blob: 27f9bfb8cb06cfbfb11648fdd4269f1be6809c83 [file] [log] [blame]
/*
VectorMath.dart
Copyright (C) 2012 John McCutchan <john@johnmccutchan.com>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/// mat4x2 is a column major matrix where each column is represented by [vec2]. This matrix has 4 columns and 2 rows.
class mat4x2 {
vec2 col0;
vec2 col1;
vec2 col2;
vec2 col3;
/// Constructs a new mat4x2. Supports GLSL like syntax so many possible inputs. Defaults to identity matrix.
mat4x2([Dynamic arg0, Dynamic arg1, Dynamic arg2, Dynamic arg3, Dynamic arg4, Dynamic arg5, Dynamic arg6, Dynamic arg7]) {
//Initialize the matrix as the identity matrix
col0 = new vec2.zero();
col1 = new vec2.zero();
col2 = new vec2.zero();
col3 = new vec2.zero();
col0.x = 1.0;
col1.y = 1.0;
if (arg0 is num && arg1 is num && arg2 is num && arg3 is num && arg4 is num && arg5 is num && arg6 is num && arg7 is num) {
col0.x = arg0;
col0.y = arg1;
col1.x = arg2;
col1.y = arg3;
col2.x = arg4;
col2.y = arg5;
col3.x = arg6;
col3.y = arg7;
return;
}
if (arg0 is num && arg1 == null && arg2 == null && arg3 == null && arg4 == null && arg5 == null && arg6 == null && arg7 == null) {
col0.x = arg0;
col1.y = arg0;
return;
}
if (arg0 is vec4 && arg1 is vec4 && arg2 is vec4 && arg3 is vec4) {
col0 = arg0;
col1 = arg1;
col2 = arg2;
col3 = arg3;
return;
}
if (arg0 is mat4x2) {
col0 = arg0.col0;
col1 = arg0.col1;
col2 = arg0.col2;
col3 = arg0.col3;
return;
}
if (arg0 is mat3x2) {
col0.x = arg0.col0.x;
col0.y = arg0.col0.y;
col1.x = arg0.col1.x;
col1.y = arg0.col1.y;
col2.x = arg0.col2.x;
col2.y = arg0.col2.y;
return;
}
if (arg0 is mat2x2) {
col0.x = arg0.col0.x;
col0.y = arg0.col0.y;
col1.x = arg0.col1.x;
col1.y = arg0.col1.y;
return;
}
if (arg0 is vec2 && arg1 == null && arg2 == null && arg3 == null && arg4 == null && arg5 == null && arg6 == null && arg7 == null) {
col0.x = arg0.x;
col1.y = arg0.y;
}
}
/// Constructs a new [mat4x2] from computing the outer product of [u] and [v].
mat4x2.outer(vec4 u, vec2 v) {
col0 = new vec2();
col1 = new vec2();
col2 = new vec2();
col3 = new vec2();
col0.x = u.x * v.x;
col0.y = u.x * v.y;
col1.x = u.y * v.x;
col1.y = u.y * v.y;
col2.x = u.z * v.x;
col2.y = u.z * v.y;
col3.x = u.w * v.x;
col3.y = u.w * v.y;
}
/// Constructs a new [mat4x2] filled with zeros.
mat4x2.zero() {
col0 = new vec2();
col1 = new vec2();
col2 = new vec2();
col3 = new vec2();
col0.x = 0.0;
col0.y = 0.0;
col1.x = 0.0;
col1.y = 0.0;
col2.x = 0.0;
col2.y = 0.0;
col3.x = 0.0;
col3.y = 0.0;
}
/// Constructs a new identity [mat4x2].
mat4x2.identity() {
col0 = new vec2();
col1 = new vec2();
col2 = new vec2();
col3 = new vec2();
col0.x = 1.0;
col0.y = 0.0;
col1.x = 0.0;
col1.y = 1.0;
col2.x = 0.0;
col2.y = 0.0;
col3.x = 0.0;
col3.y = 0.0;
}
/// Constructs a new [mat4x2] which is a copy of [other].
