blob: b26e9430553cb414ec2dc9379cb2d75324a75b5a [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef SKY_ENGINE_WTF_VECTOR_H_
#define SKY_ENGINE_WTF_VECTOR_H_
#include <string.h>
#include <utility>
#include "sky/engine/wtf/Alignment.h"
#include "sky/engine/wtf/Compiler.h"
#include "sky/engine/wtf/DefaultAllocator.h"
#include "sky/engine/wtf/FastAllocBase.h"
#include "sky/engine/wtf/Noncopyable.h"
#include "sky/engine/wtf/NotFound.h"
#include "sky/engine/wtf/StdLibExtras.h"
#include "sky/engine/wtf/VectorTraits.h"
#include "sky/engine/wtf/WTF.h"
namespace WTF {
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
static const size_t kInitialVectorSize = 1;
#else
#ifndef WTF_VECTOR_INITIAL_SIZE
#define WTF_VECTOR_INITIAL_SIZE 4
#endif
static const size_t kInitialVectorSize = WTF_VECTOR_INITIAL_SIZE;
#endif
template<typename T, size_t inlineBuffer, typename Allocator>
class Deque;
template <bool needsDestruction, typename T>
struct VectorDestructor;
template<typename T>
struct VectorDestructor<false, T>
{
static void destruct(T*, T*) {}
};
template<typename T>
struct VectorDestructor<true, T>
{
static void destruct(T* begin, T* end)
{
for (T* cur = begin; cur != end; ++cur)
cur->~T();
}
};
template <bool canInitializeWithMemset, typename T>
struct VectorInitializer;
template<typename T>
struct VectorInitializer<false, T>
{
static void initialize(T* begin, T* end)
{
for (T* cur = begin; cur != end; ++cur)
new (NotNull, cur) T;
}
};
template<typename T>
struct VectorInitializer<true, T>
{
static void initialize(T* begin, T* end)
{
memset(begin, 0, reinterpret_cast<char*>(end) - reinterpret_cast<char*>(begin));
}
};
template <bool canMoveWithMemcpy, typename T>
struct VectorMover;
template<typename T>
struct VectorMover<false, T>
{
static void move(const T* src, const T* srcEnd, T* dst)
{
while (src != srcEnd) {
new (NotNull, dst) T(*src);
src->~T();
++dst;
++src;
}
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
if (src > dst)
move(src, srcEnd, dst);
else {
T* dstEnd = dst + (srcEnd - src);
while (src != srcEnd) {
--srcEnd;
--dstEnd;
new (NotNull, dstEnd) T(*srcEnd);
srcEnd->~T();
}
}
}
static void swap(T* src, T* srcEnd, T* dst)
{
std::swap_ranges(src, srcEnd, dst);
}
};
template<typename T>
struct VectorMover<true, T>
{
static void move(const T* src, const T* srcEnd, T* dst)
{
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
memmove(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
static void swap(T* src, T* srcEnd, T* dst)
{
std::swap_ranges(reinterpret_cast<char*>(src), reinterpret_cast<char*>(srcEnd), reinterpret_cast<char*>(dst));
}
};
template <bool canCopyWithMemcpy, typename T>
struct VectorCopier;
template<typename T>
struct VectorCopier<false, T>
{
template<typename U>
static void uninitializedCopy(const U* src, const U* srcEnd, T* dst)
{
while (src != srcEnd) {
new (NotNull, dst) T(*src);
++dst;
++src;
}
}
};
template<typename T>
struct VectorCopier<true, T>
{
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
template<typename U>
static void uninitializedCopy(const U* src, const U* srcEnd, T* dst)
{
VectorCopier<false, T>::uninitializedCopy(src, srcEnd, dst);
}
};
template <bool canFillWithMemset, typename T>
struct VectorFiller;
template<typename T>
struct VectorFiller<false, T>
{
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
while (dst != dstEnd) {
new (NotNull, dst) T(val);
++dst;
}
}
};
template<typename T>
struct VectorFiller<true, T>
{
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
