blob: 8e2162021fb70efdbe6fccda5cd3091ef527aa0a [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/edk/system/remote_consumer_data_pipe_impl.h"
#include <string.h>
#include <algorithm>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "mojo/edk/system/channel.h"
#include "mojo/edk/system/channel_endpoint.h"
#include "mojo/edk/system/configuration.h"
#include "mojo/edk/system/data_pipe.h"
#include "mojo/edk/system/message_in_transit.h"
#include "mojo/edk/system/remote_data_pipe_ack.h"
namespace mojo {
namespace system {
namespace {
bool ValidateIncomingMessage(size_t element_num_bytes,
size_t capacity_num_bytes,
size_t consumer_num_bytes,
const MessageInTransit* message) {
// We should only receive endpoint client messages.
DCHECK_EQ(message->type(), MessageInTransit::Type::ENDPOINT_CLIENT);
// But we should check the subtype; only take data pipe acks.
if (message->subtype() !=
MessageInTransit::Subtype::ENDPOINT_CLIENT_DATA_PIPE_ACK) {
LOG(WARNING) << "Received message of unexpected subtype: "
<< message->subtype();
return false;
}
if (message->num_bytes() != sizeof(RemoteDataPipeAck)) {
LOG(WARNING) << "Incorrect message size: " << message->num_bytes()
<< " bytes (expected: " << sizeof(RemoteDataPipeAck)
<< " bytes)";
return false;
}
const RemoteDataPipeAck* ack =
static_cast<const RemoteDataPipeAck*>(message->bytes());
size_t num_bytes_consumed = ack->num_bytes_consumed;
if (num_bytes_consumed > consumer_num_bytes) {
LOG(WARNING) << "Number of bytes consumed too large: " << num_bytes_consumed
<< " bytes (outstanding: " << consumer_num_bytes << " bytes)";
return false;
}
if (num_bytes_consumed % element_num_bytes != 0) {
LOG(WARNING) << "Number of bytes consumed not a multiple of element size: "
<< num_bytes_consumed
<< " bytes (element size: " << element_num_bytes << " bytes)";
return false;
}
return true;
}
} // namespace
RemoteConsumerDataPipeImpl::RemoteConsumerDataPipeImpl(
ChannelEndpoint* channel_endpoint,
size_t consumer_num_bytes)
: channel_endpoint_(channel_endpoint),
consumer_num_bytes_(consumer_num_bytes) {
// Note: |buffer_| is lazily allocated.
}
RemoteConsumerDataPipeImpl::~RemoteConsumerDataPipeImpl() {
}
void RemoteConsumerDataPipeImpl::ProducerClose() {
if (!consumer_open()) {
DCHECK(!channel_endpoint_);
return;
}
Disconnect();
}
// static
bool RemoteConsumerDataPipeImpl::ProcessMessagesFromIncomingEndpoint(
const MojoCreateDataPipeOptions& validated_options,
size_t* consumer_num_bytes,
MessageInTransitQueue* messages) {
const size_t element_num_bytes = validated_options.element_num_bytes;
const size_t capacity_num_bytes = validated_options.capacity_num_bytes;
if (messages) {
while (!messages->IsEmpty()) {
scoped_ptr<MessageInTransit> message(messages->GetMessage());
if (!ValidateIncomingMessage(element_num_bytes, capacity_num_bytes,
*consumer_num_bytes, message.get())) {
messages->Clear();
return false;
}
const RemoteDataPipeAck* ack =
static_cast<const RemoteDataPipeAck*>(message->bytes());
size_t num_bytes_consumed = ack->num_bytes_consumed;
*consumer_num_bytes -= num_bytes_consumed;
}
}
return true;
}
MojoResult RemoteConsumerDataPipeImpl::ProducerWriteData(
UserPointer<const void> elements,
UserPointer<uint32_t> num_bytes,
uint32_t max_num_bytes_to_write,
uint32_t min_num_bytes_to_write) {
DCHECK_EQ(max_num_bytes_to_write % element_num_bytes(), 0u);
DCHECK_EQ(min_num_bytes_to_write % element_num_bytes(), 0u);
DCHECK_GT(max_num_bytes_to_write, 0u);
DCHECK_GE(max_num_bytes_to_write, min_num_bytes_to_write);
DCHECK(consumer_open());
DCHECK(channel_endpoint_);
DCHECK_LE(consumer_num_bytes_, capacity_num_bytes());
DCHECK_EQ(consumer_num_bytes_ % element_num_bytes(), 0u);
if (min_num_bytes_to_write > capacity_num_bytes() - consumer_num_bytes_)
return MOJO_RESULT_OUT_OF_RANGE;
size_t num_bytes_to_write =
std::min(static_cast<size_t>(max_num_bytes_to_write),
capacity_num_bytes() - consumer_num_bytes_);
if (num_bytes_to_write == 0)
return MOJO_RESULT_SHOULD_WAIT;
// The maximum amount of data to send per message (make it a multiple of the
// element size.
