blob: 321b22e9ee214acae5b07a60210416f7076f4729 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO(vtl): I currently potentially overflow in doing index calculations.
// E.g., |start_index_| and |current_num_bytes_| fit into a |uint32_t|, but
// their sum may not. This is bad and poses a security risk. (We're currently
// saved by the limit on capacity -- the maximum size of the buffer, checked in
// |DataPipe::ValidateOptions()|, is currently sufficiently small.)
#include "mojo/edk/system/local_data_pipe_impl.h"
#include <string.h>
#include <algorithm>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "mojo/edk/system/channel.h"
#include "mojo/edk/system/configuration.h"
#include "mojo/edk/system/data_pipe.h"
#include "mojo/edk/system/message_in_transit.h"
#include "mojo/edk/system/message_in_transit_queue.h"
#include "mojo/edk/system/remote_consumer_data_pipe_impl.h"
#include "mojo/edk/system/remote_producer_data_pipe_impl.h"
namespace mojo {
namespace system {
// Assert some things about some things defined in data_pipe_impl.h (don't make
// the assertions there, to avoid including message_in_transit.h).
static_assert(MOJO_ALIGNOF(SerializedDataPipeConsumerDispatcher) ==
MessageInTransit::kMessageAlignment,
"Wrong alignment");
static_assert(sizeof(SerializedDataPipeConsumerDispatcher) %
MessageInTransit::kMessageAlignment ==
0,
"Wrong size");
LocalDataPipeImpl::LocalDataPipeImpl()
: start_index_(0), current_num_bytes_(0) {
// Note: |buffer_| is lazily allocated, since a common case will be that one
// of the handles is immediately passed off to another process.
}
LocalDataPipeImpl::~LocalDataPipeImpl() {
}
void LocalDataPipeImpl::ProducerClose() {
// If the consumer is still open and we still have data, we have to keep the
// buffer around. Currently, we won't free it even if it empties later. (We
// could do this -- requiring a check on every read -- but that seems to be
// optimizing for the uncommon case.)
if (!consumer_open() || !current_num_bytes_) {
// Note: There can only be a two-phase *read* (by the consumer) if we still
// have data.
DCHECK(!consumer_in_two_phase_read());
DestroyBuffer();
}
}
MojoResult LocalDataPipeImpl::ProducerWriteData(
UserPointer<const void> elements,
UserPointer<uint32_t> num_bytes,
uint32_t max_num_bytes_to_write,
uint32_t min_num_bytes_to_write) {
DCHECK_EQ(max_num_bytes_to_write % element_num_bytes(), 0u);
DCHECK_EQ(min_num_bytes_to_write % element_num_bytes(), 0u);
DCHECK_GT(max_num_bytes_to_write, 0u);
DCHECK_GE(max_num_bytes_to_write, min_num_bytes_to_write);
DCHECK(consumer_open());
if (min_num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) {
// Don't return "should wait" since you can't wait for a specified amount
// of data.
return MOJO_RESULT_OUT_OF_RANGE;
}
size_t num_bytes_to_write =
std::min(static_cast<size_t>(max_num_bytes_to_write),
capacity_num_bytes() - current_num_bytes_);
if (num_bytes_to_write == 0)
return MOJO_RESULT_SHOULD_WAIT;
// The amount we can write in our first copy.
size_t num_bytes_to_write_first =
std::min(num_bytes_to_write, GetMaxNumBytesToWrite());
// Do the first (and possibly only) copy.
size_t first_write_index =
(start_index_ + current_num_bytes_) % capacity_num_bytes();
EnsureBuffer();
elements.GetArray(buffer_.get() + first_write_index,
num_bytes_to_write_first);
if (num_bytes_to_write_first < num_bytes_to_write) {
// The "second write index" is zero.
elements.At(num_bytes_to_write_first)
.GetArray(buffer_.get(), num_bytes_to_write - num_bytes_to_write_first);
}
current_num_bytes_ += num_bytes_to_write;
DCHECK_LE(current_num_bytes_, capacity_num_bytes());
num_bytes.Put(static_cast<uint32_t>(num_bytes_to_write));
return MOJO_RESULT_OK;
}
MojoResult LocalDataPipeImpl::ProducerBeginWriteData(
UserPointer<void*> buffer,
UserPointer<uint32_t> buffer_num_bytes,
uint32_t min_num_bytes_to_write) {
DCHECK(consumer_open());
// The index we need to start writing at.
