blob: 945017e9654b2e1c3ae938b7878163532e73faec [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008 David Levin <levin@chromium.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef SKY_ENGINE_WTF_HASHTABLE_H_
#define SKY_ENGINE_WTF_HASHTABLE_H_
#include "sky/engine/wtf/Alignment.h"
#include "sky/engine/wtf/Assertions.h"
#include "sky/engine/wtf/DefaultAllocator.h"
#include "sky/engine/wtf/HashTraits.h"
#include "sky/engine/wtf/WTF.h"
#define DUMP_HASHTABLE_STATS 0
#define DUMP_HASHTABLE_STATS_PER_TABLE 0
#if DUMP_HASHTABLE_STATS_PER_TABLE
#include "sky/engine/wtf/DataLog.h"
#endif
#if DUMP_HASHTABLE_STATS
#if DUMP_HASHTABLE_STATS_PER_TABLE
#define UPDATE_PROBE_COUNTS() \
++probeCount; \
HashTableStats::recordCollisionAtCount(probeCount); \
++perTableProbeCount; \
m_stats->recordCollisionAtCount(perTableProbeCount)
#define UPDATE_ACCESS_COUNTS() \
atomicIncrement(&HashTableStats::numAccesses); \
int probeCount = 0; \
++m_stats->numAccesses; \
int perTableProbeCount = 0
#else
#define UPDATE_PROBE_COUNTS() \
++probeCount; \
HashTableStats::recordCollisionAtCount(probeCount)
#define UPDATE_ACCESS_COUNTS() \
atomicIncrement(&HashTableStats::numAccesses); \
int probeCount = 0
#endif
#else
#if DUMP_HASHTABLE_STATS_PER_TABLE
#define UPDATE_PROBE_COUNTS() \
++perTableProbeCount; \
m_stats->recordCollisionAtCount(perTableProbeCount)
#define UPDATE_ACCESS_COUNTS() \
++m_stats->numAccesses; \
int perTableProbeCount = 0
#else
#define UPDATE_PROBE_COUNTS() do { } while (0)
#define UPDATE_ACCESS_COUNTS() do { } while (0)
#endif
#endif
namespace WTF {
#if DUMP_HASHTABLE_STATS
struct HashTableStats {
// The following variables are all atomically incremented when modified.
static int numAccesses;
static int numRehashes;
static int numRemoves;
static int numReinserts;
// The following variables are only modified in the recordCollisionAtCount method within a mutex.
static int maxCollisions;
static int numCollisions;
static int collisionGraph[4096];
static void recordCollisionAtCount(int count);
static void dumpStats();
};
#endif
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTable;
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableIterator;
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableConstIterator;
template<typename Value, typename HashFunctions, typename HashTraits, typename Allocator>
class LinkedHashSet;
typedef enum { HashItemKnownGood } HashItemKnownGoodTag;
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableConstIterator {
private:
typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
typedef Value ValueType;
typedef typename Traits::IteratorConstGetType GetType;
typedef const ValueType* PointerType;
friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;
friend class HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;
void skipEmptyBuckets()
{
while (m_position != m_endPosition && HashTableType::isEmptyOrDeletedBucket(*m_position))
++m_position;
}
HashTableConstIterator(PointerType position, PointerType endPosition, const HashTableType* container)
: m_position(position)
, m_endPosition(endPosition)
#if ENABLE(ASSERT)
, m_container(container)
, m_containerModifications(container->modifications())
#endif
{
skipEmptyBuckets();
}
HashTableConstIterator(PointerType position, PointerType endPosition, const HashTableType* container, HashItemKnownGoodTag)
: m_position(position)
, m_endPosition(endPosition)
#if ENABLE(ASSERT)
, m_container(container)
, m_containerModifications(container->modifications())
#endif
{
ASSERT(m_containerModifications == m_container->modifications());
}
void checkModifications() const
{
// HashTable and collections that build on it do not support
// modifications while there is an iterator in use. The exception
// is ListHashSet, which has its own iterators that tolerate
// modification of the underlying set.