COMPILE_ASSERT(sizeof(T) == sizeof(char), Size_of_type_should_be_equal_to_one);
#if COMPILER(GCC) && defined(_FORTIFY_SOURCE)
if (!__builtin_constant_p(dstEnd - dst) || (!(dstEnd - dst)))
#endif
memset(dst, val, dstEnd - dst);
}
};
template<bool canCompareWithMemcmp, typename T>
struct VectorComparer;
template<typename T>
struct VectorComparer<false, T>
{
static bool compare(const T* a, const T* b, size_t size)
{
if (LIKELY(a && b))
return std::equal(a, a + size, b);
return !a && !b;
}
};
template<typename T>
struct VectorComparer<true, T>
{
static bool compare(const T* a, const T* b, size_t size)
{
return memcmp(a, b, sizeof(T) * size) == 0;
}
};
template<typename T>
struct VectorTypeOperations
{
static void destruct(T* begin, T* end)
{
VectorDestructor<VectorTraits<T>::needsDestruction, T>::destruct(begin, end);
}
static void initialize(T* begin, T* end)
{
VectorInitializer<VectorTraits<T>::canInitializeWithMemset, T>::initialize(begin, end);
}
static void move(const T* src, const T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::move(src, srcEnd, dst);
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::moveOverlapping(src, srcEnd, dst);
}
static void swap(T* src, T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::swap(src, srcEnd, dst);
}
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(src, srcEnd, dst);
}
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
VectorFiller<VectorTraits<T>::canFillWithMemset, T>::uninitializedFill(dst, dstEnd, val);
}
static bool compare(const T* a, const T* b, size_t size)
{
return VectorComparer<VectorTraits<T>::canCompareWithMemcmp, T>::compare(a, b, size);
}
};
template<typename T, typename Allocator>
class VectorBufferBase {
WTF_MAKE_NONCOPYABLE(VectorBufferBase);
public:
void allocateBuffer(size_t newCapacity)
{
typedef typename Allocator::template VectorBackingHelper<T, VectorTraits<T> >::Type VectorBacking;
ASSERT(newCapacity);
size_t sizeToAllocate = allocationSize(newCapacity);
m_buffer = Allocator::template backingMalloc<T*, VectorBacking>(sizeToAllocate);
m_capacity = sizeToAllocate / sizeof(T);
}
size_t allocationSize(size_t capacity) const
{
return Allocator::Quantizer::template quantizedSize<T>(capacity);
}
T* buffer() { return m_buffer; }
const T* buffer() const { return m_buffer; }
size_t capacity() const { return m_capacity; }
protected:
VectorBufferBase()
: m_buffer(0)
, m_capacity(0)
{
}
VectorBufferBase(T* buffer, size_t capacity)
: m_buffer(buffer)
, m_capacity(capacity)
{
}
T* m_buffer;
unsigned m_capacity;
unsigned m_size;
};
template<typename T, size_t inlineCapacity, typename Allocator = DefaultAllocator>
class VectorBuffer;
template<typename T, typename Allocator>
class VectorBuffer<T, 0, Allocator> : protected VectorBufferBase<T, Allocator> {
private:
typedef VectorBufferBase<T, Allocator> Base;
public:
VectorBuffer()
{
}
VectorBuffer(size_t capacity)
{
// Calling malloc(0) might take a lock and may actually do an
// allocation on some systems.
if (capacity)
allocateBuffer(capacity);
}
void destruct()
{
deallocateBuffer(m_buffer);
m_buffer = 0;
}
void deallocateBuffer(T* bufferToDeallocate)
{
Allocator::backingFree(bufferToDeallocate);
}
void resetBufferPointer()
{
m_buffer = 0;
m_capacity = 0;
}
void swapVectorBuffer(VectorBuffer<T, 0, Allocator>& other)
{
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
}
using Base::allocateBuffer;
using Base::allocationSize;
using Base::buffer;
using Base::capacity;
bool hasOutOfLineBuffer() const
{
// When inlineCapacity is 0 we have an out of line buffer if we have a buffer.
