blob: 46515c0cf6f0cce41baaa500dbddc5370a109246 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/edk/system/memory.h"
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include "mojo/public/c/system/macros.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace mojo {
namespace system {
namespace {
TEST(MemoryTest, Valid) {
char my_char;
int32_t my_int32;
int64_t my_int64_array[5] = {}; // Zero initialize.
UserPointer<char> my_char_ptr(&my_char);
UserPointer<int32_t> my_int32_ptr(&my_int32);
UserPointer<int64_t> my_int64_array_ptr(my_int64_array);
// |UserPointer<>::IsNull()|:
EXPECT_FALSE(my_char_ptr.IsNull());
EXPECT_FALSE(my_int32_ptr.IsNull());
EXPECT_FALSE(my_int64_array_ptr.IsNull());
// |UserPointer<>::Put()| and |UserPointer<>::Get()|:
my_char_ptr.Put('x');
EXPECT_EQ('x', my_char);
EXPECT_EQ('x', my_char_ptr.Get());
my_int32_ptr.Put(123);
EXPECT_EQ(123, my_int32);
EXPECT_EQ(123, my_int32_ptr.Get());
my_int64_array_ptr.Put(456);
EXPECT_EQ(456, my_int64_array[0]);
EXPECT_EQ(456, my_int64_array_ptr.Get());
// |UserPointer<>::At()|, etc.:
my_int64_array_ptr.At(3).Put(789);
EXPECT_EQ(789, my_int64_array[3]);
{
// Copy construction:
UserPointer<int64_t> other(my_int64_array_ptr.At(3));
EXPECT_FALSE(other.IsNull());
EXPECT_EQ(789, other.Get());
// Assignment:
other = my_int64_array_ptr;
EXPECT_FALSE(other.IsNull());
EXPECT_EQ(456, other.Get());
// Assignment to |NullUserPointer()|:
other = NullUserPointer();
EXPECT_TRUE(other.IsNull());
// |MakeUserPointer()|:
other = MakeUserPointer(&my_int64_array[1]);
other.Put(-123);
EXPECT_EQ(-123, my_int64_array_ptr.At(1).Get());
}
// "const" |UserPointer<>|:
{
// Explicit constructor from |NullUserPointer()|:
UserPointer<const char> other((NullUserPointer()));
EXPECT_TRUE(other.IsNull());
// Conversion to "const":
other = my_char_ptr;
EXPECT_EQ('x', other.Get());
}
// Default constructor:
{
UserPointer<int32_t> other;
EXPECT_TRUE(other.IsNull());
other = my_int32_ptr;
other.Put(-456);
EXPECT_EQ(-456, my_int32_ptr.Get());
}
// |UserPointer<>::CheckArray()|:
my_int64_array_ptr.CheckArray(5);
// |UserPointer<>::GetArray()|:
{
// From a "const" |UserPointer<>| (why not?):
UserPointer<const int64_t> other(my_int64_array_ptr);
int64_t array[3] = {1, 2, 3};
other.At(1).GetArray(array, 3);
EXPECT_EQ(-123, array[0]);
EXPECT_EQ(0, array[1]);
EXPECT_EQ(789, array[2]);
}
// |UserPointer<>::PutArray()|:
{
const int64_t array[2] = {654, 321};
my_int64_array_ptr.At(3).PutArray(array, 2);
EXPECT_EQ(0, my_int64_array[2]);
EXPECT_EQ(654, my_int64_array[3]);
EXPECT_EQ(321, my_int64_array[4]);
}
// |UserPointer<>::Reader|:
{
UserPointer<int64_t>::Reader reader(my_int64_array_ptr, 5);
EXPECT_EQ(456, reader.GetPointer()[0]);
EXPECT_EQ(321, reader.GetPointer()[4]);
}
// Non-const to const:
{
UserPointer<const int64_t>::Reader reader(my_int64_array_ptr.At(3), 1);
const int64_t* ptr = reader.GetPointer();
EXPECT_EQ(654, *ptr);
}
// |UserPointer<>::Writer|:
{
UserPointer<int64_t>::Writer writer(my_int64_array_ptr.At(2), 1);
int64_t* ptr = writer.GetPointer();
*ptr = 1234567890123LL;
writer.Commit();
EXPECT_EQ(1234567890123LL, my_int64_array[2]);
}
// |UserPointer<>::ReaderWriter|:
{
UserPointer<int32_t>::ReaderWriter reader_writer(my_int32_ptr, 1);
int32_t* ptr = reader_writer.GetPointer();
EXPECT_EQ(-456, *ptr);
*ptr = 42;
reader_writer.Commit();
EXPECT_EQ(42, my_int32);
}
// |UserPointer<>::ReinterpretCast<>|:
// (This assumes little-endian, etc.)
