blob: df27a4f5b87f4a77507379e75d3ba0b014bef3e4 [file] [log] [blame]
/*
VectorMath.dart
Copyright (C) 2012 John McCutchan <john@johnmccutchan.com>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/// mat2x3 is a column major matrix where each column is represented by [vec3]. This matrix has 2 columns and 3 rows.
class mat2x3 {
vec3 col0;
vec3 col1;
/// Constructs a new mat2x3. Supports GLSL like syntax so many possible inputs. Defaults to identity matrix.
mat2x3([Dynamic arg0, Dynamic arg1, Dynamic arg2, Dynamic arg3, Dynamic arg4, Dynamic arg5]) {
//Initialize the matrix as the identity matrix
col0 = new vec3.zero();
col1 = new vec3.zero();
col0.x = 1.0;
col1.y = 1.0;
if (arg0 is num && arg1 is num && arg2 is num && arg3 is num && arg4 is num && arg5 is num) {
col0.x = arg0;
col0.y = arg1;
col0.z = arg2;
col1.x = arg3;
col1.y = arg4;
col1.z = arg5;
return;
}
if (arg0 is num && arg1 == null && arg2 == null && arg3 == null && arg4 == null && arg5 == null) {
col0.x = arg0;
col1.y = arg0;
return;
}
if (arg0 is vec2 && arg1 is vec2) {
col0 = arg0;
col1 = arg1;
return;
}
if (arg0 is mat2x3) {
col0 = arg0.col0;
col1 = arg0.col1;
return;
}
if (arg0 is mat2x2) {
col0.x = arg0.col0.x;
col0.y = arg0.col0.y;
col1.x = arg0.col1.x;
col1.y = arg0.col1.y;
return;
}
if (arg0 is vec2 && arg1 == null && arg2 == null && arg3 == null && arg4 == null && arg5 == null) {
col0.x = arg0.x;
col1.y = arg0.y;
}
}
/// Constructs a new [mat2x3] from computing the outer product of [u] and [v].
mat2x3.outer(vec2 u, vec3 v) {
col0 = new vec3();
col1 = new vec3();
col0.x = u.x * v.x;
col0.y = u.x * v.y;
col0.z = u.x * v.z;
col1.x = u.y * v.x;
col1.y = u.y * v.y;
col1.z = u.y * v.z;
}
/// Constructs a new [mat2x3] filled with zeros.
mat2x3.zero() {
col0 = new vec3();
col1 = new vec3();
col0.x = 0.0;
col0.y = 0.0;
col0.z = 0.0;
col1.x = 0.0;
col1.y = 0.0;
col1.z = 0.0;
}
/// Constructs a new identity [mat2x3].
mat2x3.identity() {
col0 = new vec3();
col1 = new vec3();
col0.x = 1.0;
col0.y = 0.0;
col0.z = 0.0;
col1.x = 0.0;
col1.y = 1.0;
col1.z = 0.0;
}
/// Constructs a new [mat2x3] which is a copy of [other].
mat2x3.copy(mat2x3 other) {
col0 = new vec3();
col1 = new vec3();
col0.x = other.col0.x;
col0.y = other.col0.y;
col0.z = other.col0.z;
col1.x = other.col1.x;
col1.y = other.col1.y;
col1.z = other.col1.z;
}
mat2x3.raw(num arg0, num arg1, num arg2, num arg3, num arg4, num arg5) {
col0 = new vec3.zero();
col1 = new vec3.zero();
col0.x = arg0;
col0.y = arg1;
col0.z = arg2;
col1.x = arg3;
col1.y = arg4;
col1.z = arg5;
}
/// Returns a printable string
String toString() {
String s = '';
s = '$s[0] ${getRow(0)}\n';
s = '$s[1] ${getRow(1)}\n';
s = '$s[2] ${getRow(2)}\n';
return s;
}
/// Returns the number of rows in the matrix.
num get rows() => 3;
/// Returns the number of columns in the matrix.
num get cols() => 2;
/// Returns the number of columns in the matrix.