ASSERT(m_containerModifications == m_container->modifications());
}
public:
HashTableConstIterator()
{
}
GetType get() const
{
checkModifications();
return m_position;
}
typename Traits::IteratorConstReferenceType operator*() const { return Traits::getToReferenceConstConversion(get()); }
GetType operator->() const { return get(); }
const_iterator& operator++()
{
ASSERT(m_position != m_endPosition);
checkModifications();
++m_position;
skipEmptyBuckets();
return *this;
}
// postfix ++ intentionally omitted
// Comparison.
bool operator==(const const_iterator& other) const
{
return m_position == other.m_position;
}
bool operator!=(const const_iterator& other) const
{
return m_position != other.m_position;
}
bool operator==(const iterator& other) const
{
return *this == static_cast<const_iterator>(other);
}
bool operator!=(const iterator& other) const
{
return *this != static_cast<const_iterator>(other);
}
private:
PointerType m_position;
PointerType m_endPosition;
#if ENABLE(ASSERT)
const HashTableType* m_container;
int64_t m_containerModifications;
#endif
};
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableIterator {
private:
typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
typedef Value ValueType;
typedef typename Traits::IteratorGetType GetType;
typedef ValueType* PointerType;
friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;
HashTableIterator(PointerType pos, PointerType end, const HashTableType* container) : m_iterator(pos, end, container) { }
HashTableIterator(PointerType pos, PointerType end, const HashTableType* container, HashItemKnownGoodTag tag) : m_iterator(pos, end, container, tag) { }
public:
HashTableIterator() { }
// default copy, assignment and destructor are OK
GetType get() const { return const_cast<GetType>(m_iterator.get()); }
typename Traits::IteratorReferenceType operator*() const { return Traits::getToReferenceConversion(get()); }
GetType operator->() const { return get(); }
iterator& operator++() { ++m_iterator; return *this; }
// postfix ++ intentionally omitted
// Comparison.
bool operator==(const iterator& other) const { return m_iterator == other.m_iterator; }
bool operator!=(const iterator& other) const { return m_iterator != other.m_iterator; }
bool operator==(const const_iterator& other) const { return m_iterator == other; }
bool operator!=(const const_iterator& other) const { return m_iterator != other; }
operator const_iterator() const { return m_iterator; }
private:
const_iterator m_iterator;
};
using std::swap;
// Work around MSVC's standard library, whose swap for pairs does not swap by component.
template<typename T> inline void hashTableSwap(T& a, T& b)
{
swap(a, b);
}
template<typename T, typename U> inline void hashTableSwap(KeyValuePair<T, U>& a, KeyValuePair<T, U>& b)
{
swap(a.key, b.key);
swap(a.value, b.value);
}
template<typename T, typename Allocator, bool useSwap> struct Mover;
template<typename T, typename Allocator> struct Mover<T, Allocator, true> {
static void move(T& from, T& to)
{
// A swap operation should not normally allocate, but it may do so
// if it is falling back on some sort of triple assignment in the
// style of t = a; a = b; b = t because there is no overloaded swap
// operation. We can't allow allocation both because it is slower
// than a true swap operation, but also because allocation implies
// allowing GC: We cannot allow a GC after swapping only the key.
// The value is only traced if the key is present and therefore the
// GC will not see the value in the old backing if the key has been
// moved to the new backing. Therefore, we cannot allow GC until
// after both key and value have been moved.
Allocator::enterNoAllocationScope();
hashTableSwap(from, to);
Allocator::leaveNoAllocationScope();
}
};
template<typename T, typename Allocator> struct Mover<T, Allocator, false> {
static void move(T& from, T& to) { to = from; }
};
template<typename HashFunctions> class IdentityHashTranslator {
public:
template<typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a, b); }
template<typename T, typename U, typename V> static void translate(T& location, const U&, const V& value) { location = value; }
};
template<typename HashTableType, typename ValueType> struct HashTableAddResult {
HashTableAddResult(const HashTableType* container, ValueType* storedValue, bool isNewEntry)
: storedValue(storedValue)
, isNewEntry(isNewEntry)
#if ENABLE(SECURITY_ASSERT)
, m_container(container)
, m_containerModifications(container->modifications())
#endif
{
ASSERT_UNUSED(container, container);
}
~HashTableAddResult()
{
// If rehash happened before accessing storedValue, it's
// use-after-free. Any modification may cause a rehash, so we check
// for modifications here.
// Rehash after accessing storedValue is harmless but will assert if
// the AddResult destructor takes place after a modification. You
// may need to limit the scope of the AddResult.