return buffer();
}
protected:
using Base::m_size;
private:
using Base::m_buffer;
using Base::m_capacity;
};
template<typename T, size_t inlineCapacity, typename Allocator>
class VectorBuffer : protected VectorBufferBase<T, Allocator> {
WTF_MAKE_NONCOPYABLE(VectorBuffer);
private:
typedef VectorBufferBase<T, Allocator> Base;
public:
VectorBuffer()
: Base(inlineBuffer(), inlineCapacity)
{
}
VectorBuffer(size_t capacity)
: Base(inlineBuffer(), inlineCapacity)
{
if (capacity > inlineCapacity)
Base::allocateBuffer(capacity);
}
void destruct()
{
deallocateBuffer(m_buffer);
m_buffer = 0;
}
NEVER_INLINE void reallyDeallocateBuffer(T* bufferToDeallocate)
{
Allocator::backingFree(bufferToDeallocate);
}
void deallocateBuffer(T* bufferToDeallocate)
{
if (UNLIKELY(bufferToDeallocate != inlineBuffer()))
reallyDeallocateBuffer(bufferToDeallocate);
}
void resetBufferPointer()
{
m_buffer = inlineBuffer();
m_capacity = inlineCapacity;
}
void allocateBuffer(size_t newCapacity)
{
// FIXME: This should ASSERT(!m_buffer) to catch misuse/leaks.
if (newCapacity > inlineCapacity)
Base::allocateBuffer(newCapacity);
else
resetBufferPointer();
}
size_t allocationSize(size_t capacity) const
{
if (capacity <= inlineCapacity)
return m_inlineBufferSize;
return Base::allocationSize(capacity);
}
void swapVectorBuffer(VectorBuffer<T, inlineCapacity, Allocator>& other)
{
typedef VectorTypeOperations<T> TypeOperations;
if (buffer() == inlineBuffer() && other.buffer() == other.inlineBuffer()) {
ASSERT(m_capacity == other.m_capacity);
if (m_size > other.m_size) {
TypeOperations::swap(inlineBuffer(), inlineBuffer() + other.m_size, other.inlineBuffer());
TypeOperations::move(inlineBuffer() + other.m_size, inlineBuffer() + m_size, other.inlineBuffer() + other.m_size);
} else {
TypeOperations::swap(inlineBuffer(), inlineBuffer() + m_size, other.inlineBuffer());
TypeOperations::move(other.inlineBuffer() + m_size, other.inlineBuffer() + other.m_size, inlineBuffer() + m_size);
}
} else if (buffer() == inlineBuffer()) {
m_buffer = other.m_buffer;
other.m_buffer = other.inlineBuffer();
TypeOperations::move(inlineBuffer(), inlineBuffer() + m_size, other.inlineBuffer());
std::swap(m_capacity, other.m_capacity);
} else if (other.buffer() == other.inlineBuffer()) {
other.m_buffer = m_buffer;
m_buffer = inlineBuffer();
TypeOperations::move(other.inlineBuffer(), other.inlineBuffer() + other.m_size, inlineBuffer());
std::swap(m_capacity, other.m_capacity);
} else {
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
}
}
using Base::buffer;
using Base::capacity;
bool hasOutOfLineBuffer() const
{
return buffer() && buffer() != inlineBuffer();
}
protected:
using Base::m_size;
private:
using Base::m_buffer;
using Base::m_capacity;
static const size_t m_inlineBufferSize = inlineCapacity * sizeof(T);
T* inlineBuffer() { return reinterpret_cast_ptr<T*>(m_inlineBuffer.buffer); }
const T* inlineBuffer() const { return reinterpret_cast_ptr<const T*>(m_inlineBuffer.buffer); }
AlignedBuffer<m_inlineBufferSize, WTF_ALIGN_OF(T)> m_inlineBuffer;
template<typename U, size_t inlineBuffer, typename V>
friend class Deque;
};
template<typename T, size_t inlineCapacity, typename Allocator>
class Vector;
// VectorDestructorBase defines the destructor of a vector. This base is used in order to
// completely avoid creating a destructor for a vector that does not need to be destructed.