// TODO(vtl): Copied from |LocalDataPipeImpl::ConvertDataToMessages()|.
size_t max_message_num_bytes = GetConfiguration().max_message_num_bytes;
max_message_num_bytes -= max_message_num_bytes % element_num_bytes();
DCHECK_GT(max_message_num_bytes, 0u);
size_t offset = 0;
while (offset < num_bytes_to_write) {
size_t message_num_bytes =
std::min(max_message_num_bytes, num_bytes_to_write - offset);
scoped_ptr<MessageInTransit> message(new MessageInTransit(
MessageInTransit::Type::ENDPOINT_CLIENT,
MessageInTransit::Subtype::ENDPOINT_CLIENT_DATA,
static_cast<uint32_t>(message_num_bytes), elements.At(offset)));
if (!channel_endpoint_->EnqueueMessage(message.Pass())) {
Disconnect();
break;
}
offset += message_num_bytes;
consumer_num_bytes_ += message_num_bytes;
}
DCHECK_LE(consumer_num_bytes_, capacity_num_bytes());
// TODO(vtl): We report |num_bytes_to_write|, instead of |offset|, even if we
// failed at some point. This is consistent with the idea that writes either
// "succeed" or "fail" (and since some bytes may have been sent, we opt for
// "succeed"). Think about this some more.
num_bytes.Put(static_cast<uint32_t>(num_bytes_to_write));
return MOJO_RESULT_OK;
}
MojoResult RemoteConsumerDataPipeImpl::ProducerBeginWriteData(
UserPointer<void*> buffer,
UserPointer<uint32_t> buffer_num_bytes,
uint32_t min_num_bytes_to_write) {
DCHECK(consumer_open());
DCHECK(channel_endpoint_);
DCHECK_LE(consumer_num_bytes_, capacity_num_bytes());
DCHECK_EQ(consumer_num_bytes_ % element_num_bytes(), 0u);
size_t max_num_bytes_to_write = capacity_num_bytes() - consumer_num_bytes_;
if (min_num_bytes_to_write > max_num_bytes_to_write) {
// Don't return "should wait" since you can't wait for a specified amount
// of data.
return MOJO_RESULT_OUT_OF_RANGE;
}
// Don't go into a two-phase write if there's no room.
if (max_num_bytes_to_write == 0)
return MOJO_RESULT_SHOULD_WAIT;
EnsureBuffer();
buffer.Put(buffer_.get());
buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_write));
set_producer_two_phase_max_num_bytes_written(
static_cast<uint32_t>(max_num_bytes_to_write));
return MOJO_RESULT_OK;
}
MojoResult RemoteConsumerDataPipeImpl::ProducerEndWriteData(
uint32_t num_bytes_written) {
DCHECK_LE(num_bytes_written, producer_two_phase_max_num_bytes_written());
DCHECK_EQ(num_bytes_written % element_num_bytes(), 0u);
DCHECK_LE(num_bytes_written, capacity_num_bytes() - consumer_num_bytes_);
if (!consumer_open()) {
DCHECK(buffer_);
set_producer_two_phase_max_num_bytes_written(0);
DestroyBuffer();
return MOJO_RESULT_OK;
}
// TODO(vtl): The following code is copied almost verbatim from
// |ProducerWriteData()| (it's touchy to factor it out since it uses a
// |UserPointer| while we have a plain pointer.
