blob: 2218262025284c34cf5489e696d5e9003b1a723b [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller (mueller@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved.
* Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "sky/engine/core/dom/Node.h"
#include "base/trace_event/trace_event_impl.h"
#include "gen/sky/core/HTMLNames.h"
#include "sky/engine/bindings/exception_state.h"
#include "sky/engine/core/css/resolver/StyleResolver.h"
#include "sky/engine/core/dom/Attr.h"
#include "sky/engine/core/dom/Attribute.h"
#include "sky/engine/core/dom/ChildListMutationScope.h"
#include "sky/engine/core/dom/Document.h"
#include "sky/engine/core/dom/DocumentFragment.h"
#include "sky/engine/core/dom/DocumentMarkerController.h"
#include "sky/engine/core/dom/Element.h"
#include "sky/engine/core/dom/ElementRareData.h"
#include "sky/engine/core/dom/ElementTraversal.h"
#include "sky/engine/core/dom/ExceptionCode.h"
#include "sky/engine/core/dom/NodeRareData.h"
#include "sky/engine/core/dom/NodeTraversal.h"
#include "sky/engine/core/dom/Range.h"
#include "sky/engine/core/dom/StaticNodeList.h"
#include "sky/engine/core/dom/Text.h"
#include "sky/engine/core/dom/TreeScopeAdopter.h"
#include "sky/engine/core/dom/UserActionElementSet.h"
#include "sky/engine/core/dom/WeakNodeMap.h"
#include "sky/engine/core/editing/htmlediting.h"
#include "sky/engine/core/frame/LocalFrame.h"
#include "sky/engine/core/frame/Settings.h"
#include "sky/engine/core/page/Page.h"
#include "sky/engine/core/rendering/RenderBox.h"
#include "sky/engine/platform/JSONValues.h"
#include "sky/engine/platform/Partitions.h"
#include "sky/engine/platform/TraceEvent.h"
#include "sky/engine/tonic/dart_gc_visitor.h"
#include "sky/engine/wtf/HashSet.h"
#include "sky/engine/wtf/PassOwnPtr.h"
#include "sky/engine/wtf/RefCountedLeakCounter.h"
#include "sky/engine/wtf/Vector.h"
#include "sky/engine/wtf/text/CString.h"
#include "sky/engine/wtf/text/StringBuilder.h"
namespace blink {
void* Node::operator new(size_t size)
{
ASSERT(isMainThread());
return partitionAlloc(Partitions::getObjectModelPartition(), size);
}
void Node::operator delete(void* ptr)
{
ASSERT(isMainThread());
partitionFree(ptr);
}
#if DUMP_NODE_STATISTICS
typedef HashSet<RawPtr<Node> > WeakNodeSet;
static WeakNodeSet& liveNodeSet()
{
DEFINE_STATIC_LOCAL(OwnPtr<WeakNodeSet>, set, (adoptPtr(new WeakNodeSet())));
return *set;
}
#endif
void Node::dumpStatistics()
{
#if DUMP_NODE_STATISTICS
size_t nodesWithRareData = 0;
size_t elementNodes = 0;
size_t textNodes = 0;
size_t piNodes = 0;
size_t documentNodes = 0;
size_t docTypeNodes = 0;
size_t fragmentNodes = 0;
HashMap<String, size_t> perTagCount;
size_t attributes = 0;
size_t elementsWithAttributeStorage = 0;
size_t elementsWithRareData = 0;
for (WeakNodeSet::iterator it = liveNodeSet().begin(); it != liveNodeSet().end(); ++it) {
Node* node = *it;
if (node->hasRareData()) {
++nodesWithRareData;
if (node->isElementNode()) {
++elementsWithRareData;
}
}
switch (node->nodeType()) {
case ELEMENT_NODE: {
++elementNodes;
// Tag stats
Element* element = toElement(node);
HashMap<String, size_t>::AddResult result = perTagCount.add(element->tagName(), 1);
if (!result.isNewEntry)
result.storedValue->value++;
if (const ElementData* elementData = element->elementData()) {
attributes += elementData->attributes().size();
++elementsWithAttributeStorage;
}
break;
}
case TEXT_NODE: {
++textNodes;
break;
}
case DOCUMENT_NODE: {
++documentNodes;
break;
}
case DOCUMENT_FRAGMENT_NODE: {
++fragmentNodes;
break;
}
}
}
printf("Number of Nodes: %d\n\n", liveNodeSet().size());
printf("Number of Nodes with RareData: %zu\n\n", nodesWithRareData);
printf("NodeType distribution:\n");
printf(" Number of Element nodes: %zu\n", elementNodes);
printf(" Number of Text nodes: %zu\n", textNodes);
printf(" Number of Document nodes: %zu\n", documentNodes);
printf(" Number of DocumentType nodes: %zu\n", docTypeNodes);
printf(" Number of DocumentFragment nodes: %zu\n", fragmentNodes);
printf("Element tag name distibution:\n");
for (HashMap<String, size_t>::iterator it = perTagCount.begin(); it != perTagCount.end(); ++it)
printf(" Number of <%s> tags: %zu\n", it->key.utf8().data(), it->value);
