blob: 32b3d554323e79d2b5fefcc4d2ec29730eedaf9a [file] [log] [blame]
part of petitparser;
/**
* Abstract base class of all parsers.
*/
abstract class Parser {
/**
* Primitive method doing the actual parsing.
*
* The method is overridden in concrete subclasses to implement the
* parser specific logic. The methods takes a parse [context] and
* returns the resulting context, which is either a [Success] or
* [Failure] context.
*/
Result parseOn(Context context);
/**
* Returns the parse result of the [input].
*
* The implementation creates a default parse context on the input and calls
* the internal parsing logic of the receiving parser.
*
* For example, `letter().plus().parse('abc')` results in an instance of
* [Success], where [Result.position] is `3` and [Success.value] is
* `[a, b, c]`.
*
* Similarly, `letter().plus().parse('123')` results in an instance of
* [Failure], where [Result.position] is `0` and [Failure.message] is
* ['letter expected'].
*/
Result parse(input) {
return parseOn(new Context(input, 0));
}
/**
* Tests if the [input] can be successfully parsed.
*
* For example, `letter().plus().accept('abc')` returns `true`, and
* `letter().plus().accept('123')` returns `false`.
*/
bool accept(input) {
return parse(input).isSuccess;
}
/**
* Returns a list of all successful overlapping parses of the [input].
*
* For example, `letter().plus().matches('abc de')` results in the list
* `[['a', 'b', 'c'], ['b', 'c'], ['c'], ['d', 'e'], ['e']]`. See
* [Parser.matchesSkipping] to retrieve non-overlapping parse results.
*/
Iterable matches(input) {
var list = new List();
and()
.map((each) => list.add(each))
.seq(any())
.or(any())
.star()
.parse(input);
return list;
}
/**
* Returns a list of all successful non-overlapping parses of the input.
*
* For example, `letter().plus().matchesSkipping('abc de')` results in the
* list `[['a', 'b', 'c'], ['d', 'e']]`. See [Parser.matches] to retrieve
* overlapping parse results.
*/
Iterable matchesSkipping(input) {
var list = new List();
map((each) => list.add(each)).or(any()).star().parse(input);
return list;
}
/**
* Returns new parser that accepts the receiver, if possible. The resulting
* parser returns the result of the receiver, or `null` if not applicable.
* The returned value can be provided as an optional argument [otherwise].
*
* For example, the parser `letter().optional()` accepts a letter as input
* and returns that letter. When given something else the parser succeeds as
* well, does not consume anything and returns `null`.
*/
Parser optional([otherwise]) => new OptionalParser(this, otherwise);
/**
* Returns a parser that accepts the receiver zero or more times. The
* resulting parser returns a list of the parse results of the receiver.
*
* This is a greedy and blind implementation that tries to consume as much
* input as possible and that does not consider what comes afterwards.
*
* For example, the parser `letter().star()` accepts the empty string or
* any sequence of letters and returns a possibly empty list of the parsed
* letters.
*/
Parser star() => repeat(0, unbounded);
/**
* Returns a parser that parses the receiver zero or more times until it
* reaches a [limit]. This is a greedy non-blind implementation of the
* [Parser.star] operator. The [limit] is not consumed.
*/
Parser starGreedy(Parser limit) => repeatGreedy(limit, 0, unbounded);
/**
* Returns a parser that parses the receiver zero or more times until it
* reaches a [limit]. This is a lazy non-blind implementation of the
* [Parser.star] operator. The [limit] is not consumed.
*/
Parser starLazy(Parser limit) => repeatLazy(limit, 0, unbounded);
/**
* Returns a parser that accepts the receiver one or more times. The
* resulting parser returns a list of the parse results of the receiver.
*
* This is a greedy and blind implementation that tries to consume as much
* input as possible and that does not consider what comes afterwards.
*
* For example, the parser `letter().plus()` accepts any sequence of
* letters and returns a list of the parsed letters.
*/
Parser plus() => repeat(1, unbounded);
/**
* Returns a parser that parses the receiver one or more times until it
* reaches [limit]. This is a greedy non-blind implementation of the
* [Parser.plus] operator. The [limit] is not consumed.
*/
Parser plusGreedy(Parser limit) => repeatGreedy(limit, 1, unbounded);
/**
* Returns a parser that parses the receiver one or more times until it
* reaches a [limit]. This is a lazy non-blind implementation of the
* [Parser.plus] operator. The [limit] is not consumed.
*/
Parser plusLazy(Parser limit) => repeatLazy(limit, 1, unbounded);
/**
* Returns a parser that accepts the receiver between [min] and [max] times.
* The resulting parser returns a list of the parse results of the receiver.
*
* This is a greedy and blind implementation that tries to consume as much
* input as possible and that does not consider what comes afterwards.
*
* For example, the parser `letter().repeat(2, 4)` accepts a sequence of
* two, three, or four letters and returns the accepted letters as a list.
*/
Parser repeat(int min, int max) {
return new PossessiveRepeatingParser(this, min, max);
}
/**
* Returns a parser that parses the receiver at least [min] and at most [max]
* times until it reaches a [limit]. This is a greedy non-blind implementation of
* the [Parser.repeat] operator. The [limit] is not consumed.
