
double operator /(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('num', '# / #', this, other);
}
JSNumber operator *(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('num', '# * #', this, other);
}
JSNumber operator %(num other) {
if (other is! num) throw argumentErrorValue(other);
// Euclidean Modulo.
JSNumber result = JS<JSNumber>('JSNumber', r'# % #', this, other);
if (result == 0) return JS('num', '0'); // Make sure we don't return -0.0.
if (result > 0) return result;
if (other < 0) {
return JS<JSNumber>('JSNumber', '# - #', result, other);
} else {
return JS<JSNumber>('JSNumber', '# + #', result, other);
}
}
bool _isInt32(value) => JS('bool', '(# | 0) === #', value, value);
int operator ~/(num other) {
if (other is! num) throw argumentErrorValue(other);
if (false) _tdivFast(other); // Ensure resolution.
if (_isInt32(this)) {
if (other >= 1 || other < -1) {
return JS('int', r'(# / #) | 0', this, other);
}
}
return _tdivSlow(other);
}
int _tdivFast(num other) {
// [other] is known to be a number outside the range [-1, 1).
return _isInt32(this)
? JS('int', r'(# / #) | 0', this, other)
: _tdivSlow(other);
}
int _tdivSlow(num other) {
num quotient = JS('num', r'# / #', this, other);
if (quotient >= _MIN_INT32 && quotient <= _MAX_INT32) {
// This path includes -0.0 and +0.0.
return JS('int', '# | 0', quotient);
}
if (quotient > 0) {
// This path excludes the special cases -0.0, NaN and -Infinity, leaving
// only +Infinity, for which a direct test is faster than [isFinite].
if (JS('bool', r'# !== (1/0)', quotient)) {
return JS('int', r'Math.floor(#)', quotient);
}
} else if (JS('bool', '# > (-1/0)', quotient)) {
// This test excludes NaN and -Infinity.
return JS('int', r'Math.ceil(#)', quotient);
}
// [quotient] is either NaN, Infinity or -Infinity.
throw new UnsupportedError(
'Result of truncating division is $quotient: $this ~/ $other');
}
// TODO(ngeoffray): Move the bit operations below to [JSInt] and
// make them take an int. Because this will make operations slower,
// we define these methods on number for now but we need to decide
// the grain at which we do the type checks.
num operator <<(num other) {
if (other is! num) throw argumentErrorValue(other);
if (other < 0) throw argumentErrorValue(other);
return _shlPositive(other);
}
num _shlPositive(num other) {
// JavaScript only looks at the last 5 bits of the shift-amount. Shifting
// by 33 is hence equivalent to a shift by 1.
return JS('bool', r'# > 31', other)
? 0
: JS('JSUInt32', r'(# << #) >>> 0', this, other);
}
num operator >>(num other) {
if (other is! num) throw argumentErrorValue(other);
if (other < 0) throw argumentErrorValue(other);
if (false) _shrReceiverPositive(other);
return _shrOtherPositive(other);
}
num _shrOtherPositive(num other) {
return this > 0
? _shrBothPositive(other)
// For negative numbers we just clamp the shift-by amount.
// `this` could be negative but not have its 31st bit set.
// The ">>" would then shift in 0s instead of 1s. Therefore
// we cannot simply return 0xFFFFFFFF.
: JS('JSUInt32', r'(# >> #) >>> 0', this, other > 31 ? 31 : other);
}
num _shrReceiverPositive(num other) {
if (0 > other) throw argumentErrorValue(other);
return _shrBothPositive(other);
}
num _shrBothPositive(num other) {
return JS('bool', r'# > 31', other)
// JavaScript only looks at the last 5 bits of the shift-amount. In JS
// shifting by 33 is hence equivalent to a shift by 1. Shortcut the
// computation when that happens.
? 0
// Given that `this` is positive we must not use '>>'. Otherwise a
// number that has the 31st bit set would be treated as negative and
// shift in ones.