printf("Attributes:\n");
printf(" Number of Attributes (non-Node and Node): %zu [%zu]\n", attributes, sizeof(Attribute));
printf(" Number of Elements with attribute storage: %zu [%zu]\n", elementsWithAttributeStorage, sizeof(ElementData));
printf(" Number of Elements with RareData: %zu\n", elementsWithRareData);
#endif
}
DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, nodeCounter, ("WebCoreNode"));
void Node::trackForDebugging()
{
#ifndef NDEBUG
nodeCounter.increment();
#endif
#if DUMP_NODE_STATISTICS
liveNodeSet().add(this);
#endif
}
Node::Node(TreeScope* treeScope, ConstructionType type)
: m_nodeFlags(type)
, m_parentNode(nullptr)
, m_treeScope(treeScope)
, m_previous(nullptr)
, m_next(nullptr)
{
ASSERT(m_treeScope || type == CreateDocument);
#if !ENABLE(OILPAN)
if (m_treeScope)
m_treeScope->guardRef();
#endif
#if !defined(NDEBUG) || (defined(DUMP_NODE_STATISTICS) && DUMP_NODE_STATISTICS)
trackForDebugging();
#endif
InspectorCounters::incrementCounter(InspectorCounters::NodeCounter);
}
Node::~Node()
{
#ifndef NDEBUG
nodeCounter.decrement();
#endif
#if !ENABLE(OILPAN)
#if DUMP_NODE_STATISTICS
liveNodeSet().remove(this);
#endif
if (hasRareData())
clearRareData();
RELEASE_ASSERT(!renderer());
if (!isContainerNode())
willBeDeletedFromDocument();
if (m_previous)
m_previous->setNextSibling(0);
if (m_next)
m_next->setPreviousSibling(0);
if (m_treeScope)
m_treeScope->guardDeref();
if (getFlag(HasWeakReferencesFlag))
WeakNodeMap::notifyNodeDestroyed(this);
#else
// With Oilpan, the rare data finalizer also asserts for
// this condition (we cannot directly access it here.)
RELEASE_ASSERT(hasRareData() || !renderer());
#endif
InspectorCounters::decrementCounter(InspectorCounters::NodeCounter);
}
#if !ENABLE(OILPAN)
// With Oilpan all of this is handled with weak processing of the document.
void Node::willBeDeletedFromDocument()
{
if (!isTreeScopeInitialized())
return;
Document& document = this->document();
document.markers().removeMarkers(this);
}
#endif
NodeRareData* Node::rareData() const
{
ASSERT_WITH_SECURITY_IMPLICATION(hasRareData());
return static_cast<NodeRareData*>(m_data.m_rareData);
}
NodeRareData& Node::ensureRareData()
{
if (hasRareData())
return *rareData();
if (isElementNode())
m_data.m_rareData = ElementRareData::create(m_data.m_renderer);
else
m_data.m_rareData = NodeRareData::create(m_data.m_renderer);
ASSERT(m_data.m_rareData);
setFlag(HasRareDataFlag);
return *rareData();
}
void Node::clearRareData()
{
ASSERT(hasRareData());
ASSERT(!transientMutationObserverRegistry() || transientMutationObserverRegistry()->isEmpty());
RenderObject* renderer = m_data.m_rareData->renderer();
if (isElementNode())
delete static_cast<ElementRareData*>(m_data.m_rareData);
else
delete static_cast<NodeRareData*>(m_data.m_rareData);
m_data.m_renderer = renderer;
clearFlag(HasRareDataFlag);
}
static const Node* rootForGC(const Node* node)
{
if (node->inDocument())
return &node->document();
while (Node* parent = node->parentNode())
node = parent;
return node;
}
void Node::AcceptDartGCVisitor(DartGCVisitor& visitor) const
{
visitor.AddToSetForRoot(rootForGC(this), dart_wrapper());
}
PassRefPtr<Node> Node::insertBefore(PassRefPtr<Node> newChild, Node* refChild, ExceptionState& exceptionState)
{
if (isContainerNode())
return toContainerNode(this)->insertBefore(newChild, refChild, exceptionState);
exceptionState.ThrowDOMException(HierarchyRequestError, "This node type does not support this method.");
return nullptr;
}
PassRefPtr<Node> Node::replaceChild(PassRefPtr<Node> newChild, PassRefPtr<Node> oldChild, ExceptionState& exceptionState)
{
if (isContainerNode())
return toContainerNode(this)->replaceChild(newChild, oldChild, exceptionState);
exceptionState.ThrowDOMException(HierarchyRequestError, "This node type does not support this method.");
return nullptr;
}
PassRefPtr<Node> Node::removeChild(PassRefPtr<Node> oldChild, ExceptionState& exceptionState)
{
if (isContainerNode())
return toContainerNode(this)->removeChild(oldChild, exceptionState);
exceptionState.ThrowDOMException(NotFoundError, "This node type does not support this method.");
return nullptr;
}