ASSERT_WITH_SECURITY_IMPLICATION(m_containerModifications == m_container->modifications());
}
ValueType* storedValue;
bool isNewEntry;
#if ENABLE(SECURITY_ASSERT)
private:
const HashTableType* m_container;
const int64_t m_containerModifications;
#endif
};
template<typename Value, typename Extractor, typename KeyTraits>
struct HashTableHelper {
static bool isEmptyBucket(const Value& value) { return isHashTraitsEmptyValue<KeyTraits>(Extractor::extract(value)); }
static bool isDeletedBucket(const Value& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); }
static bool isEmptyOrDeletedBucket(const Value& value) { return isEmptyBucket(value) || isDeletedBucket(value); }
};
template<typename HashTranslator, typename KeyTraits, bool safeToCompareToEmptyOrDeleted>
struct HashTableKeyChecker {
// There's no simple generic way to make this check if safeToCompareToEmptyOrDeleted is false,
// so the check always passes.
template <typename T>
static bool checkKey(const T&) { return true; }
};
template<typename HashTranslator, typename KeyTraits>
struct HashTableKeyChecker<HashTranslator, KeyTraits, true> {
template <typename T>
static bool checkKey(const T& key)
{
// FIXME : Check also equality to the deleted value.
return !HashTranslator::equal(KeyTraits::emptyValue(), key);
}
};
// Don't declare a destructor for HeapAllocated hash tables.
template<typename Derived, bool isGarbageCollected>
class HashTableDestructorBase;
template<typename Derived>
class HashTableDestructorBase<Derived, true> { };
template<typename Derived>
class HashTableDestructorBase<Derived, false> {
public:
~HashTableDestructorBase() { static_cast<Derived*>(this)->finalize(); }
};
// Note: empty or deleted key values are not allowed, using them may lead to undefined behavior.
// For pointer keys this means that null pointers are not allowed unless you supply custom key traits.
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTable : public HashTableDestructorBase<HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>, Allocator::isGarbageCollected> {
public:
typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
typedef Traits ValueTraits;
typedef Key KeyType;
typedef typename KeyTraits::PeekInType KeyPeekInType;
typedef typename KeyTraits::PassInType KeyPassInType;
typedef Value ValueType;
typedef Extractor ExtractorType;
typedef KeyTraits KeyTraitsType;
typedef typename Traits::PassInType ValuePassInType;
typedef IdentityHashTranslator<HashFunctions> IdentityTranslatorType;
typedef HashTableAddResult<HashTable, ValueType> AddResult;
#if DUMP_HASHTABLE_STATS_PER_TABLE
struct Stats {
Stats()
: numAccesses(0)
, numRehashes(0)
, numRemoves(0)
, numReinserts(0)
, maxCollisions(0)
, numCollisions(0)
, collisionGraph()
{
}
int numAccesses;
int numRehashes;
int numRemoves;
int numReinserts;
int maxCollisions;
int numCollisions;
int collisionGraph[4096];
void recordCollisionAtCount(int count)
{
if (count > maxCollisions)
maxCollisions = count;
numCollisions++;
collisionGraph[count]++;
}
void dumpStats()
{
dataLogF("\nWTF::HashTable::Stats dump\n\n");
dataLogF("%d accesses\n", numAccesses);
dataLogF("%d total collisions, average %.2f probes per access\n", numCollisions, 1.0 * (numAccesses + numCollisions) / numAccesses);
dataLogF("longest collision chain: %d\n", maxCollisions);
for (int i = 1; i <= maxCollisions; i++) {
dataLogF(" %d lookups with exactly %d collisions (%.2f%% , %.2f%% with this many or more)\n", collisionGraph[i], i, 100.0 * (collisionGraph[i] - collisionGraph[i+1]) / numAccesses, 100.0 * collisionGraph[i] / numAccesses);
}
dataLogF("%d rehashes\n", numRehashes);
dataLogF("%d reinserts\n", numReinserts);
}
};
#endif
HashTable();
void finalize()
{
ASSERT(!Allocator::isGarbageCollected);
if (LIKELY(!m_table))
return;
deleteAllBucketsAndDeallocate(m_table, m_tableSize);
m_table = 0;
}
HashTable(const HashTable&);
void swap(HashTable&);
HashTable& operator=(const HashTable&);
// When the hash table is empty, just return the same iterator for end as for begin.
// This is more efficient because we don't have to skip all the empty and deleted
// buckets, and iterating an empty table is a common case that's worth optimizing.
iterator begin() { return isEmpty() ? end() : makeIterator(m_table); }
iterator end() { return makeKnownGoodIterator(m_table + m_tableSize); }
const_iterator begin() const { return isEmpty() ? end() : makeConstIterator(m_table); }
const_iterator end() const { return makeKnownGoodConstIterator(m_table + m_tableSize); }
unsigned size() const { return m_keyCount; }
unsigned capacity() const { return m_tableSize; }
bool isEmpty() const { return !m_keyCount; }
AddResult add(ValuePassInType value)
{
return add<IdentityTranslatorType>(Extractor::extract(value), value);
}
// A special version of add() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion if the object is already
// in the table.