*/
Parser repeatGreedy(Parser limit, int min, int max) {
return new GreedyRepeatingParser(this, limit, min, max);
}
/**
* Returns a parser that parses the receiver at least [min] and at most [max]
* times until it reaches a [limit]. This is a lazy non-blind implementation of
* the [Parser.repeat] operator. The [limit] is not consumed.
*/
Parser repeatLazy(Parser limit, int min, int max) {
return new LazyRepeatingParser(this, limit, min, max);
}
/**
* Returns a parser that accepts the receiver exactly [count] times. The
* resulting parser returns a list of the parse results of the receiver.
*
* For example, the parser `letter().times(2)` accepts two letters and
* returns a list of the two parsed letters.
*/
Parser times(int count) => repeat(count, count);
/**
* Returns a parser that accepts the receiver followed by [other]. The
* resulting parser returns a list of the parse result of the receiver
* followed by the parse result of [other]. Calling this method on an
* existing sequence code not nest this sequence into a new one, but
* instead augments the existing sequence with [other].
*
* For example, the parser `letter().seq(digit()).seq(letter())` accepts a
* letter followed by a digit and another letter. The parse result of the
* input string `'a1b'` is the list `['a', '1', 'b']`.
*/
Parser seq(Parser other) => new SequenceParser([this, other]);
/**
* Convenience operator returning a parser that accepts the receiver followed
* by [other]. See [Parser.seq] for details.
*/
Parser operator &(Parser other) => this.seq(other);
/**
* Returns a parser that accepts the receiver or [other]. The resulting
* parser returns the parse result of the receiver, if the receiver fails
* it returns the parse result of [other] (exclusive ordered choice).
*
* For example, the parser `letter().or(digit())` accepts a letter or a
* digit. An example where the order matters is the following choice between
* overlapping parsers: `letter().or(char('a'))`. In the example the parser
* `char('a')` will never be activated, because the input is always consumed
* `letter()`. This can be problematic if the author intended to attach a
* production action to `char('a')`.
*/
Parser or(Parser other) => new ChoiceParser([this, other]);
/**
* Convenience operator returning a parser that accepts the receiver or
* [other]. See [Parser.or] for details.
*/
Parser operator |(Parser other) => this.or(other);
/**
* Returns a parser (logical and-predicate) that succeeds whenever the
* receiver does, but never consumes input.
*
* For example, the parser `char('_').and().seq(identifier)` accepts
* identifiers that start with an underscore character. Since the predicate
* does not consume accepted input, the parser `identifier` is given the
* ability to process the complete identifier.
*/
Parser and() => new AndParser(this);
/**
* Returns a parser (logical not-predicate) that succeeds whenever the
* receiver fails, but never consumes input.
*
* For example, the parser `char('_').not().seq(identifier)` accepts
* identifiers that do not start with an underscore character. If the parser
* `char('_')` accepts the input, the negation and subsequently the
* complete parser fails. Otherwise the parser `identifier` is given the
* ability to process the complete identifier.
*/
Parser not([String message]) => new NotParser(this, message);
/**
* Returns a parser that consumes any input token (character), but the
* receiver.
*
* For example, the parser `letter().neg()` accepts any input but a letter.
* The parser fails for inputs like `'a'` or `'Z'`, but succeeds for
* input like `'1'`, `'_'` or `'$'`.
*/
Parser neg([String message]) => not(message).seq(any()).pick(1);
/**
* Returns a parser that discards the result of the receiver, and returns
* a sub-string of the consumed range in the string/list being parsed.
*
* For example, the parser `letter().plus().flatten()` returns `'abc'`
* for the input `'abc'`. In contrast, the parser `letter().plus()` would
* return `['a', 'b', 'c']` for the same input instead.
*/
Parser flatten() => new FlattenParser(this);
/**
* Returns a parser that returns a [Token]. The token carries the parsed
* value of the receiver [Token.value], as well as the consumed input
* [Token.input] from [Token.start] to [Token.stop] of the input being
* parsed.
*
* For example, the parser `letter().plus().token()` returns the token
* `Token[start: 0, stop: 3, value: abc]` for the input `'abc'`.
*/
Parser token() => new TokenParser(this);
/**
* Returns a parser that consumes input before and after the receiver. The
* optional argument is a parser that consumes the excess input. By default
* `whitespace()` is used. To arguments can be provided to have different
* parsers on the [left] and [right] side.
*
* For example, the parser `letter().plus().trim()` returns `['a', 'b']`
* for the input `' ab\n'` and consumes the complete input string.
*/
Parser trim([Parser left, Parser right]) {
if (left == null) left = whitespace();
if (right == null) right = left;
return new TrimmingParser(this, left, right);
}
/**
* Returns a parser that succeeds only if the receiver consumes the complete
* input, otherwise return a failure with the optional [message].
*
* For example, the parser `letter().end()` succeeds on the input `'a'`
* and fails on `'ab'`. In contrast the parser `letter()` alone would
* succeed on both inputs, but not consume everything for the second input.