PassRefPtr<Node> Node::appendChild(PassRefPtr<Node> newChild, ExceptionState& exceptionState)
{
if (isContainerNode())
return toContainerNode(this)->appendChild(newChild, exceptionState);
exceptionState.ThrowDOMException(HierarchyRequestError, "This node type does not support this method.");
return nullptr;
}
Element* Node::previousElementSibling()
{
return ElementTraversal::previousSibling(*this);
}
Element* Node::nextElementSibling()
{
return ElementTraversal::nextSibling(*this);
}
void Node::newInsertBefore(Vector<RefPtr<Node>>& nodes, ExceptionState& es)
{
RefPtr<ContainerNode> parent = parentNode();
if (!parent)
return;
RefPtr<Node> protect(this);
for (auto& node : nodes) {
parent->insertBefore(node.release(), this, es);
if (es.had_exception())
return;
}
}
void Node::newInsertAfter(Vector<RefPtr<Node>>& nodes, ExceptionState& es)
{
RefPtr<ContainerNode> parent = this->parentNode();
if (!parent)
return;
RefPtr<Node> reference = m_next;
for (auto& node : nodes) {
parent->insertBefore(node.release(), reference.get(), es);
if (es.had_exception())
return;
}
}
void Node::replaceWith(Vector<RefPtr<Node>>& nodes, ExceptionState& es)
{
RefPtr<ContainerNode> parent = this->parentNode();
if (!parent)
return;
RefPtr<Node> reference = m_next;
remove(es);
if (es.had_exception())
return;
for (auto& node : nodes) {
parent->insertBefore(node, reference.get(), es);
if (es.had_exception())
return;
}
}
void Node::remove(ExceptionState& exceptionState)
{
if (ContainerNode* parent = parentNode())
parent->removeChild(this, exceptionState);
}
const AtomicString& Node::localName() const
{
return nullAtom;
}
bool Node::isContentEditable(UserSelectAllTreatment treatment)
{
document().updateRenderTreeIfNeeded();
return hasEditableStyle(Editable, treatment);
}
bool Node::isContentRichlyEditable()
{
document().updateRenderTreeIfNeeded();
return hasEditableStyle(RichlyEditable, UserSelectAllIsAlwaysNonEditable);
}
bool Node::hasEditableStyle(EditableLevel editableLevel, UserSelectAllTreatment treatment) const
{
ASSERT(!needsStyleRecalc());
for (const Node* node = this; node; node = node->parentNode()) {
if (node->isElementNode() && node->renderer()) {
// Elements with user-select: all style are considered atomic
// therefore non editable.
if (Position::nodeIsUserSelectAll(node) && treatment == UserSelectAllIsAlwaysNonEditable)
return false;
if (static_cast<const Element*>(node)->hasAttribute(HTMLNames::contenteditableAttr))
return editableLevel != RichlyEditable;
return false;
}
}
return false;
}
bool Node::isEditableToAccessibility(EditableLevel editableLevel) const
{
return hasEditableStyle(editableLevel);
}
RenderBox* Node::renderBox() const
{
RenderObject* renderer = this->renderer();
return renderer && renderer->isBox() ? toRenderBox(renderer) : 0;
}
RenderBoxModelObject* Node::renderBoxModelObject() const
{
RenderObject* renderer = this->renderer();
return renderer && renderer->isBoxModelObject() ? toRenderBoxModelObject(renderer) : 0;
}
LayoutRect Node::boundingBox() const
{
if (renderer())
return renderer()->absoluteBoundingBoxRect();
return LayoutRect();
}
void Node::setIsLink(bool isLink)
{
setFlag(isLink, IsLinkFlag);
}
namespace {
class JSONTraceValue : public base::trace_event::ConvertableToTraceFormat {
public:
explicit JSONTraceValue(RefPtr<JSONValue> value)
: m_value(value.release()) { }
void AppendAsTraceFormat(std::string* out) const override
{
out->append(m_value->toJSONString().utf8().data());
}
private:
RefPtr<JSONValue> m_value;
};
} // namespace
unsigned Node::styledSubtreeSize() const
{
unsigned nodeCount = 0;
for (const Node* node = this; node; node = NodeTraversal::next(*node, this)) {
if (node->isTextNode() || node->isElementNode())
nodeCount++;
}
return nodeCount;
}
void Node::traceStyleChange(StyleChangeType changeType)
{
static const unsigned kMinLoggedSize = 100;
unsigned nodeCount = styledSubtreeSize();
if (nodeCount < kMinLoggedSize)
return;
TRACE_EVENT_INSTANT0(TRACE_DISABLED_BY_DEFAULT("style.debug"),
"Node::setNeedsStyleRecalc", TRACE_EVENT_SCOPE_PROCESS
);
}
void Node::traceStyleChangeIfNeeded(StyleChangeType changeType)
{
// TRACE_EVENT_CATEGORY_GROUP_ENABLED macro loads a global static bool into our local bool.
