blob: a54825c0037dc6b4eb03666867645b59bf202fd4 [file] [log] [blame]
/*
VectorMath.dart
Copyright (C) 2012 John McCutchan <john@johnmccutchan.com>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/// mat3x3 is a column major matrix where each column is represented by [vec3]. This matrix has 3 columns and 3 rows.
class mat3x3 {
vec3 col0;
vec3 col1;
vec3 col2;
/// Constructs a new mat3x3. Supports GLSL like syntax so many possible inputs. Defaults to identity matrix.
mat3x3([Dynamic arg0, Dynamic arg1, Dynamic arg2, Dynamic arg3, Dynamic arg4, Dynamic arg5, Dynamic arg6, Dynamic arg7, Dynamic arg8]) {
//Initialize the matrix as the identity matrix
col0 = new vec3.zero();
col1 = new vec3.zero();
col2 = new vec3.zero();
col0.x = 1.0;
col1.y = 1.0;
col2.z = 1.0;
if (arg0 is num && arg1 is num && arg2 is num && arg3 is num && arg4 is num && arg5 is num && arg6 is num && arg7 is num && arg8 is num) {
col0.x = arg0;
col0.y = arg1;
col0.z = arg2;
col1.x = arg3;
col1.y = arg4;
col1.z = arg5;
col2.x = arg6;
col2.y = arg7;
col2.z = arg8;
return;
}
if (arg0 is num && arg1 == null && arg2 == null && arg3 == null && arg4 == null && arg5 == null && arg6 == null && arg7 == null && arg8 == null) {
col0.x = arg0;
col1.y = arg0;
col2.z = arg0;
return;
}
if (arg0 is vec3 && arg1 is vec3 && arg2 is vec3) {
col0 = arg0;
col1 = arg1;
col2 = arg2;
return;
}
if (arg0 is mat3x3) {
col0 = arg0.col0;
col1 = arg0.col1;
col2 = arg0.col2;
return;
}
if (arg0 is mat3x2) {
col0.x = arg0.col0.x;
col0.y = arg0.col0.y;
col1.x = arg0.col1.x;
col1.y = arg0.col1.y;
col2.x = arg0.col2.x;
col2.y = arg0.col2.y;
return;
}
if (arg0 is mat2x3) {
col0.x = arg0.col0.x;
col0.y = arg0.col0.y;
col0.z = arg0.col0.z;
col1.x = arg0.col1.x;
col1.y = arg0.col1.y;
col1.z = arg0.col1.z;
return;
}
if (arg0 is mat2x2) {
col0.x = arg0.col0.x;
col0.y = arg0.col0.y;
col1.x = arg0.col1.x;
col1.y = arg0.col1.y;
return;
}
if (arg0 is vec2 && arg1 == null && arg2 == null && arg3 == null && arg4 == null && arg5 == null && arg6 == null && arg7 == null && arg8 == null) {
col0.x = arg0.x;
col1.y = arg0.y;
}
if (arg0 is vec3 && arg1 == null && arg2 == null && arg3 == null && arg4 == null && arg5 == null && arg6 == null && arg7 == null && arg8 == null) {
col0.x = arg0.x;
col1.y = arg0.y;
col2.z = arg0.z;
}
}
/// Constructs a new [mat3x3] from computing the outer product of [u] and [v].
mat3x3.outer(vec3 u, vec3 v) {
col0 = new vec3();
col1 = new vec3();
col2 = new vec3();
col0.x = u.x * v.x;
col0.y = u.x * v.y;
col0.z = u.x * v.z;
col1.x = u.y * v.x;
col1.y = u.y * v.y;
col1.z = u.y * v.z;
col2.x = u.z * v.x;
col2.y = u.z * v.y;
col2.z = u.z * v.z;
}
/// Constructs a new [mat3x3] filled with zeros.
mat3x3.zero() {
col0 = new vec3();
col1 = new vec3();
col2 = new vec3();
col0.x = 0.0;
col0.y = 0.0;
col0.z = 0.0;
col1.x = 0.0;
col1.y = 0.0;
col1.z = 0.0;
col2.x = 0.0;
col2.y = 0.0;
col2.z = 0.0;
}
/// Constructs a new identity [mat3x3].
