blob: 9144478e7cdc6e2a28bf0be2378f1d29fd5deab3 [file] [log] [blame]
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
part of quiver.collection;
/**
* An associative container that maps a key to multiple values.
*
* Key lookups return mutable collections that are views of the multimap.
* Updates to the multimap are reflected in these collections and similarly,
* modifications to the returned collections are reflected in the multimap.
*/
abstract class Multimap<K, V> {
/**
* Constructs a new list-backed multimap.
*/
factory Multimap() => new ListMultimap<K, V>();
/**
* Returns whether this multimap contains the given [value].
*/
bool containsValue(Object value);
/**
* Returns whether this multimap contains the given [key].
*/
bool containsKey(Object key);
/**
* Returns the values for the given [key]. An empty iterable is returned if
* [key] is not mapped. The returned collection is a view on the multimap.
* Updates to the collection modify the multimap and likewise, modifications
* to the multimap are reflected in the returned collection.
*/
Iterable<V> operator [](Object key);
/**
* Adds an association from the given key to the given value.
*/
void add(K key, V value);
/**
* Adds an association from the given key to each of the given values.
*/
void addValues(K key, Iterable<V> values);
/**
* Adds all associations of [other] to this multimap.
*
* The operation is equivalent to doing `this[key] = value` for each key
* and associated value in other. It iterates over [other], which must
* therefore not change during the iteration.
*/
void addAll(Multimap<K, V> other);
/**
* Removes the association between the given [key] and [value]. Returns
* `true` if the association existed, `false` otherwise.
*/
bool remove(Object key, V value);
/**
* Removes the association for the given [key]. Returns the collection of
* removed values, or an empty iterable if [key] was unmapped.
*/
Iterable<V> removeAll(Object key);
/**
* Removes all data from the multimap.
*/
void clear();
/**
* Applies [f] to each {key, Iterable<value>} pair of the multimap.
*
* It is an error to add or remove keys from the map during iteration.
*/
void forEachKey(void f(K key, Iterable<V> value));
/**
* Applies [f] to each {key, value} pair of the multimap.
*
* It is an error to add or remove keys from the map during iteration.
*/
void forEach(void f(K key, V value));
/**
* The keys of [this].
*/
Iterable<K> get keys;
/**
* The values of [this].
*/
Iterable<V> get values;
/**
* Returns a view of this multimap as a map.
*/
Map<K, Iterable<V>> asMap();
/**
* Returns a view of this multimap as a map.
*
* DEPRECATED: this method is replaced with `asMap`.
*/
@Deprecated('Will be removed in 0.22.0')
Map<K, Iterable<V>> toMap();
/**
* The number of keys in the multimap.
*/
int get length;
/**
* Returns true if there is no key in the multimap.
*/
bool get isEmpty;
/**
* Returns true if there is at least one key in the multimap.
*/
bool get isNotEmpty;
}
/**
* Abstract base class for multimap implementations.
*/
abstract class _BaseMultimap<K, V, C extends Iterable<V>>
implements Multimap<K, V> {
final Map<K, Iterable<V>> _map = new HashMap();
Iterable<V> _create();
void _add(C iterable, V value);
void _addAll(C iterable, Iterable<V> value);
void _clear(C iterable);
bool _remove(C iterable, Object value);
Iterable<V> _wrap(Object key, C iterable);
bool containsValue(Object value) => values.contains(value);
bool containsKey(Object key) => _map.keys.contains(key);
Iterable<V> operator [](Object key) {
var values = _map[key];
if (values == null) {
values = _create();
}
return _wrap(key, values);
}
void add(K key, V value) {
_map.putIfAbsent(key, _create);
_add(_map[key], value);
}
void addValues(K key, Iterable<V> values) {
_map.putIfAbsent(key, _create);
_addAll(_map[key], values);
}
/**
* Adds all associations of [other] to this multimap.
*
* The operation is equivalent to doing `this[key] = value` for each key
* and associated value in other. It iterates over [other], which must
* therefore not change during the iteration.
*
* This implementation iterates through each key of [other] and adds the
* associated values to this instance via [addValues].