bool styleTracingEnabled;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("style.debug"), &styleTracingEnabled);
if (UNLIKELY(styleTracingEnabled))
traceStyleChange(changeType);
}
inline void Node::setStyleChange(StyleChangeType changeType)
{
m_nodeFlags = (m_nodeFlags & ~StyleChangeMask) | changeType;
}
void Node::markAncestorsWithChildNeedsStyleRecalc()
{
for (ContainerNode* p = parentNode(); p && !p->childNeedsStyleRecalc(); p = p->parentNode())
p->setChildNeedsStyleRecalc();
document().scheduleRenderTreeUpdateIfNeeded();
}
void Node::setNeedsStyleRecalc(StyleChangeType changeType)
{
ASSERT(changeType != NoStyleChange);
if (!inActiveDocument())
return;
StyleChangeType existingChangeType = styleChangeType();
if (changeType > existingChangeType) {
setStyleChange(changeType);
if (changeType >= SubtreeStyleChange)
traceStyleChangeIfNeeded(changeType);
}
if (existingChangeType == NoStyleChange)
markAncestorsWithChildNeedsStyleRecalc();
}
void Node::clearNeedsStyleRecalc()
{
m_nodeFlags &= ~StyleChangeMask;
}
bool Node::inActiveDocument() const
{
return inDocument() && document().isActive();
}
unsigned Node::nodeIndex() const
{
Node *_tempNode = previousSibling();
unsigned count=0;
for ( count=0; _tempNode; count++ )
_tempNode = _tempNode->previousSibling();
return count;
}
bool Node::isDescendantOf(const Node *other) const
{
// Return true if other is an ancestor of this, otherwise false
if (!other || !other->hasChildren() || inDocument() != other->inDocument())
return false;
if (other->treeScope() != treeScope())
return false;
if (other->isTreeScope())
return !isTreeScope();
for (const ContainerNode* n = parentNode(); n; n = n->parentNode()) {
if (n == other)
return true;
}
return false;
}
bool Node::contains(const Node* node) const
{
if (!node)
return false;
return this == node || node->isDescendantOf(this);
}
void Node::reattach(const AttachContext& context)
{
AttachContext reattachContext(context);
reattachContext.performingReattach = true;
// We only need to detach if the node has already been through attach().
if (styleChangeType() < NeedsReattachStyleChange)
detach(reattachContext);
attach(reattachContext);
}
void Node::attach(const AttachContext&)
{
ASSERT(document().inStyleRecalc() || isDocumentNode());
ASSERT(needsAttach());
ASSERT(!renderer() || (renderer()->style() && (renderer()->parent() || renderer()->isRenderView())));
clearNeedsStyleRecalc();
}
void Node::detach(const AttachContext& context)
{
if (renderer())
renderer()->destroy();
setRenderer(0);
// Do not remove the element's hovered and active status
// if performing a reattach.
if (!context.performingReattach) {
Document& doc = document();
if (isUserActionElement()) {
if (hovered())
doc.hoveredNodeDetached(this);
if (inActiveChain())
doc.activeChainNodeDetached(this);
doc.userActionElements().didDetach(this);
}
}
setStyleChange(NeedsReattachStyleChange);
setChildNeedsStyleRecalc();
}
// FIXME: This code is used by editing. Seems like it could move over there and not pollute Node.