// The maximum amount of data to send per message (make it a multiple of the
// element size.
// TODO(vtl): Mostly copied from |LocalDataPipeImpl::ConvertDataToMessages()|.
size_t max_message_num_bytes = GetConfiguration().max_message_num_bytes;
max_message_num_bytes -= max_message_num_bytes % element_num_bytes();
DCHECK_GT(max_message_num_bytes, 0u);
size_t offset = 0;
while (offset < num_bytes_written) {
size_t message_num_bytes =
std::min(max_message_num_bytes, num_bytes_written - offset);
scoped_ptr<MessageInTransit> message(new MessageInTransit(
MessageInTransit::Type::ENDPOINT_CLIENT,
MessageInTransit::Subtype::ENDPOINT_CLIENT_DATA,
static_cast<uint32_t>(message_num_bytes), buffer_.get() + offset));
if (!channel_endpoint_->EnqueueMessage(message.Pass())) {
set_producer_two_phase_max_num_bytes_written(0);
Disconnect();
return MOJO_RESULT_OK;
}
offset += message_num_bytes;
consumer_num_bytes_ += message_num_bytes;
}
DCHECK_LE(consumer_num_bytes_, capacity_num_bytes());
// TODO(vtl): (End of mostly copied code.)
set_producer_two_phase_max_num_bytes_written(0);
return MOJO_RESULT_OK;
}
HandleSignalsState RemoteConsumerDataPipeImpl::ProducerGetHandleSignalsState()
const {
HandleSignalsState rv;
if (consumer_open()) {
if (consumer_num_bytes_ < capacity_num_bytes() &&
!producer_in_two_phase_write())
rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_WRITABLE;
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_WRITABLE;
} else {
rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
}
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
return rv;
}
void RemoteConsumerDataPipeImpl::ProducerStartSerialize(
Channel* channel,
size_t* max_size,
size_t* max_platform_handles) {
*max_size = sizeof(SerializedDataPipeProducerDispatcher) +
channel->GetSerializedEndpointSize();
*max_platform_handles = 0;
}
bool RemoteConsumerDataPipeImpl::ProducerEndSerialize(
Channel* channel,
void* destination,
size_t* actual_size,
embedder::PlatformHandleVector* platform_handles) {
SerializedDataPipeProducerDispatcher* s =
static_cast<SerializedDataPipeProducerDispatcher*>(destination);
s->validated_options = validated_options();
void* destination_for_endpoint = static_cast<char*>(destination) +
sizeof(SerializedDataPipeProducerDispatcher);
if (!consumer_open()) {
// Case 1: The consumer is closed.
s->consumer_num_bytes = static_cast<size_t>(-1);
*actual_size = sizeof(SerializedDataPipeProducerDispatcher);
return true;
}
// Case 2: The consumer isn't closed. We pass |channel_endpoint| back to the
// |Channel|. There's no reason for us to continue to exist afterwards.
s->consumer_num_bytes = consumer_num_bytes_;
// Note: We don't use |port|.