*/
Parser end([String message = 'end of input expected']) {
return new EndOfInputParser(this, message);
}
/**
* Returns a parser that points to the receiver, but can be changed to point
* to something else at a later point in time.
*
* For example, the parser `letter().settable()` behaves exactly the same
* as `letter()`, but it can be replaced with another parser using
* [SettableParser.set].
*/
SettableParser settable() => new SettableParser(this);
/**
* Returns a parser that evaluates a [function] as the production action
* on success of the receiver.
*
* For example, the parser `digit().map((char) => int.parse(char))` returns
* the number `1` for the input string `'1'`. If the delegate fail, the
* production action is not executed and the failure is passed on.
*/
Parser map(Function function) => new ActionParser(this, function);
/**
* Returns a parser that transform a successful parse result by returning
* the element at [index] of a list. A negative index can be used to access
* the elements from the back of the list.
*
* For example, the parser `letter().star().pick(-1)` returns the last
* letter parsed. For the input `'abc'` it returns `'c'`.
*/
Parser pick(int index) {
return this.map((List list) {
return list[index < 0 ? list.length + index : index];
});
}
/**
* Returns a parser that transforms a successful parse result by returning
* the permuted elements at [indexes] of a list. Negative indexes can be
* used to access the elements from the back of the list.
*
* For example, the parser `letter().star().permute([0, -1])` returns the
* first and last letter parsed. For the input `'abc'` it returns
* `['a', 'c']`.
*/
Parser permute(List<int> indexes) {
return this.map((List list) {
return indexes.map((index) {
return list[index < 0 ? list.length + index : index];
}).toList();
});
}
/**
* Returns a parser that consumes the receiver one or more times separated
* by the [separator] parser. The resulting parser returns a flat list of
* the parse results of the receiver interleaved with the parse result of the
* separator parser.
*
* If the optional argument [includeSeparators] is set to `false`, then the
* separators are not included in the parse result. If the optional argument
* [optionalSeparatorAtEnd] is set to `true` the parser also accepts an
* optional separator at the end.
*
* For example, the parser `digit().separatedBy(char('-'))` returns a parser
* that consumes input like `'1-2-3'` and returns a list of the elements and
* separators: `['1', '-', '2', '-', '3']`.
*/
Parser separatedBy(Parser separator,
{bool includeSeparators: true, bool optionalSeparatorAtEnd: false}) {
var repeater = new SequenceParser([separator, this]).star();
var parser = new SequenceParser(optionalSeparatorAtEnd
? [this, repeater, separator.optional(separator)]
: [this, repeater]);
return parser.map((List list) {
var result = new List();
result.add(list[0]);
for (var tuple in list[1]) {
if (includeSeparators) {
result.add(tuple[0]);
}
result.add(tuple[1]);
}
if (includeSeparators &&
optionalSeparatorAtEnd &&
!identical(list[2], separator)) {
result.add(list[2]);
}
return result;
});
}
/**
* Returns a shallow copy of the receiver.
*
* Override this method in all subclasses.
*/
Parser copy();
/**
* Recursively tests for structural equality of two parsers.
*
* The code can automatically deals with recursive parsers and parsers that
* refer to other parsers. This code is supposed to be overridden by parsers
* that add other state.
*/
bool isEqualTo(Parser other, [Set<Parser> seen]) {
if (seen == null) {
seen = new Set();
}
if (this == other || seen.contains(this)) {
return true;
}
seen.add(this);
return runtimeType == other.runtimeType &&
hasEqualProperties(other) &&
hasEqualChildren(other, seen);
}
/**
* Compare the properties of two parsers. Normally this method should not be
* called directly, instead use [Parser#equals].
*
* Override this method in all subclasses that add new state.
*/
bool hasEqualProperties(Parser other) => true;
/**
* Compare the children of two parsers. Normally this method should not be
* called directly, instead use [Parser#equals].
*
* Normally this method does not need to be overridden, as this method works
* generically on the returned [Parser#children].
*/
bool hasEqualChildren(Parser other, Set<Parser> seen) {
var thisChildren = children,
otherChildren = other.children;
if (thisChildren.length != otherChildren.length) {
return false;
}
for (var i = 0; i < thisChildren.length; i++) {
if (!thisChildren[i].isEqualTo(otherChildren[i], seen)) {
return false;
}
}
return true;
}
/**
* Returns a list of directly referenced parsers.
*
* For example, `letter().children` returns the empty collection `[]`,
* because the letter parser is a primitive or leaf parser that does not
* depend or call any other parser.
*
* In contrast, `letter().or(digit()).children` returns a collection
* containing both the `letter()` and `digit()` parser.
*/
List<Parser> get children => const [];
/**
* Changes the receiver by replacing [source] with [target]. Does nothing
* if [source] does not exist in [Parser.children].
*
* The following example creates a letter parser and then defines a parser
* called `example` that accepts one or more letters. Eventually the parser
* `example` is modified by replacing the `letter` parser with a new
* parser that accepts a digit. The resulting `example` parser accepts one
* or more digits.
*
* var letter = letter();
* var example = letter.plus();
* example.replace(letter, digit());
*/
void replace(Parser source, Parser target) {
// no children, nothing to do
}
}