// By doing so, the clang compiler will have correct information about whether or not a
// vector has a trivial destructor and we use that in a compiler plugin to ensure the
// correctness of non-finalized garbage-collected classes and the use of VectorTraits::needsDestruction.
// All non-GC managed vectors need a destructor. This destructor will simply call finalize on the actual vector type.
template<typename Derived, typename Elements, bool hasInlineCapacity, bool isGarbageCollected>
class VectorDestructorBase {
public:
~VectorDestructorBase() { static_cast<Derived*>(this)->finalize(); }
};
// Heap-allocated vectors with no inlineCapacity never need a destructor.
template<typename Derived, typename Elements>
class VectorDestructorBase<Derived, Elements, false, true> { };
// Heap-allocator vectors with inlineCapacity need a destructor if the inline elements do.
// The use of VectorTraits<Elements>::needsDestruction is delayed until we know that
// inlineCapacity is non-zero to allow classes that recursively refer to themselves in vector
// members. If inlineCapacity is non-zero doing so would have undefined meaning, so in this
// case we can use HeapVectorWithInlineCapacityDestructorBase to define a destructor
// depending on the value of VectorTraits<Elements>::needsDestruction.
template<typename Derived, bool elementsNeedsDestruction>
class HeapVectorWithInlineCapacityDestructorBase;
template<typename Derived>
class HeapVectorWithInlineCapacityDestructorBase<Derived, true> {
public:
~HeapVectorWithInlineCapacityDestructorBase() { static_cast<Derived*>(this)->finalize(); }
};
template<typename Derived>
class HeapVectorWithInlineCapacityDestructorBase<Derived, false> { };
template<typename Derived, typename Elements>
class VectorDestructorBase<Derived, Elements, true, true> : public HeapVectorWithInlineCapacityDestructorBase<Derived, VectorTraits<Elements>::needsDestruction> { };
template<typename T, size_t inlineCapacity = 0, typename Allocator = DefaultAllocator>
class Vector : private VectorBuffer<T, inlineCapacity, Allocator>, public VectorDestructorBase<Vector<T, inlineCapacity, Allocator>, T, (inlineCapacity > 0), Allocator::isGarbageCollected> {
WTF_USE_ALLOCATOR(Vector, Allocator);
private:
typedef VectorBuffer<T, inlineCapacity, Allocator> Base;
typedef VectorTypeOperations<T> TypeOperations;
public:
typedef T ValueType;
typedef T* iterator;
typedef const T* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
Vector()
{
// Unused slots are initialized to zero so that the visitor and the
// finalizer can visit them safely. canInitializeWithMemset tells us
// that the class does not expect matching constructor and
// destructor calls as long as the memory is zeroed.
COMPILE_ASSERT(!Allocator::isGarbageCollected || !VectorTraits<T>::needsDestruction || VectorTraits<T>::canInitializeWithMemset, ClassHasProblemsWithFinalizersCalledOnClearedMemory);
COMPILE_ASSERT(!WTF::IsPolymorphic<T>::value || !VectorTraits<T>::canInitializeWithMemset, CantInitializeWithMemsetIfThereIsAVtable);
m_size = 0;
}
explicit Vector(size_t size)
: Base(size)
{
// Unused slots are initialized to zero so that the visitor and the
// finalizer can visit them safely. canInitializeWithMemset tells us
// that the class does not expect matching constructor and
// destructor calls as long as the memory is zeroed.
COMPILE_ASSERT(!Allocator::isGarbageCollected || !VectorTraits<T>::needsDestruction || VectorTraits<T>::canInitializeWithMemset, ClassHasProblemsWithFinalizersCalledOnClearedMemory);
m_size = size;
TypeOperations::initialize(begin(), end());
}
// Off-GC-heap vectors: Destructor should be called.