*/
void addAll(Multimap<K, V> other) => other.forEachKey(addValues);
bool remove(Object key, V value) {
if (!_map.containsKey(key)) return false;
bool removed = _remove(_map[key], value);
if (removed && _map[key].isEmpty) _map.remove(key);
return removed;
}
Iterable<V> removeAll(Object key) {
// Cast to dynamic to remove warnings
var values = _map.remove(key) as dynamic;
var retValues = _create() as dynamic;
if (values != null) {
retValues.addAll(values);
values.clear();
}
return retValues;
}
void clear() {
_map.forEach((K key, Iterable<V> value) => _clear(value));
_map.clear();
}
void forEachKey(void f(K key, Iterable<V> value)) => _map.forEach(f);
void forEach(void f(K key, V value)) {
_map.forEach((K key, Iterable<V> values) {
values.forEach((V value) => f(key, value));
});
}
Iterable<K> get keys => _map.keys;
Iterable<V> get values => _map.values.expand((x) => x);
Iterable<Iterable<V>> get _groupedValues => _map.values;
int get length => _map.length;
bool get isEmpty => _map.isEmpty;
bool get isNotEmpty => _map.isNotEmpty;
}
/**
* A multimap implementation that uses [List]s to store the values associated
* with each key.
*/
class ListMultimap<K, V> extends _BaseMultimap<K, V, List<V>> {
ListMultimap() : super();
@override
List<V> _create() => new List<V>();
@override
void _add(List<V> iterable, V value) {
iterable.add(value);
}
@override
void _addAll(List<V> iterable, Iterable<V> value) => iterable.addAll(value);
@override
void _clear(List<V> iterable) => iterable.clear();
@override
bool _remove(List<V> iterable, Object value) => iterable.remove(value);
@override
List<V> _wrap(Object key, List<V> iterable) =>
new _WrappedList(_map, key, iterable);
List<V> operator [](Object key) => super[key];
List<V> removeAll(Object key) => super.removeAll(key);
Map<K, List<V>> asMap() => new _WrappedMap<K, V, List<V>>(this);
@Deprecated('Will be removed in 0.22.0')
Map<K, List<V>> toMap() => asMap();
}
/**
* A multimap implementation that uses [Set]s to store the values associated
* with each key.
*/
class SetMultimap<K, V> extends _BaseMultimap<K, V, Set<V>> {
SetMultimap() : super();
@override
Set<V> _create() => new Set<V>();
@override
void _add(Set<V> iterable, V value) {
iterable.add(value);
}
@override
void _addAll(Set<V> iterable, Iterable<V> value) => iterable.addAll(value);
@override
void _clear(Set<V> iterable) => iterable.clear();
@override
bool _remove(Set<V> iterable, Object value) => iterable.remove(value);
@override
Set<V> _wrap(Object key, Iterable<V> iterable) =>
new _WrappedSet(_map, key, iterable);
Set<V> operator [](Object key) => super[key];
Set<V> removeAll(Object key) => super.removeAll(key);
Map<K, Set<V>> asMap() => new _WrappedMap<K, V, Set<V>>(this);
@Deprecated('Will be removed in 0.22.0')
Map<K, Set<V>> toMap() => asMap();
}
/**
* A [Map] that delegates its operations to an underlying multimap.
*/
class _WrappedMap<K, V, C extends Iterable<V>> implements Map<K, C> {
final _BaseMultimap<K, V, C> _multimap;
_WrappedMap(this._multimap);
C operator [](Object key) => _multimap[key];
void operator []=(K key, C value) {
throw new UnsupportedError("Insert unsupported on map view");
}
void addAll(Map<K, C> other) {
throw new UnsupportedError("Insert unsupported on map view");
}
C putIfAbsent(K key, C ifAbsent()) {
throw new UnsupportedError("Insert unsupported on map view");
}
void clear() => _multimap.clear();
bool containsKey(Object key) => _multimap.containsKey(key);
bool containsValue(Object value) => _multimap.containsValue(value);
void forEach(void f(K key, C value)) => _multimap.forEachKey(f);
bool get isEmpty => _multimap.isEmpty;
bool get isNotEmpty => _multimap.isNotEmpty;
Iterable<K> get keys => _multimap.keys;
int get length => _multimap.length;
C remove(Object key) => _multimap.removeAll(key);
Iterable<C> get values => _multimap._groupedValues;
}
/**
* Iterable wrapper that syncs to an underlying map.
*/
class _WrappedIterable<K, V, C extends Iterable<V>> implements Iterable<V> {
final K _key;
final Map<K, C> _map;
C _delegate;
_WrappedIterable(this._map, this._key, this._delegate);
_addToMap() => _map[_key] = _delegate;
/**
* Ensures we hold an up-to-date delegate. In the case where all mappings for
* _key are removed from the multimap, the Iterable referenced by _delegate is
* removed from the underlying map. At that point, any new addition via the
* multimap triggers the creation of a new Iterable, and the empty delegate
* we hold would be stale. As such, we check the underlying map and update
* our delegate when the one we hold is empty.