mat3x3.identity() {
col0 = new vec3();
col1 = new vec3();
col2 = new vec3();
col0.x = 1.0;
col0.y = 0.0;
col0.z = 0.0;
col1.x = 0.0;
col1.y = 1.0;
col1.z = 0.0;
col2.x = 0.0;
col2.y = 0.0;
col2.z = 1.0;
}
/// Constructs a new [mat3x3] which is a copy of [other].
mat3x3.copy(mat3x3 other) {
col0 = new vec3();
col1 = new vec3();
col2 = new vec3();
col0.x = other.col0.x;
col0.y = other.col0.y;
col0.z = other.col0.z;
col1.x = other.col1.x;
col1.y = other.col1.y;
col1.z = other.col1.z;
col2.x = other.col2.x;
col2.y = other.col2.y;
col2.z = other.col2.z;
}
//// Constructs a new [mat3x3] representation a rotation of [radians] around the X axis
mat3x3.rotationX(num radians_) {
col0 = new vec3.zero();
col1 = new vec3.zero();
col2 = new vec3.zero();
setRotationAroundX(radians_);
}
//// Constructs a new [mat3x3] representation a rotation of [radians] around the Y axis
mat3x3.rotationY(num radians_) {
col0 = new vec3.zero();
col1 = new vec3.zero();
col2 = new vec3.zero();
setRotationAroundY(radians_);
}
//// Constructs a new [mat3x3] representation a rotation of [radians] around the Z axis
mat3x3.rotationZ(num radians_) {
col0 = new vec3.zero();
col1 = new vec3.zero();
col2 = new vec3.zero();
setRotationAroundZ(radians_);
}
mat3x3.raw(num arg0, num arg1, num arg2, num arg3, num arg4, num arg5, num arg6, num arg7, num arg8) {
col0 = new vec3.zero();
col1 = new vec3.zero();
col2 = new vec3.zero();
col0.x = arg0;
col0.y = arg1;
col0.z = arg2;
col1.x = arg3;
col1.y = arg4;
col1.z = arg5;
col2.x = arg6;
col2.y = arg7;
col2.z = arg8;
}
/// Returns a printable string
String toString() {
String s = '';
s = '$s[0] ${getRow(0)}\n';
s = '$s[1] ${getRow(1)}\n';
s = '$s[2] ${getRow(2)}\n';
return s;
}
/// Returns the number of rows in the matrix.
num get rows() => 3;
/// Returns the number of columns in the matrix.
num get cols() => 3;
/// Returns the number of columns in the matrix.
num get length() => 3;
/// Gets the [column] of the matrix
vec3 operator[](int column) {
assert(column >= 0 && column < 3);
switch (column) {
case 0: return col0;
case 1: return col1;
case 2: return col2;
}
throw new IllegalArgumentException(column);
}
/// Assigns the [column] of the matrix [arg]
void operator[]=(int column, vec3 arg) {
assert(column >= 0 && column < 3);
switch (column) {
case 0: col0 = arg; break;
case 1: col1 = arg; break;
case 2: col2 = arg; break;
}
throw new IllegalArgumentException(column);
}
/// Returns row 0
vec3 get row0() => getRow(0);
/// Returns row 1
vec3 get row1() => getRow(1);
/// Returns row 2
vec3 get row2() => getRow(2);
/// Sets row 0 to [arg]
set row0(vec3 arg) => setRow(0, arg);
/// Sets row 1 to [arg]
set row1(vec3 arg) => setRow(1, arg);
/// Sets row 2 to [arg]
set row2(vec3 arg) => setRow(2, arg);
/// Assigns the [column] of the matrix [arg]
void setRow(int row, vec3 arg) {
assert(row >= 0 && row < 3);
col0[row] = arg.x;
col1[row] = arg.y;
col2[row] = arg.z;
}
/// Gets the [row] of the matrix
vec3 getRow(int row) {
assert(row >= 0 && row < 3);
vec3 r = new vec3();
r.x = col0[row];
r.y = col1[row];
r.z = col2[row];
return r;
}
/// Assigns the [column] of the matrix [arg]
void setColumn(int column, vec3 arg) {
assert(column >= 0 && column < 3);
this[column] = arg;
}
/// Gets the [column] of the matrix
vec3 getColumn(int column) {
assert(column >= 0 && column < 3);
return new vec3(this[column]);
}
/// Returns a new vector or matrix by multiplying [this] with [arg].