Node *Node::previousNodeConsideringAtomicNodes() const
{
if (previousSibling()) {
Node *n = previousSibling();
while (!isAtomicNode(n) && n->lastChild())
n = n->lastChild();
return n;
}
else if (parentNode()) {
return parentNode();
}
else {
return 0;
}
}
Node *Node::nextNodeConsideringAtomicNodes() const
{
if (!isAtomicNode(this) && hasChildren())
return firstChild();
if (nextSibling())
return nextSibling();
const Node *n = this;
while (n && !n->nextSibling())
n = n->parentNode();
if (n)
return n->nextSibling();
return 0;
}
Node *Node::previousLeafNode() const
{
Node *node = previousNodeConsideringAtomicNodes();
while (node) {
if (isAtomicNode(node))
return node;
node = node->previousNodeConsideringAtomicNodes();
}
return 0;
}
Node *Node::nextLeafNode() const
{
Node *node = nextNodeConsideringAtomicNodes();
while (node) {
if (isAtomicNode(node))
return node;
node = node->nextNodeConsideringAtomicNodes();
}
return 0;
}
RenderStyle* Node::virtualComputedStyle()
{
return parentNode() ? parentNode()->computedStyle() : 0;
}
int Node::maxCharacterOffset() const
{
ASSERT_NOT_REACHED();
return 0;
}
// FIXME: Shouldn't these functions be in the editing code? Code that asks questions about HTML in the core DOM class
// is obviously misplaced.
bool Node::canStartSelection() const
{
if (hasEditableStyle())
return true;
return parentNode() ? parentNode()->canStartSelection() : true;
}
bool Node::isRootEditableElement() const
{
return hasEditableStyle() && isElementNode() && (!parentNode() || !parentNode()->hasEditableStyle()
|| !parentNode()->isElementNode());
}
Element* Node::rootEditableElement(EditableType editableType) const
{
return rootEditableElement();
}
Element* Node::rootEditableElement() const
{
Element* result = 0;
for (Node* n = const_cast<Node*>(this); n && n->hasEditableStyle(); n = n->parentNode()) {
if (n->isElementNode())
result = toElement(n);
}
return result;
}
// FIXME: End of obviously misplaced HTML editing functions. Try to move these out of Node.
Document* Node::ownerDocument() const
{
Document* doc = &document();
return doc == this ? 0 : doc;
}
ContainerNode* Node::owner() const
{
if (inDocument())
return &treeScope().rootNode();
return 0;
}
String Node::textContent() const
{
if (isTextNode())
return toText(this)->data();
StringBuilder content;
for (const Node* node = this; node; node = NodeTraversal::next(*node, this)) {
if (node->isTextNode())
content.append(toText(node)->data());
}
return content.toString();
}
void Node::setTextContent(const String& text)
{
switch (nodeType()) {
case TEXT_NODE:
toText(this)->setData(text);
return;
case ELEMENT_NODE:
case DOCUMENT_FRAGMENT_NODE: {
// FIXME: Merge this logic into replaceChildrenWithText.
RefPtr<ContainerNode> container = toContainerNode(this);
// Note: This is an intentional optimization.
// See crbug.com/352836 also.
// No need to do anything if the text is identical.
if (container->hasOneTextChild() && toText(container->firstChild())->data() == text)
return;
ChildListMutationScope mutation(*this);
container->removeChildren();
// Note: This API will not insert empty text nodes:
// http://dom.spec.whatwg.org/#dom-node-textcontent
if (!text.isEmpty())
container->appendChild(Text::create(document(), text), ASSERT_NO_EXCEPTION);
return;
}
case DOCUMENT_NODE:
// FIXME(sky): When we get rid of the Document being special, go down the ELEMENT_NODE codepath.
// Do nothing.
return;
}
}
bool Node::offsetInCharacters() const
{
return false;
}
unsigned short Node::compareDocumentPosition(const Node* otherNode) const
{
// It is not clear what should be done if |otherNode| is 0.
if (!otherNode)
return DOCUMENT_POSITION_DISCONNECTED;
if (otherNode == this)
return DOCUMENT_POSITION_EQUIVALENT;
const Node* start1 = this;
const Node* start2 = otherNode;
// If either of start1 or start2 is null, then we are disconnected, since one of the nodes is
// an orphaned attribute node.
if (!start1 || !start2) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
Vector<const Node*, 16> chain1;
Vector<const Node*, 16> chain2;
// If one node is in the document and the other is not, we must be disconnected.
// If the nodes have different owning documents, they must be disconnected. Note that we avoid
// comparing Attr nodes here, since they return false from inDocument() all the time (which seems like a bug).
if (start1->inDocument() != start2->inDocument() || (start1->treeScope() != start2->treeScope())) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
// We need to find a common ancestor container, and then compare the indices of the two immediate children.
const Node* current;
for (current = start1; current; current = current->parentNode())
chain1.append(current);
for (current = start2; current; current = current->parentNode())
chain2.append(current);
unsigned index1 = chain1.size();
unsigned index2 = chain2.size();
// If the two elements don't have a common root, they're not in the same tree.
if (chain1[index1 - 1] != chain2[index2 - 1]) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
unsigned connection = start1->treeScope() != start2->treeScope() ? DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC : 0;
// Walk the two chains backwards and look for the first difference.