mat4x2.copy(mat4x2 other) {
col0 = new vec2();
col1 = new vec2();
col2 = new vec2();
col3 = new vec2();
col0.x = other.col0.x;
col0.y = other.col0.y;
col1.x = other.col1.x;
col1.y = other.col1.y;
col2.x = other.col2.x;
col2.y = other.col2.y;
col3.x = other.col3.x;
col3.y = other.col3.y;
}
mat4x2.raw(num arg0, num arg1, num arg2, num arg3, num arg4, num arg5, num arg6, num arg7) {
col0 = new vec2.zero();
col1 = new vec2.zero();
col2 = new vec2.zero();
col3 = new vec2.zero();
col0.x = arg0;
col0.y = arg1;
col1.x = arg2;
col1.y = arg3;
col2.x = arg4;
col2.y = arg5;
col3.x = arg6;
col3.y = arg7;
}
/// Returns a printable string
String toString() {
String s = '';
s = '$s[0] ${getRow(0)}\n';
s = '$s[1] ${getRow(1)}\n';
return s;
}
/// Returns the number of rows in the matrix.
num get rows() => 2;
/// Returns the number of columns in the matrix.
num get cols() => 4;
/// Returns the number of columns in the matrix.
num get length() => 4;
/// Gets the [column] of the matrix
vec2 operator[](int column) {
assert(column >= 0 && column < 4);
switch (column) {
case 0: return col0;
case 1: return col1;
case 2: return col2;
case 3: return col3;
}
throw new IllegalArgumentException(column);
}
/// Assigns the [column] of the matrix [arg]
void operator[]=(int column, vec2 arg) {
assert(column >= 0 && column < 4);
switch (column) {
case 0: col0 = arg; break;
case 1: col1 = arg; break;
case 2: col2 = arg; break;
case 3: col3 = arg; break;
}
throw new IllegalArgumentException(column);
}
/// Returns row 0
vec4 get row0() => getRow(0);
/// Returns row 1
vec4 get row1() => getRow(1);
/// Sets row 0 to [arg]
set row0(vec4 arg) => setRow(0, arg);
/// Sets row 1 to [arg]
set row1(vec4 arg) => setRow(1, arg);
/// Assigns the [column] of the matrix [arg]
void setRow(int row, vec4 arg) {
assert(row >= 0 && row < 2);
col0[row] = arg.x;
col1[row] = arg.y;
col2[row] = arg.z;
col3[row] = arg.w;
}
/// Gets the [row] of the matrix
vec4 getRow(int row) {
assert(row >= 0 && row < 2);
vec4 r = new vec4();
r.x = col0[row];
r.y = col1[row];
r.z = col2[row];
r.w = col3[row];
return r;
}
/// Assigns the [column] of the matrix [arg]
void setColumn(int column, vec2 arg) {
assert(column >= 0 && column < 4);
this[column] = arg;
}
/// Gets the [column] of the matrix
vec2 getColumn(int column) {
assert(column >= 0 && column < 4);
return new vec2(this[column]);
}
/// Returns a new vector or matrix by multiplying [this] with [arg].