Dynamic operator*(Dynamic arg) {
if (arg is num) {
mat3x3 r = new mat3x3.zero();
r.col0.x = col0.x * arg;
r.col0.y = col0.y * arg;
r.col0.z = col0.z * arg;
r.col1.x = col1.x * arg;
r.col1.y = col1.y * arg;
r.col1.z = col1.z * arg;
r.col2.x = col2.x * arg;
r.col2.y = col2.y * arg;
r.col2.z = col2.z * arg;
return r;
}
if (arg is vec3) {
vec3 r = new vec3.zero();
r.x = (this.col0.x * arg.x) + (this.col1.x * arg.y) + (this.col2.x * arg.z);
r.y = (this.col0.y * arg.x) + (this.col1.y * arg.y) + (this.col2.y * arg.z);
r.z = (this.col0.z * arg.x) + (this.col1.z * arg.y) + (this.col2.z * arg.z);
return r;
}
if (3 == arg.rows) {
Dynamic r = null;
if (arg.cols == 2) {
r = new mat2x3.zero();
r.col0.x = (this.col0.x * arg.col0.x) + (this.col1.x * arg.col0.y) + (this.col2.x * arg.col0.z);
r.col1.x = (this.col0.x * arg.col1.x) + (this.col1.x * arg.col1.y) + (this.col2.x * arg.col1.z);
r.col0.y = (this.col0.y * arg.col0.x) + (this.col1.y * arg.col0.y) + (this.col2.y * arg.col0.z);
r.col1.y = (this.col0.y * arg.col1.x) + (this.col1.y * arg.col1.y) + (this.col2.y * arg.col1.z);
r.col0.z = (this.col0.z * arg.col0.x) + (this.col1.z * arg.col0.y) + (this.col2.z * arg.col0.z);
r.col1.z = (this.col0.z * arg.col1.x) + (this.col1.z * arg.col1.y) + (this.col2.z * arg.col1.z);
return r;
}
if (arg.cols == 3) {
r = new mat3x3.zero();
r.col0.x = (this.col0.x * arg.col0.x) + (this.col1.x * arg.col0.y) + (this.col2.x * arg.col0.z);
r.col1.x = (this.col0.x * arg.col1.x) + (this.col1.x * arg.col1.y) + (this.col2.x * arg.col1.z);
r.col2.x = (this.col0.x * arg.col2.x) + (this.col1.x * arg.col2.y) + (this.col2.x * arg.col2.z);
r.col0.y = (this.col0.y * arg.col0.x) + (this.col1.y * arg.col0.y) + (this.col2.y * arg.col0.z);
r.col1.y = (this.col0.y * arg.col1.x) + (this.col1.y * arg.col1.y) + (this.col2.y * arg.col1.z);
r.col2.y = (this.col0.y * arg.col2.x) + (this.col1.y * arg.col2.y) + (this.col2.y * arg.col2.z);
r.col0.z = (this.col0.z * arg.col0.x) + (this.col1.z * arg.col0.y) + (this.col2.z * arg.col0.z);
r.col1.z = (this.col0.z * arg.col1.x) + (this.col1.z * arg.col1.y) + (this.col2.z * arg.col1.z);
r.col2.z = (this.col0.z * arg.col2.x) + (this.col1.z * arg.col2.y) + (this.col2.z * arg.col2.z);
return r;
}
return r;
}
throw new IllegalArgumentException(arg);
}
/// Returns new matrix after component wise [this] + [arg]
mat3x3 operator+(mat3x3 arg) {
mat3x3 r = new mat3x3();
r.col0.x = col0.x + arg.col0.x;
r.col0.y = col0.y + arg.col0.y;
r.col0.z = col0.z + arg.col0.z;
r.col1.x = col1.x + arg.col1.x;
r.col1.y = col1.y + arg.col1.y;
r.col1.z = col1.z + arg.col1.z;
r.col2.x = col2.x + arg.col2.x;
r.col2.y = col2.y + arg.col2.y;
r.col2.z = col2.z + arg.col2.z;
return r;
}