template<typename HashTranslator, typename T, typename Extra> AddResult add(const T& key, const Extra&);
template<typename HashTranslator, typename T, typename Extra> AddResult addPassingHashCode(const T& key, const Extra&);
iterator find(KeyPeekInType key) { return find<IdentityTranslatorType>(key); }
const_iterator find(KeyPeekInType key) const { return find<IdentityTranslatorType>(key); }
bool contains(KeyPeekInType key) const { return contains<IdentityTranslatorType>(key); }
template<typename HashTranslator, typename T> iterator find(const T&);
template<typename HashTranslator, typename T> const_iterator find(const T&) const;
template<typename HashTranslator, typename T> bool contains(const T&) const;
void remove(KeyPeekInType);
void remove(iterator);
void remove(const_iterator);
void clear();
static bool isEmptyBucket(const ValueType& value) { return isHashTraitsEmptyValue<KeyTraits>(Extractor::extract(value)); }
static bool isDeletedBucket(const ValueType& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); }
static bool isEmptyOrDeletedBucket(const ValueType& value) { return HashTableHelper<ValueType, Extractor, KeyTraits>:: isEmptyOrDeletedBucket(value); }
ValueType* lookup(KeyPeekInType key) { return lookup<IdentityTranslatorType, KeyPeekInType>(key); }
template<typename HashTranslator, typename T> ValueType* lookup(T);
template<typename HashTranslator, typename T> const ValueType* lookup(T) const;
#if ENABLE(ASSERT)
int64_t modifications() const { return m_modifications; }
void registerModification() { m_modifications++; }
// HashTable and collections that build on it do not support
// modifications while there is an iterator in use. The exception is
// ListHashSet, which has its own iterators that tolerate modification
// of the underlying set.
void checkModifications(int64_t mods) const { ASSERT(mods == m_modifications); }
#else
int64_t modifications() const { return 0; }
void registerModification() { }
void checkModifications(int64_t mods) const { }
#endif
private:
static ValueType* allocateTable(unsigned size);
static void deleteAllBucketsAndDeallocate(ValueType* table, unsigned size);
typedef std::pair<ValueType*, bool> LookupType;
typedef std::pair<LookupType, unsigned> FullLookupType;
LookupType lookupForWriting(const Key& key) { return lookupForWriting<IdentityTranslatorType>(key); };
template<typename HashTranslator, typename T> FullLookupType fullLookupForWriting(const T&);
template<typename HashTranslator, typename T> LookupType lookupForWriting(const T&);
void remove(ValueType*);
bool shouldExpand() const { return (m_keyCount + m_deletedCount) * m_maxLoad >= m_tableSize; }
bool mustRehashInPlace() const { return m_keyCount * m_minLoad < m_tableSize * 2; }
bool shouldShrink() const
{
// isAllocationAllowed check should be at the last because it's
// expensive.
return m_keyCount * m_minLoad < m_tableSize
&& m_tableSize > KeyTraits::minimumTableSize
&& Allocator::isAllocationAllowed();
}
ValueType* expand(ValueType* entry = 0);
void shrink() { rehash(m_tableSize / 2, 0); }
ValueType* rehash(unsigned newTableSize, ValueType* entry);
ValueType* reinsert(ValueType&);
static void initializeBucket(ValueType& bucket);
static void deleteBucket(ValueType& bucket) { bucket.~ValueType(); Traits::constructDeletedValue(bucket, Allocator::isGarbageCollected); }
FullLookupType makeLookupResult(ValueType* position, bool found, unsigned hash)
{ return FullLookupType(LookupType(position, found), hash); }
iterator makeIterator(ValueType* pos) { return iterator(pos, m_table + m_tableSize, this); }
const_iterator makeConstIterator(ValueType* pos) const { return const_iterator(pos, m_table + m_tableSize, this); }
iterator makeKnownGoodIterator(ValueType* pos) { return iterator(pos, m_table + m_tableSize, this, HashItemKnownGood); }
const_iterator makeKnownGoodConstIterator(ValueType* pos) const { return const_iterator(pos, m_table + m_tableSize, this, HashItemKnownGood); }
static const unsigned m_maxLoad = 2;
static const unsigned m_minLoad = 6;
unsigned tableSizeMask() const
{
size_t mask = m_tableSize - 1;
ASSERT((mask & m_tableSize) == 0);
return mask;
}
void setEnqueued() { m_queueFlag = true; }
void clearEnqueued() { m_queueFlag = false; }
bool enqueued() { return m_queueFlag; }
ValueType* m_table;
unsigned m_tableSize;
unsigned m_keyCount;
unsigned m_deletedCount:31;
bool m_queueFlag:1;
#if ENABLE(ASSERT)
unsigned m_modifications;
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
public:
mutable OwnPtr<Stats> m_stats;
#endif
template<typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};
// Set all the bits to one after the most significant bit: 00110101010 -> 00111111111.