// On-GC-heap vectors: Destructor should be called for inline buffers
// (if any) but destructor shouldn't be called for vector backing since
// it is managed by the traced GC heap.
void finalize()
{
if (!inlineCapacity) {
if (LIKELY(!Base::buffer()))
return;
}
if (LIKELY(m_size) && !(Allocator::isGarbageCollected && this->hasOutOfLineBuffer())) {
TypeOperations::destruct(begin(), end());
m_size = 0; // Partial protection against use-after-free.
}
Base::destruct();
}
Vector(const Vector&);
template<size_t otherCapacity>
explicit Vector(const Vector<T, otherCapacity, Allocator>&);
Vector& operator=(const Vector&);
template<size_t otherCapacity>
Vector& operator=(const Vector<T, otherCapacity, Allocator>&);
Vector(Vector&&);
Vector& operator=(Vector&&);
size_t size() const { return m_size; }
size_t capacity() const { return Base::capacity(); }
bool isEmpty() const { return !size(); }
T& at(size_t i)
{
RELEASE_ASSERT(i < size());
return Base::buffer()[i];
}
const T& at(size_t i) const
{
RELEASE_ASSERT(i < size());
return Base::buffer()[i];
}
T& operator[](size_t i) { return at(i); }
const T& operator[](size_t i) const { return at(i); }
T* data() { return Base::buffer(); }
const T* data() const { return Base::buffer(); }
iterator begin() { return data(); }
iterator end() { return begin() + m_size; }
const_iterator begin() const { return data(); }
const_iterator end() const { return begin() + m_size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
T& first() { return at(0); }
const T& first() const { return at(0); }
T& last() { return at(size() - 1); }
const T& last() const { return at(size() - 1); }
template<typename U> bool contains(const U&) const;
template<typename U> size_t find(const U&) const;
template<typename U> size_t reverseFind(const U&) const;
void shrink(size_t size);
void grow(size_t size);
void resize(size_t size);
void reserveCapacity(size_t newCapacity);
void reserveInitialCapacity(size_t initialCapacity);
void shrinkToFit() { shrinkCapacity(size()); }
void shrinkToReasonableCapacity()
{
if (size() * 2 < capacity())
shrinkCapacity(size() + size() / 4 + 1);
}
void clear() { shrinkCapacity(0); }
template<typename U> void append(const U*, size_t);
template<typename U> void append(const U&);
template<typename U> void uncheckedAppend(const U& val);
template<typename U, size_t otherCapacity, typename V> void appendVector(const Vector<U, otherCapacity, V>&);
template<typename U> void insert(size_t position, const U*, size_t);
template<typename U> void insert(size_t position, const U&);
template<typename U, size_t c, typename V> void insert(size_t position, const Vector<U, c, V>&);
template<typename U> void prepend(const U*, size_t);
template<typename U> void prepend(const U&);
template<typename U, size_t c, typename V> void prepend(const Vector<U, c, V>&);
void remove(size_t position);
void remove(size_t position, size_t length);
void removeLast()
{
ASSERT(!isEmpty());
shrink(size() - 1);
}
Vector(size_t size, const T& val)
: Base(size)
{
m_size = size;
TypeOperations::uninitializedFill(begin(), end(), val);
}
void fill(const T&, size_t);
void fill(const T& val) { fill(val, size()); }
template<typename Iterator> void appendRange(Iterator start, Iterator end);
void swap(Vector& other)
{
Base::swapVectorBuffer(other);
std::swap(m_size, other.m_size);
}
void reverse();
private:
void expandCapacity(size_t newMinCapacity);
const T* expandCapacity(size_t newMinCapacity, const T*);
template<typename U> U* expandCapacity(size_t newMinCapacity, U*);
void shrinkCapacity(size_t newCapacity);
template<typename U> void appendSlowCase(const U&);
using Base::m_size;
using Base::buffer;
using Base::capacity;
using Base::swapVectorBuffer;
using Base::allocateBuffer;
using Base::allocationSize;
};
template<typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>::Vector(const Vector& other)
: Base(other.capacity())
{
m_size = other.size();
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template<typename T, size_t inlineCapacity, typename Allocator>
template<size_t otherCapacity>
Vector<T, inlineCapacity, Allocator>::Vector(const Vector<T, otherCapacity, Allocator>& other)
: Base(other.capacity())
{
m_size = other.size();
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template<typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::operator=(const Vector<T, inlineCapacity, Allocator>& other)
{
if (UNLIKELY(&other == this))
return *this;
if (size() > other.size())
shrink(other.size());
else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
ASSERT(begin());
}
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
inline bool typelessPointersAreEqual(const void* a, const void* b) { return a == b; }
template<typename T, size_t inlineCapacity, typename Allocator>
template<size_t otherCapacity>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::operator=(const Vector<T, otherCapacity, Allocator>& other)
{
// If the inline capacities match, we should call the more specific
// template. If the inline capacities don't match, the two objects
// shouldn't be allocated the same address.