size_t write_index =
(start_index_ + current_num_bytes_) % capacity_num_bytes();
size_t max_num_bytes_to_write = GetMaxNumBytesToWrite();
if (min_num_bytes_to_write > max_num_bytes_to_write) {
// Don't return "should wait" since you can't wait for a specified amount
// of data.
return MOJO_RESULT_OUT_OF_RANGE;
}
// Don't go into a two-phase write if there's no room.
if (max_num_bytes_to_write == 0)
return MOJO_RESULT_SHOULD_WAIT;
EnsureBuffer();
buffer.Put(buffer_.get() + write_index);
buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_write));
set_producer_two_phase_max_num_bytes_written(
static_cast<uint32_t>(max_num_bytes_to_write));
return MOJO_RESULT_OK;
}
MojoResult LocalDataPipeImpl::ProducerEndWriteData(uint32_t num_bytes_written) {
DCHECK_LE(num_bytes_written, producer_two_phase_max_num_bytes_written());
DCHECK_EQ(num_bytes_written % element_num_bytes(), 0u);
current_num_bytes_ += num_bytes_written;
DCHECK_LE(current_num_bytes_, capacity_num_bytes());
set_producer_two_phase_max_num_bytes_written(0);
return MOJO_RESULT_OK;
}
HandleSignalsState LocalDataPipeImpl::ProducerGetHandleSignalsState() const {
HandleSignalsState rv;
if (consumer_open()) {
if (current_num_bytes_ < capacity_num_bytes() &&
!producer_in_two_phase_write())
rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_WRITABLE;
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_WRITABLE;
} else {
rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
}
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
return rv;
}
void LocalDataPipeImpl::ProducerStartSerialize(Channel* channel,
size_t* max_size,
size_t* max_platform_handles) {
*max_size = sizeof(SerializedDataPipeProducerDispatcher) +
channel->GetSerializedEndpointSize();
*max_platform_handles = 0;
}
bool LocalDataPipeImpl::ProducerEndSerialize(
Channel* channel,
void* destination,
size_t* actual_size,
embedder::PlatformHandleVector* platform_handles) {
SerializedDataPipeProducerDispatcher* s =
static_cast<SerializedDataPipeProducerDispatcher*>(destination);
s->validated_options = validated_options();
void* destination_for_endpoint = static_cast<char*>(destination) +
sizeof(SerializedDataPipeProducerDispatcher);
if (!consumer_open()) {
// Case 1: The consumer is closed.
s->consumer_num_bytes = static_cast<size_t>(-1);
*actual_size = sizeof(SerializedDataPipeProducerDispatcher);
return true;
}
// Case 2: The consumer isn't closed. We'll replace ourselves with a
// |RemoteProducerDataPipeImpl|.
s->consumer_num_bytes = current_num_bytes_;
// Note: We don't use |port|.
scoped_refptr<ChannelEndpoint> channel_endpoint =
channel->SerializeEndpointWithLocalPeer(destination_for_endpoint, nullptr,
owner(), 0);
// Note: Keep |*this| alive until the end of this method, to make things
// slightly easier on ourselves.
scoped_ptr<DataPipeImpl> self(owner()->ReplaceImplNoLock(make_scoped_ptr(
new RemoteProducerDataPipeImpl(channel_endpoint.get(), buffer_.Pass(),
start_index_, current_num_bytes_))));
*actual_size = sizeof(SerializedDataPipeProducerDispatcher) +
channel->GetSerializedEndpointSize();
return true;
}
void LocalDataPipeImpl::ConsumerClose() {
// If the producer is around and in a two-phase write, we have to keep the
// buffer around. (We then don't free it until the producer is closed. This
// could be rectified, but again seems like optimizing for the uncommon case.)
if (!producer_open() || !producer_in_two_phase_write())
DestroyBuffer();
current_num_bytes_ = 0;
}
MojoResult LocalDataPipeImpl::ConsumerReadData(UserPointer<void> elements,
UserPointer<uint32_t> num_bytes,
uint32_t max_num_bytes_to_read,
uint32_t min_num_bytes_to_read,
bool peek) {
DCHECK_EQ(max_num_bytes_to_read % element_num_bytes(), 0u);
DCHECK_EQ(min_num_bytes_to_read % element_num_bytes(), 0u);
DCHECK_GT(max_num_bytes_to_read, 0u);
if (min_num_bytes_to_read > current_num_bytes_) {
// Don't return "should wait" since you can't wait for a specified amount of
// data.