template<unsigned size> struct OneifyLowBits;
template<>
struct OneifyLowBits<0> {
static const unsigned value = 0;
};
template<unsigned number>
struct OneifyLowBits {
static const unsigned value = number | OneifyLowBits<(number >> 1)>::value;
};
// Compute the first power of two integer that is an upper bound of the parameter 'number'.
template<unsigned number>
struct UpperPowerOfTwoBound {
static const unsigned value = (OneifyLowBits<number - 1>::value + 1) * 2;
};
// Because power of two numbers are the limit of maxLoad, their capacity is twice the
// UpperPowerOfTwoBound, or 4 times their values.
template<unsigned size, bool isPowerOfTwo> struct HashTableCapacityForSizeSplitter;
template<unsigned size>
struct HashTableCapacityForSizeSplitter<size, true> {
static const unsigned value = size * 4;
};
template<unsigned size>
struct HashTableCapacityForSizeSplitter<size, false> {
static const unsigned value = UpperPowerOfTwoBound<size>::value;
};
// HashTableCapacityForSize computes the upper power of two capacity to hold the size parameter.
// This is done at compile time to initialize the HashTraits.
template<unsigned size>
struct HashTableCapacityForSize {
static const unsigned value = HashTableCapacityForSizeSplitter<size, !(size & (size - 1))>::value;
COMPILE_ASSERT(size > 0, HashTableNonZeroMinimumCapacity);
COMPILE_ASSERT(!static_cast<int>(value >> 31), HashTableNoCapacityOverflow);
COMPILE_ASSERT(value > (2 * size), HashTableCapacityHoldsContentSize);
};
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::HashTable()
: m_table(0)
, m_tableSize(0)
, m_keyCount(0)
, m_deletedCount(0)
, m_queueFlag(false)
#if ENABLE(ASSERT)
, m_modifications(0)
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
, m_stats(adoptPtr(new Stats))
#endif
{
}
inline unsigned doubleHash(unsigned key)
{
key = ~key + (key >> 23);
key ^= (key << 12);
key ^= (key >> 7);
key ^= (key << 2);
key ^= (key >> 20);
return key;
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template<typename HashTranslator, typename T>
inline Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookup(T key)
{
return const_cast<Value*>(const_cast<const HashTable*>(this)->lookup<HashTranslator, T>(key));
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template<typename HashTranslator, typename T>
inline const Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookup(T key) const
{
ASSERT((HashTableKeyChecker<HashTranslator, KeyTraits, HashFunctions::safeToCompareToEmptyOrDeleted>::checkKey(key)));
const ValueType* table = m_table;
if (!table)
return 0;
size_t k = 0;
size_t sizeMask = tableSizeMask();
unsigned h = HashTranslator::hash(key);
size_t i = h & sizeMask;
UPDATE_ACCESS_COUNTS();
while (1) {
const ValueType* entry = table + i;
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (HashTranslator::equal(Extractor::extract(*entry), key))
return entry;
if (isEmptyBucket(*entry))
return 0;
} else {
if (isEmptyBucket(*entry))
return 0;
if (!isDeletedBucket(*entry) && HashTranslator::equal(Extractor::extract(*entry), key))
return entry;
}
UPDATE_PROBE_COUNTS();
if (!k)
k = 1 | doubleHash(h);
i = (i + k) & sizeMask;
}
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template<typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::LookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookupForWriting(const T& key)
{
ASSERT(m_table);
registerModification();
ValueType* table = m_table;
size_t k = 0;
size_t sizeMask = tableSizeMask();
unsigned h = HashTranslator::hash(key);
size_t i = h & sizeMask;
UPDATE_ACCESS_COUNTS();
ValueType* deletedEntry = 0;
while (1) {
ValueType* entry = table + i;
if (isEmptyBucket(*entry))
return LookupType(deletedEntry ? deletedEntry : entry, false);
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (HashTranslator::equal(Extractor::extract(*entry), key))