: JS('JSUInt32', r'# >>> #', this, other);
}
num operator >>>(num other) {
if (other is! num) throw argumentErrorValue(other);
if (other < 0) throw argumentErrorValue(other);
return _shruOtherPositive(other);
}
num _shruOtherPositive(num other) {
if (other > 31) return 0;
return JS('JSUInt32', r'# >>> #', this, other);
}
num operator &(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('JSUInt32', r'(# & #) >>> 0', this, other);
}
num operator |(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('JSUInt32', r'(# | #) >>> 0', this, other);
}
num operator ^(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('JSUInt32', r'(# ^ #) >>> 0', this, other);
}
bool operator <(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('bool', '# < #', this, other);
}
bool operator >(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('bool', '# > #', this, other);
}
bool operator <=(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('bool', '# <= #', this, other);
}
bool operator >=(num other) {
if (other is! num) throw argumentErrorValue(other);
return JS('bool', '# >= #', this, other);
}
Type get runtimeType => num;
}
/// The interceptor class for [int]s.
///
/// This class implements double (indirectly through JSNumber) since in
/// JavaScript all numbers are doubles, so while we want to treat `2.0` as an
/// integer for some operations, its interceptor should answer `true` to `is
/// double`.
class JSInt extends JSNumber implements int {
const JSInt();
@override
// Use invoke_dynamic_specializer instead of inlining.
@pragma('dart2js:noInline')
JSInt abs() => JS(
'returns:int;effects:none;depends:none;throws:never;gvn:true',
r'Math.abs(#)',
this);
@override
JSInt get sign => (this > 0
? 1
: this < 0
? -1
: this) as JSInt;
@override
JSInt operator -() => JS('int', r'-#', this);
bool get isEven => (this & 1) == 0;
bool get isOdd => (this & 1) == 1;
int toUnsigned(int width) {
return this & ((1 << width) - 1);
}
int toSigned(int width) {
int signMask = 1 << (width - 1);
return (this & (signMask - 1)) - (this & signMask);
}
int get bitLength {
int nonneg = JS<int>('int', '#', this < 0 ? -this - 1 : this);
int wordBits = 32;
while (nonneg >= 0x100000000) {
nonneg = nonneg ~/ 0x100000000;
wordBits += 32;
}
return wordBits - _clz32(nonneg);
}
static int _clz32(int uint32) {
// TODO(sra): Use `Math.clz32(uint32)` (not available on IE11).
return 32 - _bitCount(_spread(uint32));
}
// Returns pow(this, e) % m.
int modPow(int e, int m) {
if (e is! int) {
throw ArgumentError.value(e, 'exponent', 'not an integer');
}
if (m is! int) {
throw ArgumentError.value(m, 'modulus', 'not an integer');
}
if (e < 0) throw RangeError.range(e, 0, null, 'exponent');
if (m <= 0) throw RangeError.range(m, 1, null, 'modulus');
if (e == 0) return 1;
const int maxPreciseInteger = 9007199254740991;
// Reject inputs that are outside the range of integer values that can be
// represented precisely as a Number (double).
if (this < -maxPreciseInteger || this > maxPreciseInteger) {
throw RangeError.range(
this, -maxPreciseInteger, maxPreciseInteger, 'receiver');
}
if (e > maxPreciseInteger) {
throw RangeError.range(e, 0, maxPreciseInteger, 'exponent');
}
if (m > maxPreciseInteger) {
throw RangeError.range(e, 1, maxPreciseInteger, 'modulus');
}
// This is floor(sqrt(maxPreciseInteger)).
const int maxValueThatCanBeSquaredWithoutTruncation = 94906265;
if (m > maxValueThatCanBeSquaredWithoutTruncation) {
// Use BigInt version to avoid truncation in multiplications below. The
// 'maxPreciseInteger' check on [m] ensures that toInt() does not round.
return BigInt.from(this).modPow(BigInt.from(e), BigInt.from(m)).toInt();
}
int b = this;
if (b < 0 || b > m) {
b %= m;
}
int r = 1;
while (e > 0) {
if (e.isOdd) {
r = (r * b) % m;
}
e ~/= 2;
b = (b * b) % m;
}
return r;
}
// If inv is false, returns gcd(x, y).
// If inv is true and gcd(x, y) = 1, returns d, so that c*x + d*y = 1.