Dynamic operator*(Dynamic arg) {
if (arg is num) {
mat4x2 r = new mat4x2.zero();
r.col0.x = col0.x * arg;
r.col0.y = col0.y * arg;
r.col1.x = col1.x * arg;
r.col1.y = col1.y * arg;
r.col2.x = col2.x * arg;
r.col2.y = col2.y * arg;
r.col3.x = col3.x * arg;
r.col3.y = col3.y * arg;
return r;
}
if (arg is vec4) {
vec2 r = new vec2.zero();
r.x = (this.col0.x * arg.x) + (this.col1.x * arg.y) + (this.col2.x * arg.z) + (this.col3.x * arg.w);
r.y = (this.col0.y * arg.x) + (this.col1.y * arg.y) + (this.col2.y * arg.z) + (this.col3.y * arg.w);
return r;
}
if (4 == arg.rows) {
Dynamic r = null;
if (arg.cols == 2) {
r = new mat2x2.zero();
r.col0.x = (this.col0.x * arg.col0.x) + (this.col1.x * arg.col0.y) + (this.col2.x * arg.col0.z) + (this.col3.x * arg.col0.w);
r.col1.x = (this.col0.x * arg.col1.x) + (this.col1.x * arg.col1.y) + (this.col2.x * arg.col1.z) + (this.col3.x * arg.col1.w);
r.col0.y = (this.col0.y * arg.col0.x) + (this.col1.y * arg.col0.y) + (this.col2.y * arg.col0.z) + (this.col3.y * arg.col0.w);
r.col1.y = (this.col0.y * arg.col1.x) + (this.col1.y * arg.col1.y) + (this.col2.y * arg.col1.z) + (this.col3.y * arg.col1.w);
return r;
}
return r;
}
throw new IllegalArgumentException(arg);
}
/// Returns new matrix after component wise [this] + [arg]
mat4x2 operator+(mat4x2 arg) {
mat4x2 r = new mat4x2();
r.col0.x = col0.x + arg.col0.x;
r.col0.y = col0.y + arg.col0.y;
r.col1.x = col1.x + arg.col1.x;
r.col1.y = col1.y + arg.col1.y;
r.col2.x = col2.x + arg.col2.x;
r.col2.y = col2.y + arg.col2.y;
r.col3.x = col3.x + arg.col3.x;
r.col3.y = col3.y + arg.col3.y;
return r;
}
/// Returns new matrix after component wise [this] - [arg]
mat4x2 operator-(mat4x2 arg) {
mat4x2 r = new mat4x2();
r.col0.x = col0.x - arg.col0.x;
r.col0.y = col0.y - arg.col0.y;
r.col1.x = col1.x - arg.col1.x;
r.col1.y = col1.y - arg.col1.y;
r.col2.x = col2.x - arg.col2.x;
r.col2.y = col2.y - arg.col2.y;
r.col3.x = col3.x - arg.col3.x;
r.col3.y = col3.y - arg.col3.y;
return r;
}
/// Returns new matrix -this
mat4x2 operator negate() {
mat4x2 r = new mat4x2();
r[0] = -this[0];
r[1] = -this[1];
r[2] = -this[2];
r[3] = -this[3];
return r;
}
/// Returns the tranpose of this.
mat2x4 transposed() {
mat2x4 r = new mat2x4();
r.col0.x = col0.x;
r.col0.y = col1.x;
r.col0.z = col2.x;
r.col0.w = col3.x;
r.col1.x = col0.y;
r.col1.y = col1.y;
r.col1.z = col2.y;
r.col1.w = col3.y;
return r;
}
/// Returns the component wise absolute value of this.
mat4x2 absolute() {
mat4x2 r = new mat4x2();
r.col0.x = col0.x.abs();
r.col0.y = col0.y.abs();
r.col1.x = col1.x.abs();
r.col1.y = col1.y.abs();
r.col2.x = col2.x.abs();
r.col2.y = col2.y.abs();
r.col3.x = col3.x.abs();
r.col3.y = col3.y.abs();
return r;
}
/// Returns infinity norm of the matrix. Used for numerical analysis.