num get length() => 2;
/// Gets the [column] of the matrix
vec3 operator[](int column) {
assert(column >= 0 && column < 2);
switch (column) {
case 0: return col0;
case 1: return col1;
}
throw new IllegalArgumentException(column);
}
/// Assigns the [column] of the matrix [arg]
void operator[]=(int column, vec3 arg) {
assert(column >= 0 && column < 2);
switch (column) {
case 0: col0 = arg; break;
case 1: col1 = arg; break;
}
throw new IllegalArgumentException(column);
}
/// Returns row 0
vec2 get row0() => getRow(0);
/// Returns row 1
vec2 get row1() => getRow(1);
/// Returns row 2
vec2 get row2() => getRow(2);
/// Sets row 0 to [arg]
set row0(vec2 arg) => setRow(0, arg);
/// Sets row 1 to [arg]
set row1(vec2 arg) => setRow(1, arg);
/// Sets row 2 to [arg]
set row2(vec2 arg) => setRow(2, arg);
/// Assigns the [column] of the matrix [arg]
void setRow(int row, vec2 arg) {
assert(row >= 0 && row < 3);
col0[row] = arg.x;
col1[row] = arg.y;
}
/// Gets the [row] of the matrix
vec2 getRow(int row) {
assert(row >= 0 && row < 3);
vec2 r = new vec2();
r.x = col0[row];
r.y = col1[row];
return r;
}
/// Assigns the [column] of the matrix [arg]
void setColumn(int column, vec3 arg) {
assert(column >= 0 && column < 2);
this[column] = arg;
}
/// Gets the [column] of the matrix
vec3 getColumn(int column) {
assert(column >= 0 && column < 2);
return new vec3(this[column]);
}
/// Returns a new vector or matrix by multiplying [this] with [arg].
Dynamic operator*(Dynamic arg) {
if (arg is num) {
mat2x3 r = new mat2x3.zero();
r.col0.x = col0.x * arg;
r.col0.y = col0.y * arg;
r.col0.z = col0.z * arg;
r.col1.x = col1.x * arg;
r.col1.y = col1.y * arg;
r.col1.z = col1.z * arg;
return r;
}
if (arg is vec2) {
vec3 r = new vec3.zero();
r.x = (this.col0.x * arg.x) + (this.col1.x * arg.y);
r.y = (this.col0.y * arg.x) + (this.col1.y * arg.y);
r.z = (this.col0.z * arg.x) + (this.col1.z * arg.y);
return r;
}
if (2 == arg.rows) {
Dynamic r = null;
if (arg.cols == 2) {
r = new mat2x3.zero();
r.col0.x = (this.col0.x * arg.col0.x) + (this.col1.x * arg.col0.y);
r.col1.x = (this.col0.x * arg.col1.x) + (this.col1.x * arg.col1.y);
r.col0.y = (this.col0.y * arg.col0.x) + (this.col1.y * arg.col0.y);
r.col1.y = (this.col0.y * arg.col1.x) + (this.col1.y * arg.col1.y);
r.col0.z = (this.col0.z * arg.col0.x) + (this.col1.z * arg.col0.y);
r.col1.z = (this.col0.z * arg.col1.x) + (this.col1.z * arg.col1.y);
return r;
}
if (arg.cols == 3) {
r = new mat3x3.zero();
r.col0.x = (this.col0.x * arg.col0.x) + (this.col1.x * arg.col0.y);
r.col1.x = (this.col0.x * arg.col1.x) + (this.col1.x * arg.col1.y);
r.col2.x = (this.col0.x * arg.col2.x) + (this.col1.x * arg.col2.y);
r.col0.y = (this.col0.y * arg.col0.x) + (this.col1.y * arg.col0.y);
r.col1.y = (this.col0.y * arg.col1.x) + (this.col1.y * arg.col1.y);
r.col2.y = (this.col0.y * arg.col2.x) + (this.col1.y * arg.col2.y);
r.col0.z = (this.col0.z * arg.col0.x) + (this.col1.z * arg.col0.y);
r.col1.z = (this.col0.z * arg.col1.x) + (this.col1.z * arg.col1.y);
r.col2.z = (this.col0.z * arg.col2.x) + (this.col1.z * arg.col2.y);
return r;
}
return r;
}
throw new IllegalArgumentException(arg);
}
/// Returns new matrix after component wise [this] + [arg]
mat2x3 operator+(mat2x3 arg) {
mat2x3 r = new mat2x3();
r.col0.x = col0.x + arg.col0.x;
r.col0.y = col0.y + arg.col0.y;
r.col0.z = col0.z + arg.col0.z;
r.col1.x = col1.x + arg.col1.x;
r.col1.y = col1.y + arg.col1.y;
r.col1.z = col1.z + arg.col1.z;
return r;
}
/// Returns new matrix after component wise [this] - [arg]
mat2x3 operator-(mat2x3 arg) {
mat2x3 r = new mat2x3();
r.col0.x = col0.x - arg.col0.x;
r.col0.y = col0.y - arg.col0.y;
r.col0.z = col0.z - arg.col0.z;
r.col1.x = col1.x - arg.col1.x;
r.col1.y = col1.y - arg.col1.y;
r.col1.z = col1.z - arg.col1.z;
return r;
}
/// Returns new matrix -this
mat2x3 operator negate() {
mat2x3 r = new mat2x3();
r[0] = -this[0];
r[1] = -this[1];
return r;
}
/// Returns the tranpose of this.