return LookupType(entry, true);
if (isDeletedBucket(*entry))
deletedEntry = entry;
} else {
if (isDeletedBucket(*entry))
deletedEntry = entry;
else if (HashTranslator::equal(Extractor::extract(*entry), key))
return LookupType(entry, true);
}
UPDATE_PROBE_COUNTS();
if (!k)
k = 1 | doubleHash(h);
i = (i + k) & sizeMask;
}
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template<typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::FullLookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::fullLookupForWriting(const T& key)
{
ASSERT(m_table);
registerModification();
ValueType* table = m_table;
size_t k = 0;
size_t sizeMask = tableSizeMask();
unsigned h = HashTranslator::hash(key);
size_t i = h & sizeMask;
UPDATE_ACCESS_COUNTS();
ValueType* deletedEntry = 0;
while (1) {
ValueType* entry = table + i;
if (isEmptyBucket(*entry))
return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h);
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (HashTranslator::equal(Extractor::extract(*entry), key))
return makeLookupResult(entry, true, h);
if (isDeletedBucket(*entry))
deletedEntry = entry;
} else {
if (isDeletedBucket(*entry))
deletedEntry = entry;
else if (HashTranslator::equal(Extractor::extract(*entry), key))
return makeLookupResult(entry, true, h);
}
UPDATE_PROBE_COUNTS();
if (!k)
k = 1 | doubleHash(h);
i = (i + k) & sizeMask;
}
}
template<bool emptyValueIsZero> struct HashTableBucketInitializer;
template<> struct HashTableBucketInitializer<false> {
template<typename Traits, typename Value> static void initialize(Value& bucket)
{
new (NotNull, &bucket) Value(Traits::emptyValue());
}
};
template<> struct HashTableBucketInitializer<true> {
template<typename Traits, typename Value> static void initialize(Value& bucket)
{
// This initializes the bucket without copying the empty value.
// That makes it possible to use this with types that don't support copying.
// The memset to 0 looks like a slow operation but is optimized by the compilers.
memset(&bucket, 0, sizeof(bucket));
}
};
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::initializeBucket(ValueType& bucket)
{
// For hash maps the key and value cannot be initialied simultaneously,
// and it would be wrong to have a GC when only one was initialized and
// the other still contained garbage (eg. from a previous use of the
// same slot). Therefore we forbid allocation (and thus GC) while the
// slot is initalized to an empty value.
Allocator::enterNoAllocationScope();
HashTableBucketInitializer<Traits::emptyValueIsZero>::template initialize<Traits>(bucket);
Allocator::leaveNoAllocationScope();
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template<typename HashTranslator, typename T, typename Extra>
typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::AddResult HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::add(const T& key, const Extra& extra)
{
ASSERT(Allocator::isAllocationAllowed());
if (!m_table)
expand();
ASSERT(m_table);
ValueType* table = m_table;
size_t k = 0;
size_t sizeMask = tableSizeMask();
unsigned h = HashTranslator::hash(key);
size_t i = h & sizeMask;
UPDATE_ACCESS_COUNTS();
ValueType* deletedEntry = 0;
ValueType* entry;
while (1) {
entry = table + i;
if (isEmptyBucket(*entry))
break;
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (HashTranslator::equal(Extractor::extract(*entry), key))
return AddResult(this, entry, false);
if (isDeletedBucket(*entry))
deletedEntry = entry;
} else {
if (isDeletedBucket(*entry))
deletedEntry = entry;
else if (HashTranslator::equal(Extractor::extract(*entry), key))
return AddResult(this, entry, false);
}
UPDATE_PROBE_COUNTS();
if (!k)
k = 1 | doubleHash(h);
i = (i + k) & sizeMask;
}
registerModification();
if (deletedEntry) {
// Overwrite any data left over from last use, using placement new
// or memset.