for (unsigned i = std::min(index1, index2); i; --i) {
const Node* child1 = chain1[--index1];
const Node* child2 = chain2[--index2];
if (child1 != child2) {
if (!child2->nextSibling())
return DOCUMENT_POSITION_FOLLOWING | connection;
if (!child1->nextSibling())
return DOCUMENT_POSITION_PRECEDING | connection;
// Otherwise we need to see which node occurs first. Crawl backwards from child2 looking for child1.
for (Node* child = child2->previousSibling(); child; child = child->previousSibling()) {
if (child == child1)
return DOCUMENT_POSITION_FOLLOWING | connection;
}
return DOCUMENT_POSITION_PRECEDING | connection;
}
}
// There was no difference between the two parent chains, i.e., one was a subset of the other. The shorter
// chain is the ancestor.
return index1 < index2 ?
DOCUMENT_POSITION_FOLLOWING | DOCUMENT_POSITION_CONTAINED_BY | connection :
DOCUMENT_POSITION_PRECEDING | DOCUMENT_POSITION_CONTAINS | connection;
}
String Node::debugName() const
{
StringBuilder name;
name.append(nodeName());
if (isElementNode()) {
const Element& thisElement = toElement(*this);
if (thisElement.hasID()) {
name.appendLiteral(" id=\'");
name.append(thisElement.getIdAttribute());
name.append('\'');
}
if (thisElement.hasClass()) {
name.appendLiteral(" class=\'");
for (size_t i = 0; i < thisElement.classNames().size(); ++i) {
if (i > 0)
name.append(' ');
name.append(thisElement.classNames()[i]);
}
name.append('\'');
}
}
return name.toString();
}
#ifndef NDEBUG
static void appendAttributeDesc(const Node* node, StringBuilder& stringBuilder, const QualifiedName& name, const char* attrDesc)
{
if (!node->isElementNode())
return;
String attr = toElement(node)->getAttribute(name);
if (attr.isEmpty())
return;
stringBuilder.append(attrDesc);
stringBuilder.appendLiteral("=\"");
stringBuilder.append(attr);
stringBuilder.appendLiteral("\"");
}
void Node::showNode(const char* prefix) const
{
if (!prefix)
prefix = "";
if (isTextNode()) {
String value = toText(this)->data();
value.replaceWithLiteral('\\', "\\\\");
value.replaceWithLiteral('\n', "\\n");
fprintf(stderr, "%s%s\t%p \"%s\"\n", prefix, nodeName().utf8().data(), this, value.utf8().data());
} else {
StringBuilder attrs;
appendAttributeDesc(this, attrs, HTMLNames::idAttr, " ID");
appendAttributeDesc(this, attrs, HTMLNames::classAttr, " CLASS");
appendAttributeDesc(this, attrs, HTMLNames::styleAttr, " STYLE");
fprintf(stderr, "%s%s\t%p%s\n", prefix, nodeName().utf8().data(), this, attrs.toString().utf8().data());
}
}
void Node::showTreeForThis() const
{
showTreeAndMark(this, "*");
}
void Node::showNodePathForThis() const
{
Vector<const Node*, 16> chain;
const Node* node = this;
while (node->parentNode()) {
chain.append(node);
node = node->parentNode();
}
for (unsigned index = chain.size(); index > 0; --index) {
const Node* node = chain[index - 1];
switch (node->nodeType()) {
case ELEMENT_NODE: {
fprintf(stderr, "/%s", node->nodeName().utf8().data());
const Element* element = toElement(node);
const AtomicString& idattr = element->getIdAttribute();
bool hasIdAttr = !idattr.isNull() && !idattr.isEmpty();
if (node->previousSibling() || node->nextSibling()) {
int count = 0;
for (Node* previous = node->previousSibling(); previous; previous = previous->previousSibling())
if (previous->nodeName() == node->nodeName())
++count;
if (hasIdAttr)
fprintf(stderr, "[@id=\"%s\" and position()=%d]", idattr.utf8().data(), count);
else
fprintf(stderr, "[%d]", count);
} else if (hasIdAttr) {
fprintf(stderr, "[@id=\"%s\"]", idattr.utf8().data());
}
break;
}
case TEXT_NODE:
fprintf(stderr, "/text()");
break;
default:
break;
}
}
fprintf(stderr, "\n");
}
static void traverseTreeAndMark(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2)
{
for (const Node* node = rootNode; node; node = NodeTraversal::next(*node)) {
if (node == markedNode1)
fprintf(stderr, "%s", markedLabel1);
if (node == markedNode2)
fprintf(stderr, "%s", markedLabel2);
StringBuilder indent;
indent.append(baseIndent);
for (const Node* tmpNode = node; tmpNode && tmpNode != rootNode; tmpNode = tmpNode->parentNode())
indent.append('\t');
fprintf(stderr, "%s", indent.toString().utf8().data());
node->showNode();
indent.append('\t');
}
}
void Node::showTreeAndMark(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const
{
const Node* rootNode;
const Node* node = this;
while (node->parentNode())
node = node->parentNode();
rootNode = node;
String startingIndent;
traverseTreeAndMark(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
void Node::formatForDebugger(char* buffer, unsigned length) const
{
String result;
String s;