/// Returns new matrix after component wise [this] - [arg]
mat3x3 operator-(mat3x3 arg) {
mat3x3 r = new mat3x3();
r.col0.x = col0.x - arg.col0.x;
r.col0.y = col0.y - arg.col0.y;
r.col0.z = col0.z - arg.col0.z;
r.col1.x = col1.x - arg.col1.x;
r.col1.y = col1.y - arg.col1.y;
r.col1.z = col1.z - arg.col1.z;
r.col2.x = col2.x - arg.col2.x;
r.col2.y = col2.y - arg.col2.y;
r.col2.z = col2.z - arg.col2.z;
return r;
}
/// Returns new matrix -this
mat3x3 operator negate() {
mat3x3 r = new mat3x3();
r[0] = -this[0];
r[1] = -this[1];
r[2] = -this[2];
return r;
}
/// Returns the tranpose of this.
mat3x3 transposed() {
mat3x3 r = new mat3x3();
r.col0.x = col0.x;
r.col0.y = col1.x;
r.col0.z = col2.x;
r.col1.x = col0.y;
r.col1.y = col1.y;
r.col1.z = col2.y;
r.col2.x = col0.z;
r.col2.y = col1.z;
r.col2.z = col2.z;
return r;
}
/// Returns the component wise absolute value of this.
mat3x3 absolute() {
mat3x3 r = new mat3x3();
r.col0.x = col0.x.abs();
r.col0.y = col0.y.abs();
r.col0.z = col0.z.abs();
r.col1.x = col1.x.abs();
r.col1.y = col1.y.abs();
r.col1.z = col1.z.abs();
r.col2.x = col2.x.abs();
r.col2.y = col2.y.abs();
r.col2.z = col2.z.abs();
return r;
}
/// Returns the determinant of this matrix.
num determinant() {
num x = col0.x*((col1.y*col2.z)-(col1.z*col2.y));
num y = col0.y*((col1.x*col2.z)-(col1.z*col2.x));
num z = col0.z*((col1.x*col2.y)-(col1.y*col2.x));
return x - y + z;
}
/// Returns the trace of the matrix. The trace of a matrix is the sum of the diagonal entries
num trace() {
num t = 0.0;
t += col0.x;
t += col1.y;
t += col2.z;
return t;
}
/// Returns infinity norm of the matrix. Used for numerical analysis.
num infinityNorm() {
num norm = 0.0;
{
num row_norm = 0.0;
row_norm += this[0][0].abs();
row_norm += this[0][1].abs();
row_norm += this[0][2].abs();
norm = row_norm > norm ? row_norm : norm;
}
{
num row_norm = 0.0;
row_norm += this[1][0].abs();
row_norm += this[1][1].abs();
row_norm += this[1][2].abs();
norm = row_norm > norm ? row_norm : norm;
}
{
num row_norm = 0.0;
row_norm += this[2][0].abs();
row_norm += this[2][1].abs();
row_norm += this[2][2].abs();
norm = row_norm > norm ? row_norm : norm;
}
return norm;
}
/// Returns relative error between [this] and [correct]
num relativeError(mat3x3 correct) {
num this_norm = infinityNorm();
num correct_norm = correct.infinityNorm();
num diff_norm = (this_norm - correct_norm).abs();
return diff_norm/correct_norm;
}
/// Returns absolute error between [this] and [correct]
num absoluteError(mat3x3 correct) {
num this_norm = infinityNorm();
num correct_norm = correct.infinityNorm();
num diff_norm = (this_norm - correct_norm).abs();
return diff_norm;
}
/// Invert the matrix. Returns the determinant.