return producer_open() ? MOJO_RESULT_OUT_OF_RANGE
: MOJO_RESULT_FAILED_PRECONDITION;
}
size_t num_bytes_to_read =
std::min(static_cast<size_t>(max_num_bytes_to_read), current_num_bytes_);
if (num_bytes_to_read == 0) {
return producer_open() ? MOJO_RESULT_SHOULD_WAIT
: MOJO_RESULT_FAILED_PRECONDITION;
}
// The amount we can read in our first copy.
size_t num_bytes_to_read_first =
std::min(num_bytes_to_read, GetMaxNumBytesToRead());
elements.PutArray(buffer_.get() + start_index_, num_bytes_to_read_first);
if (num_bytes_to_read_first < num_bytes_to_read) {
// The "second read index" is zero.
elements.At(num_bytes_to_read_first)
.PutArray(buffer_.get(), num_bytes_to_read - num_bytes_to_read_first);
}
if (!peek)
MarkDataAsConsumed(num_bytes_to_read);
num_bytes.Put(static_cast<uint32_t>(num_bytes_to_read));
return MOJO_RESULT_OK;
}
MojoResult LocalDataPipeImpl::ConsumerDiscardData(
UserPointer<uint32_t> num_bytes,
uint32_t max_num_bytes_to_discard,
uint32_t min_num_bytes_to_discard) {
DCHECK_EQ(max_num_bytes_to_discard % element_num_bytes(), 0u);
DCHECK_EQ(min_num_bytes_to_discard % element_num_bytes(), 0u);
DCHECK_GT(max_num_bytes_to_discard, 0u);
if (min_num_bytes_to_discard > current_num_bytes_) {
// Don't return "should wait" since you can't wait for a specified amount of
// data.
return producer_open() ? MOJO_RESULT_OUT_OF_RANGE
: MOJO_RESULT_FAILED_PRECONDITION;
}
// Be consistent with other operations; error if no data available.
if (current_num_bytes_ == 0) {
return producer_open() ? MOJO_RESULT_SHOULD_WAIT
: MOJO_RESULT_FAILED_PRECONDITION;
}
size_t num_bytes_to_discard = std::min(
static_cast<size_t>(max_num_bytes_to_discard), current_num_bytes_);
MarkDataAsConsumed(num_bytes_to_discard);
num_bytes.Put(static_cast<uint32_t>(num_bytes_to_discard));
return MOJO_RESULT_OK;
}
MojoResult LocalDataPipeImpl::ConsumerQueryData(
UserPointer<uint32_t> num_bytes) {
// Note: This cast is safe, since the capacity fits into a |uint32_t|.
num_bytes.Put(static_cast<uint32_t>(current_num_bytes_));
return MOJO_RESULT_OK;
}
MojoResult LocalDataPipeImpl::ConsumerBeginReadData(
UserPointer<const void*> buffer,
UserPointer<uint32_t> buffer_num_bytes,
uint32_t min_num_bytes_to_read) {
size_t max_num_bytes_to_read = GetMaxNumBytesToRead();
if (min_num_bytes_to_read > max_num_bytes_to_read) {
// Don't return "should wait" since you can't wait for a specified amount of
// data.
return producer_open() ? MOJO_RESULT_OUT_OF_RANGE
: MOJO_RESULT_FAILED_PRECONDITION;
}
// Don't go into a two-phase read if there's no data.