scoped_refptr<ChannelEndpoint> channel_endpoint;
channel_endpoint.swap(channel_endpoint_);
channel->SerializeEndpointWithRemotePeer(destination_for_endpoint, nullptr,
channel_endpoint);
owner()->SetConsumerClosedNoLock();
*actual_size = sizeof(SerializedDataPipeProducerDispatcher) +
channel->GetSerializedEndpointSize();
return true;
}
void RemoteConsumerDataPipeImpl::ConsumerClose() {
NOTREACHED();
}
MojoResult RemoteConsumerDataPipeImpl::ConsumerReadData(
UserPointer<void> /*elements*/,
UserPointer<uint32_t> /*num_bytes*/,
uint32_t /*max_num_bytes_to_read*/,
uint32_t /*min_num_bytes_to_read*/,
bool /*peek*/) {
NOTREACHED();
return MOJO_RESULT_INTERNAL;
}
MojoResult RemoteConsumerDataPipeImpl::ConsumerDiscardData(
UserPointer<uint32_t> /*num_bytes*/,
uint32_t /*max_num_bytes_to_discard*/,
uint32_t /*min_num_bytes_to_discard*/) {
NOTREACHED();
return MOJO_RESULT_INTERNAL;
}
MojoResult RemoteConsumerDataPipeImpl::ConsumerQueryData(
UserPointer<uint32_t> /*num_bytes*/) {
NOTREACHED();
return MOJO_RESULT_INTERNAL;
}
MojoResult RemoteConsumerDataPipeImpl::ConsumerBeginReadData(
UserPointer<const void*> /*buffer*/,
UserPointer<uint32_t> /*buffer_num_bytes*/,
uint32_t /*min_num_bytes_to_read*/) {
NOTREACHED();
return MOJO_RESULT_INTERNAL;
}
MojoResult RemoteConsumerDataPipeImpl::ConsumerEndReadData(
uint32_t /*num_bytes_read*/) {
NOTREACHED();
return MOJO_RESULT_INTERNAL;
}
HandleSignalsState RemoteConsumerDataPipeImpl::ConsumerGetHandleSignalsState()
const {
return HandleSignalsState();
}
void RemoteConsumerDataPipeImpl::ConsumerStartSerialize(
Channel* /*channel*/,
size_t* /*max_size*/,
size_t* /*max_platform_handles*/) {
NOTREACHED();
}
bool RemoteConsumerDataPipeImpl::ConsumerEndSerialize(
Channel* /*channel*/,
void* /*destination*/,
size_t* /*actual_size*/,
embedder::PlatformHandleVector* /*platform_handles*/) {
NOTREACHED();
return false;
}
bool RemoteConsumerDataPipeImpl::OnReadMessage(unsigned /*port*/,
MessageInTransit* message) {
// Always take ownership of the message. (This means that we should always
// return true.)
scoped_ptr<MessageInTransit> msg(message);
if (!ValidateIncomingMessage(element_num_bytes(), capacity_num_bytes(),
consumer_num_bytes_, msg.get())) {
Disconnect();
return true;
}
const RemoteDataPipeAck* ack =
static_cast<const RemoteDataPipeAck*>(msg->bytes());
size_t num_bytes_consumed = ack->num_bytes_consumed;
consumer_num_bytes_ -= num_bytes_consumed;
return true;
}
void RemoteConsumerDataPipeImpl::OnDetachFromChannel(unsigned /*port*/) {
if (!consumer_open()) {
DCHECK(!channel_endpoint_);
return;
}
Disconnect();
}
void RemoteConsumerDataPipeImpl::EnsureBuffer() {
DCHECK(producer_open());
if (buffer_)
return;
buffer_.reset(static_cast<char*>(
base::AlignedAlloc(capacity_num_bytes(),
GetConfiguration().data_pipe_buffer_alignment_bytes)));
}
void RemoteConsumerDataPipeImpl::DestroyBuffer() {
#ifndef NDEBUG
// Scribble on the buffer to help detect use-after-frees. (This also helps the
// unit test detect certain bugs without needing ASAN or similar.)
if (buffer_)
memset(buffer_.get(), 0xcd, capacity_num_bytes());
#endif
buffer_.reset();
}
void RemoteConsumerDataPipeImpl::Disconnect() {
DCHECK(consumer_open());
DCHECK(channel_endpoint_);
owner()->SetConsumerClosedNoLock();
channel_endpoint_->DetachFromClient();
channel_endpoint_ = nullptr;
if (!producer_in_two_phase_write())
DestroyBuffer();
}
} // namespace system
} // namespace mojo