*/
_syncDelegate() {
if (_delegate.isEmpty) {
var updated = _map[_key];
if (updated != null) {
_delegate = updated;
}
}
}
bool any(bool test(V element)) {
_syncDelegate();
return _delegate.any(test);
}
bool contains(Object element) {
_syncDelegate();
return _delegate.contains(element);
}
V elementAt(int index) {
_syncDelegate();
return _delegate.elementAt(index);
}
bool every(bool test(V element)) {
_syncDelegate();
return _delegate.every(test);
}
Iterable expand(Iterable f(V element)) {
_syncDelegate();
return _delegate.expand(f);
}
V get first {
_syncDelegate();
return _delegate.first;
}
V firstWhere(bool test(V element), {V orElse()}) {
_syncDelegate();
return _delegate.firstWhere(test, orElse: orElse);
}
fold(initialValue, combine(previousValue, V element)) {
_syncDelegate();
return _delegate.fold(initialValue, combine);
}
void forEach(void f(V element)) {
_syncDelegate();
_delegate.forEach(f);
}
bool get isEmpty {
_syncDelegate();
return _delegate.isEmpty;
}
bool get isNotEmpty {
_syncDelegate();
return _delegate.isNotEmpty;
}
Iterator<V> get iterator {
_syncDelegate();
return _delegate.iterator;
}
String join([String separator = ""]) {
_syncDelegate();
return _delegate.join(separator);
}
V get last {
_syncDelegate();
return _delegate.last;
}
V lastWhere(bool test(V element), {V orElse()}) {
_syncDelegate();
return _delegate.lastWhere(test, orElse: orElse);
}
int get length {
_syncDelegate();
return _delegate.length;
}
Iterable map(f(V element)) {
_syncDelegate();
return _delegate.map(f);
}
V reduce(V combine(V value, V element)) {
_syncDelegate();
return _delegate.reduce(combine);
}
V get single {
_syncDelegate();
return _delegate.single;
}
V singleWhere(bool test(V element)) {
_syncDelegate();
return _delegate.singleWhere(test);
}
Iterable<V> skip(int n) {
_syncDelegate();
return _delegate.skip(n);
}
Iterable<V> skipWhile(bool test(V value)) {
_syncDelegate();
return _delegate.skipWhile(test);
}
Iterable<V> take(int n) {
_syncDelegate();
return _delegate.take(n);
}
Iterable<V> takeWhile(bool test(V value)) {
_syncDelegate();
return _delegate.takeWhile(test);
}
List<V> toList({bool growable: true}) {
_syncDelegate();
return _delegate.toList(growable: growable);
}
Set<V> toSet() {
_syncDelegate();
return _delegate.toSet();
}
String toString() {
_syncDelegate();
return _delegate.toString();
}
Iterable<V> where(bool test(V element)) {
_syncDelegate();
return _delegate.where(test);
}
}
class _WrappedList<K, V> extends _WrappedIterable<K, V, List<V>>
implements List<V> {
_WrappedList(Map<K, List<V>> map, K key, List<V> delegate)
: super(map, key, delegate);
V operator [](int index) => elementAt(index);
void operator []=(int index, V value) {
_syncDelegate();
_delegate[index] = value;
}
void add(V value) {
_syncDelegate();
var wasEmpty = _delegate.isEmpty;
_delegate.add(value);
if (wasEmpty) _addToMap();
}
void addAll(Iterable<V> iterable) {
_syncDelegate();
var wasEmpty = _delegate.isEmpty;
_delegate.addAll(iterable);
if (wasEmpty) _addToMap();
}
Map<int, V> asMap() {
_syncDelegate();
return _delegate.asMap();
}
void clear() {
_syncDelegate();
_delegate.clear();
_map.remove(_key);
}
void fillRange(int start, int end, [V fillValue]) {
_syncDelegate();
_delegate.fillRange(start, end, fillValue);
}
Iterable<V> getRange(int start, int end) {
_syncDelegate();
return _delegate.getRange(start, end);
}
int indexOf(V element, [int start = 0]) {
_syncDelegate();
return _delegate.indexOf(element, start);
}
void insert(int index, V element) {
_syncDelegate();
var wasEmpty = _delegate.isEmpty;
_delegate.insert(index, element);
if (wasEmpty) _addToMap();