s = nodeName();
if (s.isEmpty())
result = "<none>";
else
result = s;
strncpy(buffer, result.utf8().data(), length - 1);
}
static void showSubTreeAcrossFrame(const Node* node, const Node* markedNode, const String& indent)
{
if (node == markedNode)
fputs("*", stderr);
fputs(indent.utf8().data(), stderr);
node->showNode();
for (Node* child = node->firstChild(); child; child = child->nextSibling())
showSubTreeAcrossFrame(child, markedNode, indent + "\t");
}
#endif
// --------
void Node::didMoveToNewDocument(Document& oldDocument)
{
TreeScopeAdopter::ensureDidMoveToNewDocumentWasCalled(oldDocument);
oldDocument.markers().removeMarkers(this);
oldDocument.updateRangesAfterNodeMovedToAnotherDocument(*this);
if (Vector<OwnPtr<MutationObserverRegistration> >* registry = mutationObserverRegistry()) {
for (size_t i = 0; i < registry->size(); ++i) {
document().addMutationObserverTypes(registry->at(i)->mutationTypes());
}
}
if (HashSet<RawPtr<MutationObserverRegistration> >* transientRegistry = transientMutationObserverRegistry()) {
for (HashSet<RawPtr<MutationObserverRegistration> >::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) {
document().addMutationObserverTypes((*iter)->mutationTypes());
}
}
}
Vector<OwnPtr<MutationObserverRegistration> >* Node::mutationObserverRegistry()
{
if (!hasRareData())
return 0;
NodeMutationObserverData* data = rareData()->mutationObserverData();
if (!data)
return 0;
return &data->registry;
}
HashSet<RawPtr<MutationObserverRegistration> >* Node::transientMutationObserverRegistry()
{
if (!hasRareData())
return 0;
NodeMutationObserverData* data = rareData()->mutationObserverData();
if (!data)
return 0;
return &data->transientRegistry;
}
template<typename Registry>
static inline void collectMatchingObserversForMutation(HashMap<RawPtr<MutationObserver>, MutationRecordDeliveryOptions>& observers, Registry* registry, Node& target, MutationObserver::MutationType type, const QualifiedName* attributeName)
{
if (!registry)
return;
for (typename Registry::iterator iter = registry->begin(); iter != registry->end(); ++iter) {
const MutationObserverRegistration& registration = **iter;
if (registration.shouldReceiveMutationFrom(target, type, attributeName)) {
MutationRecordDeliveryOptions deliveryOptions = registration.deliveryOptions();
HashMap<RawPtr<MutationObserver>, MutationRecordDeliveryOptions>::AddResult result = observers.add(&registration.observer(), deliveryOptions);
if (!result.isNewEntry)
result.storedValue->value |= deliveryOptions;
}
}
}
void Node::getRegisteredMutationObserversOfType(HashMap<RawPtr<MutationObserver>, MutationRecordDeliveryOptions>& observers, MutationObserver::MutationType type, const QualifiedName* attributeName)
{
ASSERT((type == MutationObserver::Attributes && attributeName) || !attributeName);
collectMatchingObserversForMutation(observers, mutationObserverRegistry(), *this, type, attributeName);
collectMatchingObserversForMutation(observers, transientMutationObserverRegistry(), *this, type, attributeName);
for (Node* node = parentNode(); node; node = node->parentNode()) {
collectMatchingObserversForMutation(observers, node->mutationObserverRegistry(), *this, type, attributeName);
collectMatchingObserversForMutation(observers, node->transientMutationObserverRegistry(), *this, type, attributeName);
}
}
void Node::registerMutationObserver(MutationObserver& observer, MutationObserverOptions options, const HashSet<AtomicString>& attributeFilter)
{
MutationObserverRegistration* registration = 0;
Vector<OwnPtr<MutationObserverRegistration> >& registry = ensureRareData().ensureMutationObserverData().registry;
for (size_t i = 0; i < registry.size(); ++i) {
if (&registry[i]->observer() == &observer) {
registration = registry[i].get();
registration->resetObservation(options, attributeFilter);
}
}
if (!registration) {
registry.append(MutationObserverRegistration::create(observer, this, options, attributeFilter));
registration = registry.last().get();
}
document().addMutationObserverTypes(registration->mutationTypes());
}
void Node::unregisterMutationObserver(MutationObserverRegistration* registration)
{
Vector<OwnPtr<MutationObserverRegistration> >* registry = mutationObserverRegistry();
ASSERT(registry);
if (!registry)
return;
size_t index = registry->find(registration);
ASSERT(index != kNotFound);
if (index == kNotFound)
return;
// Deleting the registration may cause this node to be derefed, so we must make sure the Vector operation completes
// before that, in case |this| is destroyed (see MutationObserverRegistration::m_registrationNodeKeepAlive).