ASSERT(!typelessPointersAreEqual(&other, this));
if (size() > other.size())
shrink(other.size());
else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
ASSERT(begin());
}
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
template<typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>::Vector(Vector<T, inlineCapacity, Allocator>&& other)
{
m_size = 0;
// It's a little weird to implement a move constructor using swap but this way we
// don't have to add a move constructor to VectorBuffer.
swap(other);
}
template<typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::operator=(Vector<T, inlineCapacity, Allocator>&& other)
{
swap(other);
return *this;
}
template<typename T, size_t inlineCapacity, typename Allocator>
template<typename U>
bool Vector<T, inlineCapacity, Allocator>::contains(const U& value) const
{
return find(value) != kNotFound;
}
template<typename T, size_t inlineCapacity, typename Allocator>
template<typename U>
size_t Vector<T, inlineCapacity, Allocator>::find(const U& value) const
{
const T* b = begin();
const T* e = end();
for (const T* iter = b; iter < e; ++iter) {
if (*iter == value)
return iter - b;
}
return kNotFound;
}
template<typename T, size_t inlineCapacity, typename Allocator>
template<typename U>
size_t Vector<T, inlineCapacity, Allocator>::reverseFind(const U& value) const
{
const T* b = begin();
const T* iter = end();
while (iter > b) {
--iter;
if (*iter == value)
return iter - b;
}
return kNotFound;
}
template<typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::fill(const T& val, size_t newSize)
{
if (size() > newSize)
shrink(newSize);
else if (newSize > capacity()) {
clear();
reserveCapacity(newSize);
ASSERT(begin());
}
std::fill(begin(), end(), val);
TypeOperations::uninitializedFill(end(), begin() + newSize, val);
m_size = newSize;
}
template<typename T, size_t inlineCapacity, typename Allocator>
template<typename Iterator>
void Vector<T, inlineCapacity, Allocator>::appendRange(Iterator start, Iterator end)
{
for (Iterator it = start; it != end; ++it)
append(*it);
}
template<typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::expandCapacity(size_t newMinCapacity)
{
size_t oldCapacity = capacity();
size_t expandedCapacity = oldCapacity;
// We use a more aggressive expansion strategy for Vectors with inline storage.
// This is because they are more likely to be on the stack, so the risk of heap bloat is minimized.
// Furthermore, exceeding the inline capacity limit is not supposed to happen in the common case and may indicate a pathological condition or microbenchmark.
if (inlineCapacity) {
expandedCapacity *= 2;
// Check for integer overflow, which could happen in the 32-bit build.
RELEASE_ASSERT(expandedCapacity > oldCapacity);
} else {
// This cannot integer overflow.
// On 64-bit, the "expanded" integer is 32-bit, and any encroachment above 2^32 will fail allocation in allocateBuffer().
// On 32-bit, there's not enough address space to hold the old and new buffers.