mat3x2 transposed() {
mat3x2 r = new mat3x2();
r.col0.x = col0.x;
r.col0.y = col1.x;
r.col1.x = col0.y;
r.col1.y = col1.y;
r.col2.x = col0.z;
r.col2.y = col1.z;
return r;
}
/// Returns the component wise absolute value of this.
mat2x3 absolute() {
mat2x3 r = new mat2x3();
r.col0.x = col0.x.abs();
r.col0.y = col0.y.abs();
r.col0.z = col0.z.abs();
r.col1.x = col1.x.abs();
r.col1.y = col1.y.abs();
r.col1.z = col1.z.abs();
return r;
}
/// Returns infinity norm of the matrix. Used for numerical analysis.
num infinityNorm() {
num norm = 0.0;
{
num row_norm = 0.0;
row_norm += this[0][0].abs();
row_norm += this[0][1].abs();
row_norm += this[0][2].abs();
norm = row_norm > norm ? row_norm : norm;
}
{
num row_norm = 0.0;
row_norm += this[1][0].abs();
row_norm += this[1][1].abs();
row_norm += this[1][2].abs();
norm = row_norm > norm ? row_norm : norm;
}
return norm;
}
/// Returns relative error between [this] and [correct]
num relativeError(mat2x3 correct) {
num this_norm = infinityNorm();
num correct_norm = correct.infinityNorm();
num diff_norm = (this_norm - correct_norm).abs();
return diff_norm/correct_norm;
}
/// Returns absolute error between [this] and [correct]
num absoluteError(mat2x3 correct) {
num this_norm = infinityNorm();
num correct_norm = correct.infinityNorm();
num diff_norm = (this_norm - correct_norm).abs();
return diff_norm;
}
mat2x3 copy() {
return new mat2x3.copy(this);
}
mat2x3 copyInto(mat2x3 arg) {
arg.col0.x = col0.x;
arg.col0.y = col0.y;
arg.col0.z = col0.z;
arg.col1.x = col1.x;
arg.col1.y = col1.y;
arg.col1.z = col1.z;
return arg;
}
mat2x3 copyFrom(mat2x3 arg) {
col0.x = arg.col0.x;
col0.y = arg.col0.y;
col0.z = arg.col0.z;
col1.x = arg.col1.x;
col1.y = arg.col1.y;
col1.z = arg.col1.z;
return this;
}
mat2x3 selfAdd(mat2x3 o) {
col0.x = col0.x + o.col0.x;
col0.y = col0.y + o.col0.y;
col0.z = col0.z + o.col0.z;
col1.x = col1.x + o.col1.x;
col1.y = col1.y + o.col1.y;
col1.z = col1.z + o.col1.z;
return this;
}
mat2x3 selfSub(mat2x3 o) {
col0.x = col0.x - o.col0.x;
col0.y = col0.y - o.col0.y;
col0.z = col0.z - o.col0.z;
col1.x = col1.x - o.col1.x;
col1.y = col1.y - o.col1.y;
col1.z = col1.z - o.col1.z;
return this;
}
mat2x3 selfScale(num o) {
col0.x = col0.x * o;
col0.y = col0.y * o;
col0.z = col0.z * o;
col1.x = col1.x * o;
col1.y = col1.y * o;
col1.z = col1.z * o;
return this;
}
mat2x3 selfNegate() {
col0.x = -col0.x;
col0.y = -col0.y;
col0.z = -col0.z;
col1.x = -col1.x;
col1.y = -col1.y;
col1.z = -col1.z;
return this;
}
/// Copies [this] into [array] starting at [offset].
void copyIntoArray(Float32List array, [int offset=0]) {
int i = offset;
array[i] = col0.x;
i++;
array[i] = col0.y;
i++;
array[i] = col0.z;
i++;
array[i] = col1.x;
i++;
array[i] = col1.y;
i++;
array[i] = col1.z;
i++;
}
/// Returns a copy of [this] as a [Float32List].
Float32List copyAsArray() {
Float32List array = new Float32List(6);
int i = 0;
array[i] = col0.x;
i++;
array[i] = col0.y;
i++;
array[i] = col0.z;
i++;
array[i] = col1.x;
i++;
array[i] = col1.y;
i++;
array[i] = col1.z;
i++;
return array;
}
/// Copies elements from [array] into [this] starting at [offset].
void copyFromArray(Float32List array, [int offset=0]) {
int i = offset;
col0.x = array[i];
i++;
col0.y = array[i];
i++;
col0.z = array[i];
i++;
col1.x = array[i];
i++;
col1.y = array[i];
i++;
col1.z = array[i];
i++;
}
}