if (max_num_bytes_to_read == 0) {
return producer_open() ? MOJO_RESULT_SHOULD_WAIT
: MOJO_RESULT_FAILED_PRECONDITION;
}
buffer.Put(buffer_.get() + start_index_);
buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_read));
set_consumer_two_phase_max_num_bytes_read(
static_cast<uint32_t>(max_num_bytes_to_read));
return MOJO_RESULT_OK;
}
MojoResult LocalDataPipeImpl::ConsumerEndReadData(uint32_t num_bytes_read) {
DCHECK_LE(num_bytes_read, consumer_two_phase_max_num_bytes_read());
DCHECK_EQ(num_bytes_read % element_num_bytes(), 0u);
DCHECK_LE(start_index_ + num_bytes_read, capacity_num_bytes());
MarkDataAsConsumed(num_bytes_read);
set_consumer_two_phase_max_num_bytes_read(0);
return MOJO_RESULT_OK;
}
HandleSignalsState LocalDataPipeImpl::ConsumerGetHandleSignalsState() const {
HandleSignalsState rv;
if (current_num_bytes_ > 0) {
if (!consumer_in_two_phase_read())
rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_READABLE;
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
} else if (producer_open()) {
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
}
if (!producer_open())
rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
return rv;
}
void LocalDataPipeImpl::ConsumerStartSerialize(Channel* channel,
size_t* max_size,
size_t* max_platform_handles) {
*max_size = sizeof(SerializedDataPipeConsumerDispatcher) +
channel->GetSerializedEndpointSize();
*max_platform_handles = 0;
}
bool LocalDataPipeImpl::ConsumerEndSerialize(
Channel* channel,
void* destination,
size_t* actual_size,
embedder::PlatformHandleVector* platform_handles) {
SerializedDataPipeConsumerDispatcher* s =
static_cast<SerializedDataPipeConsumerDispatcher*>(destination);
s->validated_options = validated_options();
void* destination_for_endpoint = static_cast<char*>(destination) +
sizeof(SerializedDataPipeConsumerDispatcher);
size_t old_num_bytes = current_num_bytes_;
MessageInTransitQueue message_queue;
ConvertDataToMessages(buffer_.get(), &start_index_, &current_num_bytes_,
&message_queue);
start_index_ = 0;
current_num_bytes_ = 0;
if (!producer_open()) {
// Case 1: The producer is closed.
channel->SerializeEndpointWithClosedPeer(destination_for_endpoint,
&message_queue);
*actual_size = sizeof(SerializedDataPipeConsumerDispatcher) +
channel->GetSerializedEndpointSize();
return true;
}
// Case 2: The producer isn't closed. We'll replace ourselves with a
// |RemoteConsumerDataPipeImpl|.
// Note: We don't use |port|.
scoped_refptr<ChannelEndpoint> channel_endpoint =
channel->SerializeEndpointWithLocalPeer(destination_for_endpoint,
&message_queue, owner(), 0);
// Note: Keep |*this| alive until the end of this method, to make things
// slightly easier on ourselves.
scoped_ptr<DataPipeImpl> self(owner()->ReplaceImplNoLock(make_scoped_ptr(
new RemoteConsumerDataPipeImpl(channel_endpoint.get(), old_num_bytes))));
*actual_size = sizeof(SerializedDataPipeConsumerDispatcher) +
channel->GetSerializedEndpointSize();
return true;
}
bool LocalDataPipeImpl::OnReadMessage(unsigned /*port*/,
MessageInTransit* /*message*/) {
NOTREACHED();
return false;
}
void LocalDataPipeImpl::OnDetachFromChannel(unsigned /*port*/) {
NOTREACHED();
}
void LocalDataPipeImpl::EnsureBuffer() {
DCHECK(producer_open());
if (buffer_)
return;
buffer_.reset(static_cast<char*>(
base::AlignedAlloc(capacity_num_bytes(),
GetConfiguration().data_pipe_buffer_alignment_bytes)));
}
void LocalDataPipeImpl::DestroyBuffer() {
#ifndef NDEBUG
// Scribble on the buffer to help detect use-after-frees. (This also helps the
// unit test detect certain bugs without needing ASAN or similar.)
if (buffer_)
memset(buffer_.get(), 0xcd, capacity_num_bytes());
#endif
buffer_.reset();
}
size_t LocalDataPipeImpl::GetMaxNumBytesToWrite() {
size_t next_index = start_index_ + current_num_bytes_;
if (next_index >= capacity_num_bytes()) {
next_index %= capacity_num_bytes();
DCHECK_GE(start_index_, next_index);
DCHECK_EQ(start_index_ - next_index,
capacity_num_bytes() - current_num_bytes_);
return start_index_ - next_index;
}
return capacity_num_bytes() - next_index;
}
size_t LocalDataPipeImpl::GetMaxNumBytesToRead() {
if (start_index_ + current_num_bytes_ > capacity_num_bytes())
return capacity_num_bytes() - start_index_;
return current_num_bytes_;
}
void LocalDataPipeImpl::MarkDataAsConsumed(size_t num_bytes) {
DCHECK_LE(num_bytes, current_num_bytes_);
start_index_ += num_bytes;
start_index_ %= capacity_num_bytes();
current_num_bytes_ -= num_bytes;
}
} // namespace system
} // namespace mojo