// In addition, our underlying allocator is supposed to always fail on > (2^31 - 1) allocations.
expandedCapacity += (expandedCapacity / 4) + 1;
}
reserveCapacity(std::max(newMinCapacity, std::max(static_cast<size_t>(kInitialVectorSize), expandedCapacity)));
}
template<typename T, size_t inlineCapacity, typename Allocator>
const T* Vector<T, inlineCapacity, Allocator>::expandCapacity(size_t newMinCapacity, const T* ptr)
{
if (ptr < begin() || ptr >= end()) {
expandCapacity(newMinCapacity);
return ptr;
}
size_t index = ptr - begin();
expandCapacity(newMinCapacity);
return begin() + index;
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
inline U* Vector<T, inlineCapacity, Allocator>::expandCapacity(size_t newMinCapacity, U* ptr)
{
expandCapacity(newMinCapacity);
return ptr;
}
template<typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::resize(size_t size)
{
if (size <= m_size)
TypeOperations::destruct(begin() + size, end());
else {
if (size > capacity())
expandCapacity(size);
TypeOperations::initialize(end(), begin() + size);
}
m_size = size;
}
template<typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::shrink(size_t size)
{
ASSERT(size <= m_size);
TypeOperations::destruct(begin() + size, end());
m_size = size;
}
template<typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::grow(size_t size)
{
ASSERT(size >= m_size);
if (size > capacity())
expandCapacity(size);
TypeOperations::initialize(end(), begin() + size);
m_size = size;
}
template<typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::reserveCapacity(size_t newCapacity)
{
if (UNLIKELY(newCapacity <= capacity()))
return;
T* oldBuffer = begin();
T* oldEnd = end();
Base::allocateBuffer(newCapacity);
TypeOperations::move(oldBuffer, oldEnd, begin());
Base::deallocateBuffer(oldBuffer);
}
template<typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::reserveInitialCapacity(size_t initialCapacity)
{
ASSERT(!m_size);
ASSERT(capacity() == inlineCapacity);
if (initialCapacity > inlineCapacity)
Base::allocateBuffer(initialCapacity);
}
template<typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::shrinkCapacity(size_t newCapacity)
{
if (newCapacity >= capacity())
return;
if (newCapacity < size())
shrink(newCapacity);
T* oldBuffer = begin();
if (newCapacity > 0) {
// Optimization: if we're downsizing inside the same allocator bucket, we can exit with no additional work.
if (Base::allocationSize(capacity()) == Base::allocationSize(newCapacity))
return;
T* oldEnd = end();
Base::allocateBuffer(newCapacity);
if (begin() != oldBuffer)
TypeOperations::move(oldBuffer, oldEnd, begin());
} else {
Base::resetBufferPointer();
}
Base::deallocateBuffer(oldBuffer);
}
// Templatizing these is better than just letting the conversion happen implicitly,
// because for instance it allows a PassRefPtr to be appended to a RefPtr vector
// without refcount thrash.
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
void Vector<T, inlineCapacity, Allocator>::append(const U* data, size_t dataSize)
{
ASSERT(Allocator::isAllocationAllowed());
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = expandCapacity(newSize, data);
ASSERT(begin());
}
RELEASE_ASSERT(newSize >= m_size);
T* dest = end();
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(data, &data[dataSize], dest);
m_size = newSize;
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
ALWAYS_INLINE void Vector<T, inlineCapacity, Allocator>::append(const U& val)
{
ASSERT(Allocator::isAllocationAllowed());
if (LIKELY(size() != capacity())) {
new (NotNull, end()) T(val);
++m_size;
return;
}
appendSlowCase(val);
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
NEVER_INLINE void Vector<T, inlineCapacity, Allocator>::appendSlowCase(const U& val)
{
ASSERT(size() == capacity());
const U* ptr = &val;
ptr = expandCapacity(size() + 1, ptr);
ASSERT(begin());
new (NotNull, end()) T(*ptr);
++m_size;
}
// This version of append saves a branch in the case where you know that the
// vector's capacity is large enough for the append to succeed.