num invert() {
num det = determinant();
if (det == 0.0) {
return 0.0;
}
num invDet = 1.0 / det;
vec3 i = new vec3.zero();
vec3 j = new vec3.zero();
vec3 k = new vec3.zero();
i.x = invDet * (col1.y * col2.z - col1.z * col2.y);
i.y = invDet * (col0.z * col2.y - col0.y * col2.z);
i.z = invDet * (col0.y * col1.z - col0.z * col1.y);
j.x = invDet * (col1.z * col2.x - col1.x * col2.z);
j.y = invDet * (col0.x * col2.z - col0.z * col2.x);
j.z = invDet * (col0.z * col1.x - col0.x * col1.z);
k.x = invDet * (col1.x * col2.y - col1.y * col2.x);
k.y = invDet * (col0.y * col2.x - col0.x * col2.y);
k.z = invDet * (col0.x * col1.y - col0.y * col1.x);
col0 = i;
col1 = j;
col2 = k;
return det;
}
/// Turns the matrix into a rotation of [radians] around X
void setRotationAroundX(num radians_) {
num c = Math.cos(radians_);
num s = Math.sin(radians_);
col0.x = 1.0;
col0.y = 0.0;
col0.z = 0.0;
col1.x = 0.0;
col1.y = c;
col1.z = s;
col2.x = 0.0;
col2.y = -s;
col2.z = c;
}
/// Turns the matrix into a rotation of [radians] around Y
void setRotationAroundY(num radians_) {
num c = Math.cos(radians_);
num s = Math.sin(radians_);
col0.x = c;
col0.y = 0.0;
col0.z = -s;
col1.x = 0.0;
col1.y = 1.0;
col1.z = 0.0;
col2.x = s;
col2.y = 0.0;
col2.z = c;
}
/// Turns the matrix into a rotation of [radians] around Z
void setRotationAroundZ(num radians_) {
num c = Math.cos(radians_);
num s = Math.sin(radians_);
col0.x = c;
col0.y = s;
col0.z = 0.0;
col1.x = -s;
col1.y = c;
col1.z = 0.0;
col2.x = 0.0;
col2.y = 0.0;
col2.z = 1.0;
}
/// Converts into Adjugate matrix and scales by [scale]
void selfScaleAdjoint(num scale) {
num m00 = col0.x;
num m01 = col1.x;
num m02 = col2.x;
num m10 = col0.y;
num m11 = col1.y;
num m12 = col2.y;
num m20 = col0.z;
num m21 = col1.z;
num m22 = col2.z;
col0.x = (m11 * m22 - m12 * m21) * scale;
col0.y = (m12 * m20 - m10 * m22) * scale;
col0.z = (m10 * m21 - m11 * m20) * scale;
col1.x = (m02 * m21 - m01 * m22) * scale;
col1.y = (m00 * m22 - m02 * m20) * scale;
col1.z = (m01 * m20 - m00 * m21) * scale;
col2.x = (m01 * m12 - m02 * m11) * scale;
col2.y = (m02 * m10 - m00 * m12) * scale;
col2.z = (m00 * m00 - m01 * m10) * scale;
}
mat3x3 copy() {
return new mat3x3.copy(this);
}
mat3x3 copyInto(mat3x3 arg) {
arg.col0.x = col0.x;
arg.col0.y = col0.y;
arg.col0.z = col0.z;
arg.col1.x = col1.x;
arg.col1.y = col1.y;
arg.col1.z = col1.z;
arg.col2.x = col2.x;
arg.col2.y = col2.y;
arg.col2.z = col2.z;
return arg;
}
mat3x3 copyFrom(mat3x3 arg) {
col0.x = arg.col0.x;
col0.y = arg.col0.y;
col0.z = arg.col0.z;
col1.x = arg.col1.x;
col1.y = arg.col1.y;
col1.z = arg.col1.z;
col2.x = arg.col2.x;