// FIXME: Simplify the registration/transient registration logic to make this understandable by humans.
RefPtr<Node> protect(this);
registry->remove(index);
}
void Node::registerTransientMutationObserver(MutationObserverRegistration* registration)
{
ensureRareData().ensureMutationObserverData().transientRegistry.add(registration);
}
void Node::unregisterTransientMutationObserver(MutationObserverRegistration* registration)
{
HashSet<RawPtr<MutationObserverRegistration> >* transientRegistry = transientMutationObserverRegistry();
ASSERT(transientRegistry);
if (!transientRegistry)
return;
ASSERT(transientRegistry->contains(registration));
transientRegistry->remove(registration);
}
void Node::notifyMutationObserversNodeWillDetach()
{
if (!document().hasMutationObservers())
return;
for (Node* node = parentNode(); node; node = node->parentNode()) {
if (Vector<OwnPtr<MutationObserverRegistration> >* registry = node->mutationObserverRegistry()) {
const size_t size = registry->size();
for (size_t i = 0; i < size; ++i)
registry->at(i)->observedSubtreeNodeWillDetach(*this);
}
if (HashSet<RawPtr<MutationObserverRegistration> >* transientRegistry = node->transientMutationObserverRegistry()) {
for (HashSet<RawPtr<MutationObserverRegistration> >::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter)
(*iter)->observedSubtreeNodeWillDetach(*this);
}
}
}
#if !ENABLE(OILPAN)
// This is here for inlining
inline void TreeScope::removedLastRefToScope()
{
ASSERT_WITH_SECURITY_IMPLICATION(!deletionHasBegun());
if (m_guardRefCount) {
// If removing a child removes the last self-only ref, we don't
// want the scope to be destructed until after
// removeDetachedChildren returns, so we guard ourselves with an
// extra self-only ref.
guardRef();
dispose();
#if ENABLE(ASSERT)
// We need to do this right now since guardDeref() can delete this.
rootNode().m_inRemovedLastRefFunction = false;
#endif
guardDeref();
} else {
#if ENABLE(ASSERT)
rootNode().m_inRemovedLastRefFunction = false;
#endif
#if ENABLE(SECURITY_ASSERT)
beginDeletion();
#endif
delete this;
}
}
// It's important not to inline removedLastRef, because we don't want to inline the code to
// delete a Node at each deref call site.
void Node::removedLastRef()
{
// An explicit check for Document here is better than a virtual function since it is
// faster for non-Document nodes, and because the call to removedLastRef that is inlined
// at all deref call sites is smaller if it's a non-virtual function.
if (isTreeScope()) {
treeScope().removedLastRefToScope();
return;
}
#if ENABLE(SECURITY_ASSERT)
m_deletionHasBegun = true;
#endif
delete this;
}
#endif
void Node::setActive(bool flag)
{
document().userActionElements().setActive(this, flag);
}
void Node::setHovered(bool flag)
{
document().userActionElements().setHovered(this, flag);
}
bool Node::isUserActionElementActive() const
{
ASSERT(isUserActionElement());
return document().userActionElements().isActive(this);
}
bool Node::isUserActionElementInActiveChain() const
{
ASSERT(isUserActionElement());
return document().userActionElements().isInActiveChain(this);
}
bool Node::isUserActionElementHovered() const
{
ASSERT(isUserActionElement());
return document().userActionElements().isHovered(this);
}
unsigned Node::lengthOfContents() const
{
// This switch statement must be consistent with that of Range::processContentsBetweenOffsets.
switch (nodeType()) {
case Node::TEXT_NODE:
return toCharacterData(this)->length();
case Node::ELEMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
return toContainerNode(this)->countChildren();
}
ASSERT_NOT_REACHED();
return 0;
}
} // namespace blink
#ifndef NDEBUG
void showNode(const blink::Node* node)
{
if (node)
node->showNode("");
}
void showTree(const blink::Node* node)
{
if (node)
node->showTreeForThis();
}
void showNodePath(const blink::Node* node)
{
if (node)
node->showNodePathForThis();
}
#endif