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
ALWAYS_INLINE void Vector<T, inlineCapacity, Allocator>::uncheckedAppend(const U& val)
{
ASSERT(size() < capacity());
const U* ptr = &val;
new (NotNull, end()) T(*ptr);
++m_size;
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U, size_t otherCapacity, typename OtherAllocator>
inline void Vector<T, inlineCapacity, Allocator>::appendVector(const Vector<U, otherCapacity, OtherAllocator>& val)
{
append(val.begin(), val.size());
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
void Vector<T, inlineCapacity, Allocator>::insert(size_t position, const U* data, size_t dataSize)
{
ASSERT(Allocator::isAllocationAllowed());
RELEASE_ASSERT(position <= size());
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = expandCapacity(newSize, data);
ASSERT(begin());
}
RELEASE_ASSERT(newSize >= m_size);
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + dataSize);
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(data, &data[dataSize], spot);
m_size = newSize;
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
inline void Vector<T, inlineCapacity, Allocator>::insert(size_t position, const U& val)
{
ASSERT(Allocator::isAllocationAllowed());
RELEASE_ASSERT(position <= size());
const U* data = &val;
if (size() == capacity()) {
data = expandCapacity(size() + 1, data);
ASSERT(begin());
}
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + 1);
new (NotNull, spot) T(*data);
++m_size;
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U, size_t c, typename OtherAllocator>
inline void Vector<T, inlineCapacity, Allocator>::insert(size_t position, const Vector<U, c, OtherAllocator>& val)
{
insert(position, val.begin(), val.size());
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
void Vector<T, inlineCapacity, Allocator>::prepend(const U* data, size_t dataSize)
{
insert(0, data, dataSize);
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U>
inline void Vector<T, inlineCapacity, Allocator>::prepend(const U& val)
{
insert(0, val);
}
template<typename T, size_t inlineCapacity, typename Allocator> template<typename U, size_t c, typename V>
inline void Vector<T, inlineCapacity, Allocator>::prepend(const Vector<U, c, V>& val)
{
insert(0, val.begin(), val.size());
}
template<typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::remove(size_t position)
{
RELEASE_ASSERT(position < size());
T* spot = begin() + position;
spot->~T();
TypeOperations::moveOverlapping(spot + 1, end(), spot);
--m_size;
}
template<typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::remove(size_t position, size_t length)
{
ASSERT_WITH_SECURITY_IMPLICATION(position <= size());
RELEASE_ASSERT(position + length <= size());
T* beginSpot = begin() + position;
T* endSpot = beginSpot + length;
TypeOperations::destruct(beginSpot, endSpot);
TypeOperations::moveOverlapping(endSpot, end(), beginSpot);
m_size -= length;
}
template<typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::reverse()
{
for (size_t i = 0; i < m_size / 2; ++i)
std::swap(at(i), at(m_size - 1 - i));
}
template<typename T, size_t inlineCapacity, typename Allocator>
void deleteAllValues(const Vector<T, inlineCapacity, Allocator>& collection)
{
typedef typename Vector<T, inlineCapacity, Allocator>::const_iterator iterator;
iterator end = collection.end();
for (iterator it = collection.begin(); it != end; ++it)
delete *it;
}
template<typename T, size_t inlineCapacity, typename Allocator>
inline void swap(Vector<T, inlineCapacity, Allocator>& a, Vector<T, inlineCapacity, Allocator>& b)
{
a.swap(b);
}
template<typename T, size_t inlineCapacityA, size_t inlineCapacityB, typename Allocator>
bool operator==(const Vector<T, inlineCapacityA, Allocator>& a, const Vector<T, inlineCapacityB, Allocator>& b)
{
if (a.size() != b.size())
return false;
return VectorTypeOperations<T>::compare(a.data(), b.data(), a.size());
}
template<typename T, size_t inlineCapacityA, size_t inlineCapacityB, typename Allocator>
inline bool operator!=(const Vector<T, inlineCapacityA, Allocator>& a, const Vector<T, inlineCapacityB, Allocator>& b)
{
return !(a == b);
}
} // namespace WTF
using WTF::Vector;
#endif // SKY_ENGINE_WTF_VECTOR_H_