}
void insertAll(int index, Iterable<V> iterable) {
_syncDelegate();
var wasEmpty = _delegate.isEmpty;
_delegate.insertAll(index, iterable);
if (wasEmpty) _addToMap();
}
int lastIndexOf(V element, [int start]) {
_syncDelegate();
return _delegate.lastIndexOf(element, start);
}
void set length(int newLength) {
_syncDelegate();
var wasEmpty = _delegate.isEmpty;
_delegate.length = newLength;
if (wasEmpty) _addToMap();
}
bool remove(Object value) {
_syncDelegate();
bool removed = _delegate.remove(value);
if (_delegate.isEmpty) _map.remove(_key);
return removed;
}
V removeAt(int index) {
_syncDelegate();
V removed = _delegate.removeAt(index);
if (_delegate.isEmpty) _map.remove(_key);
return removed;
}
V removeLast() {
_syncDelegate();
V removed = _delegate.removeLast();
if (_delegate.isEmpty) _map.remove(_key);
return removed;
}
void removeRange(int start, int end) {
_syncDelegate();
_delegate.removeRange(start, end);
if (_delegate.isEmpty) _map.remove(_key);
}
void removeWhere(bool test(V element)) {
_syncDelegate();
_delegate.removeWhere(test);
if (_delegate.isEmpty) _map.remove(_key);
}
void replaceRange(int start, int end, Iterable<V> iterable) {
_syncDelegate();
_delegate.replaceRange(start, end, iterable);
if (_delegate.isEmpty) _map.remove(_key);
}
void retainWhere(bool test(V element)) {
_syncDelegate();
_delegate.retainWhere(test);
if (_delegate.isEmpty) _map.remove(_key);
}
Iterable<V> get reversed {
_syncDelegate();
return _delegate.reversed;
}
void setAll(int index, Iterable<V> iterable) {
_syncDelegate();
_delegate.setAll(index, iterable);
}
void setRange(int start, int end, Iterable<V> iterable, [int skipCount = 0]) {
_syncDelegate();
}
void shuffle([Random random]) {
_syncDelegate();
_delegate.shuffle(random);
}
void sort([int compare(V a, V b)]) {
_syncDelegate();
_delegate.sort(compare);
}
List<V> sublist(int start, [int end]) {
_syncDelegate();
return _delegate.sublist(start, end);
}
}
class _WrappedSet<K, V> extends _WrappedIterable<K, V, Set<V>>
implements Set<V> {
_WrappedSet(Map<K, Iterable<V>> map, K key, Iterable<V> delegate)
: super(map, key, delegate);
bool add(V value) {
_syncDelegate();
var wasEmpty = _delegate.isEmpty;
bool wasAdded = _delegate.add(value);
if (wasEmpty) _addToMap();
return wasAdded;
}
void addAll(Iterable<V> elements) {
_syncDelegate();
var wasEmpty = _delegate.isEmpty;
_delegate.addAll(elements);
if (wasEmpty) _addToMap();
}
void clear() {
_syncDelegate();
_delegate.clear();
_map.remove(_key);
}
bool containsAll(Iterable<Object> other) {
_syncDelegate();
return _delegate.containsAll(other);
}
Set<V> difference(Set<V> other) {
_syncDelegate();
return _delegate.difference(other);
}
Set<V> intersection(Set<Object> other) {
_syncDelegate();
return _delegate.intersection(other);
}
V lookup(Object object) {
_syncDelegate();
return _delegate.lookup(object);
}
bool remove(Object value) {
_syncDelegate();
bool removed = _delegate.remove(value);
if (_delegate.isEmpty) _map.remove(_key);
return removed;
}
void removeAll(Iterable<Object> elements) {
_syncDelegate();
_delegate.removeAll(elements);
if (_delegate.isEmpty) _map.remove(_key);
}
void removeWhere(bool test(V element)) {
_syncDelegate();
_delegate.removeWhere(test);
if (_delegate.isEmpty) _map.remove(_key);
}
void retainAll(Iterable<Object> elements) {
_syncDelegate();
_delegate.retainAll(elements);
if (_delegate.isEmpty) _map.remove(_key);
}
void retainWhere(bool test(V element)) {
_syncDelegate();
_delegate.retainWhere(test);
if (_delegate.isEmpty) _map.remove(_key);
}
Set<V> union(Set<V> other) {
_syncDelegate();
return _delegate.union(other);
}
}