initializeBucket(*deletedEntry);
entry = deletedEntry;
--m_deletedCount;
}
HashTranslator::translate(*entry, key, extra);
ASSERT(!isEmptyOrDeletedBucket(*entry));
++m_keyCount;
if (shouldExpand())
entry = expand(entry);
return AddResult(this, entry, true);
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template<typename HashTranslator, typename T, typename Extra>
typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::AddResult HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::addPassingHashCode(const T& key, const Extra& extra)
{
ASSERT(Allocator::isAllocationAllowed());
if (!m_table)
expand();
FullLookupType lookupResult = fullLookupForWriting<HashTranslator>(key);
ValueType* entry = lookupResult.first.first;
bool found = lookupResult.first.second;
unsigned h = lookupResult.second;
if (found)
return AddResult(this, entry, false);
registerModification();
if (isDeletedBucket(*entry)) {
initializeBucket(*entry);
--m_deletedCount;
}
HashTranslator::translate(*entry, key, extra, h);
ASSERT(!isEmptyOrDeletedBucket(*entry));
++m_keyCount;
if (shouldExpand())
entry = expand(entry);
return AddResult(this, entry, true);
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::reinsert(ValueType& entry)
{
ASSERT(m_table);
registerModification();
ASSERT(!lookupForWriting(Extractor::extract(entry)).second);
ASSERT(!isDeletedBucket(*(lookupForWriting(Extractor::extract(entry)).first)));
#if DUMP_HASHTABLE_STATS
atomicIncrement(&HashTableStats::numReinserts);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
++m_stats->numReinserts;
#endif
Value* newEntry = lookupForWriting(Extractor::extract(entry)).first;
Mover<ValueType, Allocator, Traits::needsDestruction>::move(entry, *newEntry);
return newEntry;
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::find(const T& key)
{
ValueType* entry = lookup<HashTranslator>(key);
if (!entry)
return end();
return makeKnownGoodIterator(entry);
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::const_iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::find(const T& key) const
{
ValueType* entry = const_cast<HashTable*>(this)->lookup<HashTranslator>(key);
if (!entry)
return end();
return makeKnownGoodConstIterator(entry);
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
bool HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::contains(const T& key) const
{
return const_cast<HashTable*>(this)->lookup<HashTranslator>(key);
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(ValueType* pos)
{
registerModification();
#if DUMP_HASHTABLE_STATS
atomicIncrement(&HashTableStats::numRemoves);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
++m_stats->numRemoves;
#endif
deleteBucket(*pos);
++m_deletedCount;
--m_keyCount;
if (shouldShrink())
shrink();
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(iterator it)
{
if (it == end())
return;
remove(const_cast<ValueType*>(it.m_iterator.m_position));
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(const_iterator it)
{
if (it == end())
return;
remove(const_cast<ValueType*>(it.m_position));
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(KeyPeekInType key)
{
remove(find(key));
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::allocateTable(unsigned size)
{
typedef typename Allocator::template HashTableBackingHelper<HashTable>::Type HashTableBacking;
size_t allocSize = size * sizeof(ValueType);
ValueType* result;
// Assert that we will not use memset on things with a vtable entry.
// The compiler will also check this on some platforms. We would
// like to check this on the whole value (key-value pair), but
// IsPolymorphic will return false for a pair of two types, even if
// one of the components is polymorphic.
COMPILE_ASSERT(!Traits::emptyValueIsZero || !IsPolymorphic<KeyType>::value, EmptyValueCannotBeZeroForThingsWithAVtable);
if (Traits::emptyValueIsZero) {
result = Allocator::template zeroedBackingMalloc<ValueType*, HashTableBacking>(allocSize);
} else {
result = Allocator::template backingMalloc<ValueType*, HashTableBacking>(allocSize);
for (unsigned i = 0; i < size; i++)
initializeBucket(result[i]);
}
return result;
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::deleteAllBucketsAndDeallocate(ValueType* table, unsigned size)
{
if (Traits::needsDestruction) {
for (unsigned i = 0; i < size; ++i) {
// This code is called when the hash table is cleared or
// resized. We have allocated a new backing store and we need
// to run the destructors on the old backing store, as it is
// being freed. If we are GCing we need to both call the
// destructor and mark the bucket as deleted, otherwise the
// destructor gets called again when the GC finds the backing
// store. With the default allocator it's enough to call the
// destructor, since we will free the memory explicitly and
// we won't see the memory with the bucket again.
if (!isEmptyOrDeletedBucket(table[i])) {
if (Allocator::isGarbageCollected)
deleteBucket(table[i]);
else
table[i].~ValueType();
}
}
}
Allocator::backingFree(table);
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::expand(Value* entry)
{
unsigned newSize;
if (!m_tableSize) {
newSize = KeyTraits::minimumTableSize;
} else if (mustRehashInPlace()) {
newSize = m_tableSize;
} else {
newSize = m_tableSize * 2;
RELEASE_ASSERT(newSize > m_tableSize);
}
return rehash(newSize, entry);
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::rehash(unsigned newTableSize, Value* entry)
{
unsigned oldTableSize = m_tableSize;
ValueType* oldTable = m_table;
#if DUMP_HASHTABLE_STATS
if (oldTableSize != 0)
atomicIncrement(&HashTableStats::numRehashes);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
if (oldTableSize != 0)
++m_stats->numRehashes;
#endif
m_table = allocateTable(newTableSize);
m_tableSize = newTableSize;
Value* newEntry = 0;
for (unsigned i = 0; i != oldTableSize; ++i) {
if (isEmptyOrDeletedBucket(oldTable[i])) {
ASSERT(&oldTable[i] != entry);
continue;
}
Value* reinsertedEntry = reinsert(oldTable[i]);
if (&oldTable[i] == entry) {
ASSERT(!newEntry);
newEntry = reinsertedEntry;
}
}
m_deletedCount = 0;
deleteAllBucketsAndDeallocate(oldTable, oldTableSize);
return newEntry;
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::clear()
{
registerModification();
if (!m_table)
return;
deleteAllBucketsAndDeallocate(m_table, m_tableSize);
m_table = 0;
m_tableSize = 0;
m_keyCount = 0;
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::HashTable(const HashTable& other)
: m_table(0)
, m_tableSize(0)
, m_keyCount(0)
, m_deletedCount(0)
, m_queueFlag(false)
#if ENABLE(ASSERT)
, m_modifications(0)
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
, m_stats(adoptPtr(new Stats(*other.m_stats)))
#endif
{
// Copy the hash table the dumb way, by adding each element to the new table.