{
UserPointer<const char> other(my_int32_ptr.ReinterpretCast<char>());
EXPECT_EQ(42, other.Get());
EXPECT_EQ(0, other.At(1).Get());
EXPECT_EQ(0, other.At(2).Get());
EXPECT_EQ(0, other.At(3).Get());
}
// |UserPointer<>::GetPointerValue()|:
{
UserPointer<int32_t> other;
EXPECT_EQ(0u, other.GetPointerValue());
other = my_int32_ptr;
EXPECT_EQ(reinterpret_cast<uintptr_t>(&my_int32), other.GetPointerValue());
}
}
TEST(MemoryTest, InvalidDeath) {
const char kMemoryCheckFailedRegex[] = "Check failed";
// Note: |Check...()| are defined to be "best effort" checks (and may always
// return true). Thus these tests of invalid cases only reflect the current
// implementation.
// These tests depend on |int32_t| and |int64_t| having nontrivial alignment.
static_assert(MOJO_ALIGNOF(int32_t) != 1,
"int32_t does not require nontrivial alignment");
static_assert(MOJO_ALIGNOF(int64_t) != 1,
"int64_t does not require nontrivial alignment");
// Null:
{
UserPointer<char> ptr(nullptr);
char array[5] = {};
EXPECT_DEATH_IF_SUPPORTED(ptr.Check(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Get(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Put('x'), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(array, 5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.PutArray(array, 5), kMemoryCheckFailedRegex);
}
{
UserPointer<int32_t> ptr(nullptr);
int32_t array[5] = {};
EXPECT_DEATH_IF_SUPPORTED(ptr.Check(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Get(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Put(123), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(array, 5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.PutArray(array, 5), kMemoryCheckFailedRegex);
}
{
UserPointer<int64_t> ptr(nullptr);
int64_t array[5] = {};
EXPECT_DEATH_IF_SUPPORTED(ptr.Check(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Get(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Put(123), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(array, 5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.PutArray(array, 5), kMemoryCheckFailedRegex);
}
// Also check a const pointer:
{
UserPointer<const int32_t> ptr(nullptr);
int32_t array[5] = {};
EXPECT_DEATH_IF_SUPPORTED(ptr.Check(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Get(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(array, 5), kMemoryCheckFailedRegex);
}
// Unaligned:
{
int32_t x[10];
UserPointer<int32_t> ptr(
reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(x) + 1));
int32_t array[5] = {};
EXPECT_DEATH_IF_SUPPORTED(ptr.Check(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Get(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Put(123), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(array, 5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.PutArray(array, 5), kMemoryCheckFailedRegex);
}
{
int64_t x[10];
UserPointer<int64_t> ptr(
reinterpret_cast<int64_t*>(reinterpret_cast<uintptr_t>(x) + 1));
int64_t array[5] = {};
EXPECT_DEATH_IF_SUPPORTED(ptr.Check(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Get(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Put(123), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(array, 5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.PutArray(array, 5), kMemoryCheckFailedRegex);
}
// Also check a const pointer:
{
int32_t x[10];
UserPointer<const int32_t> ptr(
reinterpret_cast<const int32_t*>(reinterpret_cast<uintptr_t>(x) + 1));
int32_t array[5] = {};
EXPECT_DEATH_IF_SUPPORTED(ptr.Check(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.Get(), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(5), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(array, 5), kMemoryCheckFailedRegex);
}
// Count too big:
{
const size_t kTooBig =
std::numeric_limits<size_t>::max() / sizeof(int32_t) + 1;
int32_t x = 0;
UserPointer<int32_t> ptr(&x);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(kTooBig), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(&x, kTooBig),
kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.PutArray(&x, kTooBig),
kMemoryCheckFailedRegex);
}
{
const size_t kTooBig =
std::numeric_limits<size_t>::max() / sizeof(int64_t) + 1;
int64_t x = 0;
UserPointer<int64_t> ptr(&x);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(kTooBig), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(&x, kTooBig),
kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.PutArray(&x, kTooBig),
kMemoryCheckFailedRegex);
}
// Also check a const pointer:
{
const size_t kTooBig =
std::numeric_limits<size_t>::max() / sizeof(int32_t) + 1;
int32_t x = 0;
UserPointer<const int32_t> ptr(&x);
EXPECT_DEATH_IF_SUPPORTED(ptr.CheckArray(kTooBig), kMemoryCheckFailedRegex);
EXPECT_DEATH_IF_SUPPORTED(ptr.GetArray(&x, kTooBig),
kMemoryCheckFailedRegex);
}
// TODO(vtl): Tests for |UserPointer{Reader,Writer,ReaderWriter}|.
}
} // namespace
} // namespace system
} // namespace mojo