col2.y = arg.col2.y;
col2.z = arg.col2.z;
return this;
}
mat3x3 selfAdd(mat3x3 o) {
col0.x = col0.x + o.col0.x;
col0.y = col0.y + o.col0.y;
col0.z = col0.z + o.col0.z;
col1.x = col1.x + o.col1.x;
col1.y = col1.y + o.col1.y;
col1.z = col1.z + o.col1.z;
col2.x = col2.x + o.col2.x;
col2.y = col2.y + o.col2.y;
col2.z = col2.z + o.col2.z;
return this;
}
mat3x3 selfSub(mat3x3 o) {
col0.x = col0.x - o.col0.x;
col0.y = col0.y - o.col0.y;
col0.z = col0.z - o.col0.z;
col1.x = col1.x - o.col1.x;
col1.y = col1.y - o.col1.y;
col1.z = col1.z - o.col1.z;
col2.x = col2.x - o.col2.x;
col2.y = col2.y - o.col2.y;
col2.z = col2.z - o.col2.z;
return this;
}
mat3x3 selfScale(num o) {
col0.x = col0.x * o;
col0.y = col0.y * o;
col0.z = col0.z * o;
col1.x = col1.x * o;
col1.y = col1.y * o;
col1.z = col1.z * o;
col2.x = col2.x * o;
col2.y = col2.y * o;
col2.z = col2.z * o;
return this;
}
mat3x3 selfNegate() {
col0.x = -col0.x;
col0.y = -col0.y;
col0.z = -col0.z;
col1.x = -col1.x;
col1.y = -col1.y;
col1.z = -col1.z;
col2.x = -col2.x;
col2.y = -col2.y;
col2.z = -col2.z;
return this;
}
mat3x3 selfMultiply(mat3x3 arg) {
final num m00 = col0.x;
final num m01 = col1.x;
final num m02 = col2.x;
final num m10 = col0.y;
final num m11 = col1.y;
final num m12 = col2.y;
final num m20 = col0.z;
final num m21 = col1.z;
final num m22 = col2.z;
final num n00 = arg.col0.x;
final num n01 = arg.col1.x;
final num n02 = arg.col2.x;
final num n10 = arg.col0.y;
final num n11 = arg.col1.y;
final num n12 = arg.col2.y;
final num n20 = arg.col0.z;
final num n21 = arg.col1.z;
final num n22 = arg.col2.z;
col0.x = (m00 * n00) + (m01 * n10) + (m02 * n20);
col1.x = (m00 * n01) + (m01 * n11) + (m02 * n21);
col2.x = (m00 * n02) + (m01 * n12) + (m02 * n22);
col0.y = (m10 * n00) + (m11 * n10) + (m12 * n20);
col1.y = (m10 * n01) + (m11 * n11) + (m12 * n21);
col2.y = (m10 * n02) + (m11 * n12) + (m12 * n22);
col0.z = (m20 * n00) + (m21 * n10) + (m22 * n20);
col1.z = (m20 * n01) + (m21 * n11) + (m22 * n21);
col2.z = (m20 * n02) + (m21 * n12) + (m22 * n22);
return this;
}
mat3x3 selfTransposeMultiply(mat3x3 arg) {
num m00 = col0.x;
num m01 = col0.y;
num m02 = col0.z;
num m10 = col1.x;
num m11 = col1.y;
num m12 = col1.z;
num m20 = col2.x;
num m21 = col2.y;
num m22 = col2.z;
col0.x = (m00 * arg.col0.x) + (m01 * arg.col0.y) + (m02 * arg.col0.z);
col1.x = (m00 * arg.col1.x) + (m01 * arg.col1.y) + (m02 * arg.col1.z);
col2.x = (m00 * arg.col2.x) + (m01 * arg.col2.y) + (m02 * arg.col2.z);
col0.y = (m10 * arg.col0.x) + (m11 * arg.col0.y) + (m12 * arg.col0.z);
col1.y = (m10 * arg.col1.x) + (m11 * arg.col1.y) + (m12 * arg.col1.z);