// It might be more efficient to copy the table slots, but it's not clear that efficiency is needed.
const_iterator end = other.end();
for (const_iterator it = other.begin(); it != end; ++it)
add(*it);
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::swap(HashTable& other)
{
std::swap(m_table, other.m_table);
std::swap(m_tableSize, other.m_tableSize);
std::swap(m_keyCount, other.m_keyCount);
// std::swap does not work for bit fields.
unsigned deleted = m_deletedCount;
m_deletedCount = other.m_deletedCount;
other.m_deletedCount = deleted;
ASSERT(!m_queueFlag);
ASSERT(!other.m_queueFlag);
#if ENABLE(ASSERT)
std::swap(m_modifications, other.m_modifications);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
m_stats.swap(other.m_stats);
#endif
}
template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>& HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::operator=(const HashTable& other)
{
HashTable tmp(other);
swap(tmp);
return *this;
}
// iterator adapters
template<typename HashTableType, typename Traits> struct HashTableConstIteratorAdapter {
HashTableConstIteratorAdapter() {}
HashTableConstIteratorAdapter(const typename HashTableType::const_iterator& impl) : m_impl(impl) {}
typedef typename Traits::IteratorConstGetType GetType;
typedef typename HashTableType::ValueTraits::IteratorConstGetType SourceGetType;
GetType get() const { return const_cast<GetType>(SourceGetType(m_impl.get())); }
typename Traits::IteratorConstReferenceType operator*() const { return Traits::getToReferenceConstConversion(get()); }
GetType operator->() const { return get(); }
HashTableConstIteratorAdapter& operator++() { ++m_impl; return *this; }
// postfix ++ intentionally omitted
typename HashTableType::const_iterator m_impl;
};
template<typename HashTableType, typename Traits> struct HashTableIteratorAdapter {
typedef typename Traits::IteratorGetType GetType;
typedef typename HashTableType::ValueTraits::IteratorGetType SourceGetType;
HashTableIteratorAdapter() {}
HashTableIteratorAdapter(const typename HashTableType::iterator& impl) : m_impl(impl) {}
GetType get() const { return const_cast<GetType>(SourceGetType(m_impl.get())); }
typename Traits::IteratorReferenceType operator*() const { return Traits::getToReferenceConversion(get()); }
GetType operator->() const { return get(); }
HashTableIteratorAdapter& operator++() { ++m_impl; return *this; }
// postfix ++ intentionally omitted
operator HashTableConstIteratorAdapter<HashTableType, Traits>()
{
typename HashTableType::const_iterator i = m_impl;
return i;
}
typename HashTableType::iterator m_impl;
};
template<typename T, typename U>
inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
return a.m_impl == b.m_impl;
}
template<typename T, typename U>
inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
return a.m_impl != b.m_impl;
}
template<typename T, typename U>
inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
return a.m_impl == b.m_impl;
}
template<typename T, typename U>
inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
return a.m_impl != b.m_impl;
}
// All 4 combinations of ==, != and Const,non const.
template<typename T, typename U>
inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
return a.m_impl == b.m_impl;
}
template<typename T, typename U>
inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
return a.m_impl != b.m_impl;
}
template<typename T, typename U>
inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
return a.m_impl == b.m_impl;
}
template<typename T, typename U>
inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
return a.m_impl != b.m_impl;
}
template<typename Collection1, typename Collection2>
inline void removeAll(Collection1& collection, const Collection2& toBeRemoved)
{
if (collection.isEmpty() || toBeRemoved.isEmpty())
return;
typedef typename Collection2::const_iterator CollectionIterator;
CollectionIterator end(toBeRemoved.end());
for (CollectionIterator it(toBeRemoved.begin()); it != end; ++it)
collection.remove(*it);
}
} // namespace WTF
#include "sky/engine/wtf/HashIterators.h"
#endif // SKY_ENGINE_WTF_HASHTABLE_H_