num infinityNorm() {
num norm = 0.0;
{
num row_norm = 0.0;
row_norm += this[0][0].abs();
row_norm += this[0][1].abs();
norm = row_norm > norm ? row_norm : norm;
}
{
num row_norm = 0.0;
row_norm += this[1][0].abs();
row_norm += this[1][1].abs();
norm = row_norm > norm ? row_norm : norm;
}
{
num row_norm = 0.0;
row_norm += this[2][0].abs();
row_norm += this[2][1].abs();
norm = row_norm > norm ? row_norm : norm;
}
{
num row_norm = 0.0;
row_norm += this[3][0].abs();
row_norm += this[3][1].abs();
norm = row_norm > norm ? row_norm : norm;
}
return norm;
}
/// Returns relative error between [this] and [correct]
num relativeError(mat4x2 correct) {
num this_norm = infinityNorm();
num correct_norm = correct.infinityNorm();
num diff_norm = (this_norm - correct_norm).abs();
return diff_norm/correct_norm;
}
/// Returns absolute error between [this] and [correct]
num absoluteError(mat4x2 correct) {
num this_norm = infinityNorm();
num correct_norm = correct.infinityNorm();
num diff_norm = (this_norm - correct_norm).abs();
return diff_norm;
}
mat4x2 copy() {
return new mat4x2.copy(this);
}
mat4x2 copyInto(mat4x2 arg) {
arg.col0.x = col0.x;
arg.col0.y = col0.y;
arg.col1.x = col1.x;
arg.col1.y = col1.y;
arg.col2.x = col2.x;
arg.col2.y = col2.y;
arg.col3.x = col3.x;
arg.col3.y = col3.y;
return arg;
}
mat4x2 copyFrom(mat4x2 arg) {
col0.x = arg.col0.x;
col0.y = arg.col0.y;
col1.x = arg.col1.x;
col1.y = arg.col1.y;
col2.x = arg.col2.x;
col2.y = arg.col2.y;
col3.x = arg.col3.x;
col3.y = arg.col3.y;
return this;
}
mat4x2 selfAdd(mat4x2 o) {
col0.x = col0.x + o.col0.x;
col0.y = col0.y + o.col0.y;
col1.x = col1.x + o.col1.x;
col1.y = col1.y + o.col1.y;
col2.x = col2.x + o.col2.x;
col2.y = col2.y + o.col2.y;
col3.x = col3.x + o.col3.x;
col3.y = col3.y + o.col3.y;
return this;
}
mat4x2 selfSub(mat4x2 o) {
col0.x = col0.x - o.col0.x;
col0.y = col0.y - o.col0.y;
col1.x = col1.x - o.col1.x;
col1.y = col1.y - o.col1.y;
col2.x = col2.x - o.col2.x;
col2.y = col2.y - o.col2.y;
col3.x = col3.x - o.col3.x;
col3.y = col3.y - o.col3.y;
return this;
}
mat4x2 selfScale(num o) {
col0.x = col0.x * o;
col0.y = col0.y * o;
col1.x = col1.x * o;
col1.y = col1.y * o;
col2.x = col2.x * o;
col2.y = col2.y * o;
col3.x = col3.x * o;
col3.y = col3.y * o;
return this;
}
mat4x2 selfNegate() {
col0.x = -col0.x;
col0.y = -col0.y;
col1.x = -col1.x;
col1.y = -col1.y;
col2.x = -col2.x;
col2.y = -col2.y;
col3.x = -col3.x;
col3.y = -col3.y;
return this;
}
/// Copies [this] into [array] starting at [offset].
void copyIntoArray(Float32Array array, [int offset=0]) {
int i = offset;
array[i] = col0.x;
i++;
array[i] = col0.y;
i++;
array[i] = col1.x;
i++;
array[i] = col1.y;
i++;
array[i] = col2.x;
i++;
array[i] = col2.y;
i++;
array[i] = col3.x;
i++;
array[i] = col3.y;
i++;
}
/// Returns a copy of [this] as a [Float32Array].
Float32Array copyAsArray() {
Float32Array array = new Float32Array(8);
int i = 0;
array[i] = col0.x;
i++;
array[i] = col0.y;
i++;
array[i] = col1.x;
i++;
array[i] = col1.y;
i++;
array[i] = col2.x;
i++;
array[i] = col2.y;
i++;
array[i] = col3.x;
i++;
array[i] = col3.y;
i++;
return array;
}
/// Copies elements from [array] into [this] starting at [offset].
void copyFromArray(Float32Array array, [int offset=0]) {
int i = offset;
col0.x = array[i];
i++;
col0.y = array[i];
i++;
col1.x = array[i];
i++;
col1.y = array[i];
i++;
col2.x = array[i];
i++;
col2.y = array[i];
i++;
col3.x = array[i];
i++;
col3.y = array[i];
i++;
}
}