col2.y = (m10 * arg.col2.x) + (m11 * arg.col2.y) + (m12 * arg.col2.z);
col0.z = (m20 * arg.col0.x) + (m21 * arg.col0.y) + (m22 * arg.col0.z);
col1.z = (m20 * arg.col1.x) + (m21 * arg.col1.y) + (m22 * arg.col1.z);
col2.z = (m20 * arg.col2.x) + (m21 * arg.col2.y) + (m22 * arg.col2.z);
return this;
}
mat3x3 selfMultiplyTranpose(mat3x3 arg) {
num m00 = col0.x;
num m01 = col1.x;
num m02 = col2.x;
num m10 = col0.y;
num m11 = col1.y;
num m12 = col2.y;
num m20 = col0.z;
num m21 = col1.z;
num m22 = col2.z;
col0.x = (m00 * arg.col0.x) + (m01 * arg.col1.x) + (m02 * arg.col2.x);
col1.x = (m00 * arg.col0.y) + (m01 * arg.col1.y) + (m02 * arg.col2.y);
col2.x = (m00 * arg.col0.z) + (m01 * arg.col1.z) + (m02 * arg.col2.z);
col0.y = (m10 * arg.col0.x) + (m11 * arg.col1.x) + (m12 * arg.col2.x);
col1.y = (m10 * arg.col0.y) + (m11 * arg.col1.y) + (m12 * arg.col2.y);
col2.y = (m10 * arg.col0.z) + (m11 * arg.col1.z) + (m12 * arg.col2.z);
col0.z = (m20 * arg.col0.x) + (m21 * arg.col1.x) + (m22 * arg.col2.x);
col1.z = (m20 * arg.col0.y) + (m21 * arg.col1.y) + (m22 * arg.col2.y);
col2.z = (m20 * arg.col0.z) + (m21 * arg.col1.z) + (m22 * arg.col2.z);
return this;
}
vec3 transformDirect(vec3 arg) {
num x_ = (this.col0.x * arg.x) + (this.col1.x * arg.y) + (this.col2.x * arg.z);
num y_ = (this.col0.y * arg.x) + (this.col1.y * arg.y) + (this.col2.y * arg.z);
num z_ = (this.col0.z * arg.x) + (this.col1.z * arg.y) + (this.col2.z * arg.z);
arg.x = x_;
arg.y = y_;
arg.z = z_;
return arg;
}
vec3 transform(vec3 arg) {
vec3 d = arg.copy();
return transformDirect(d);
}
/// Copies [this] into [array] starting at [offset].
void copyIntoArray(Float32List array, [int offset=0]) {
int i = offset;
array[i] = col0.x;
i++;
array[i] = col0.y;
i++;
array[i] = col0.z;
i++;
array[i] = col1.x;
i++;
array[i] = col1.y;
i++;
array[i] = col1.z;
i++;
array[i] = col2.x;
i++;
array[i] = col2.y;
i++;
array[i] = col2.z;
i++;
}
/// Returns a copy of [this] as a [Float32List].
Float32List copyAsArray() {
Float32List array = new Float32List(9);
int i = 0;
array[i] = col0.x;
i++;
array[i] = col0.y;
i++;
array[i] = col0.z;
i++;
array[i] = col1.x;
i++;
array[i] = col1.y;
i++;
array[i] = col1.z;
i++;
array[i] = col2.x;
i++;
array[i] = col2.y;
i++;
array[i] = col2.z;
i++;
return array;
}
/// Copies elements from [array] into [this] starting at [offset].
void copyFromArray(Float32List array, [int offset=0]) {
int i = offset;
col0.x = array[i];
i++;
col0.y = array[i];
i++;
col0.z = array[i];
i++;
col1.x = array[i];
i++;
col1.y = array[i];
i++;
col1.z = array[i];
i++;
col2.x = array[i];
i++;
col2.y = array[i];
i++;
col2.z = array[i];
i++;
}
}