// If inv is true and gcd(x, y) != 1, throws Exception("Not coprime").
static int _binaryGcd(int x, int y, bool inv) {
int s = 1;
if (!inv) {
while (x.isEven && y.isEven) {
x ~/= 2;
y ~/= 2;
s *= 2;
}
if (y.isOdd) {
var t = x;
x = y;
y = t;
}
}
final bool ac = x.isEven;
int u = x;
int v = y;
int a = 1, b = 0, c = 0, d = 1;
do {
while (u.isEven) {
u ~/= 2;
if (ac) {
if (!a.isEven || !b.isEven) {
a += y;
b -= x;
}
a ~/= 2;
} else if (!b.isEven) {
b -= x;
}
b ~/= 2;
}
while (v.isEven) {
v ~/= 2;
if (ac) {
if (!c.isEven || !d.isEven) {
c += y;
d -= x;
}
c ~/= 2;
} else if (!d.isEven) {
d -= x;
}
d ~/= 2;
}
if (u >= v) {
u -= v;
if (ac) a -= c;
b -= d;
} else {
v -= u;
if (ac) c -= a;
d -= b;
}
} while (u != 0);
if (!inv) return s * v;
if (v != 1) throw new Exception('Not coprime');
if (d < 0) {
d += x;
if (d < 0) d += x;
} else if (d > x) {
d -= x;
if (d > x) d -= x;
}
return d;
}
// Returns 1/this % m, with m > 0.
int modInverse(int m) {
if (m is! int) {
throw new ArgumentError.value(m, 'modulus', 'not an integer');
}
if (m <= 0) throw new RangeError.range(m, 1, null, 'modulus');
if (m == 1) return 0;
int t = this;
if ((t < 0) || (t >= m)) t %= m;
if (t == 1) return 1;
if ((t == 0) || (t.isEven && m.isEven)) {
throw new Exception('Not coprime');
}
return _binaryGcd(m, t, true);
}
// Returns gcd of abs(this) and abs(other).
int gcd(int other) {
if (other is! int) {
throw new ArgumentError.value(other, 'other', 'not an integer');
}
int x = this.abs();
int y = other.abs();
if (x == 0) return y;
if (y == 0) return x;
if ((x == 1) || (y == 1)) return 1;
return _binaryGcd(x, y, false);
}
// Assumes i is <= 32-bit and unsigned.
static int _bitCount(int i) {
// See "Hacker's Delight", section 5-1, "Counting 1-Bits".
// The basic strategy is to use "divide and conquer" to
// add pairs (then quads, etc.) of bits together to obtain
// sub-counts.
//
// A straightforward approach would look like:
//
// i = (i & 0x55555555) + ((i >> 1) & 0x55555555);
// i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
// i = (i & 0x0F0F0F0F) + ((i >> 4) & 0x0F0F0F0F);
// i = (i & 0x00FF00FF) + ((i >> 8) & 0x00FF00FF);
// i = (i & 0x0000FFFF) + ((i >> 16) & 0x0000FFFF);
//
// The code below removes unnecessary &'s and uses a
// trick to remove one instruction in the first line.
i = _shru(i, 0) - (_shru(i, 1) & 0x55555555);
i = (i & 0x33333333) + (_shru(i, 2) & 0x33333333);
i = 0x0F0F0F0F & (i + _shru(i, 4));
i += _shru(i, 8);
i += _shru(i, 16);
return (i & 0x0000003F);
}
static int _shru(int value, int shift) => JS('int', '# >>> #', value, shift);
static int _shrs(int value, int shift) => JS('int', '# >> #', value, shift);
static int _ors(int a, int b) => JS('int', '# | #', a, b);
// Assumes i is <= 32-bit
static int _spread(int i) {
i = _ors(i, _shrs(i, 1));
i = _ors(i, _shrs(i, 2));
i = _ors(i, _shrs(i, 4));
i = _ors(i, _shrs(i, 8));
i = _shru(_ors(i, _shrs(i, 16)), 0);
return i;
}
Type get runtimeType => int;
int operator ~() => JS('JSUInt32', r'(~#) >>> 0', this);
}
/// Interceptor for JavaScript values that are not a subclass of [JSInt].
class JSNumNotInt extends JSNumber implements double {
const JSNumNotInt();
Type get runtimeType => double;
}
class JSPositiveInt extends JSInt {}
class JSUInt32 extends JSPositiveInt {}
class JSUInt31 extends JSUInt32 {}