blob: 7c1007615588b2f42de97656138366a57f4d0701 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// ignore_for_file: constant_identifier_names
// Conditional import in `int64.dart` confuses analyzer.
// ignore_for_file: invalid_override
import 'int32.dart';
import 'intx.dart';
import 'utilities.dart' as u;
class Int64 implements IntX {
// A 64-bit integer is represented internally as three non-negative
// integers, storing the 22 low, 22 middle, and 20 high bits of the
// 64-bit value. _l (low) and _m (middle) are in the range
// [0, 2^22 - 1] and _h (high) is in the range [0, 2^20 - 1].
//
// The values being assigned to _l, _m and _h in initialization are masked to
// force them into the above ranges. Sometimes we know that the value is a
// small non-negative integer but the dart2js compiler can't infer that, so a
// few of the masking operations are not needed for correctness but are
// helpful for dart2js code quality.
final int _l, _m, _h;
// Note: several functions require _BITS == 22 -- do not change this value.
static const int _BITS = 22;
static const int _BITS01 = 44; // 2 * _BITS
static const int _BITS2 = 20; // 64 - _BITS01
static const int _MASK = 4194303; // (1 << _BITS) - 1
static const int _MASK2 = 1048575; // (1 << _BITS2) - 1
static const int _SIGN_BIT = 19; // _BITS2 - 1
static const int _SIGN_BIT_MASK = 1 << _SIGN_BIT;
static const Int64 MAX_VALUE = Int64._bits(_MASK, _MASK, _MASK2 >> 1);
static const Int64 MIN_VALUE = Int64._bits(0, 0, _SIGN_BIT_MASK);
static const Int64 ZERO = Int64._bits(0, 0, 0);
static const Int64 ONE = Int64._bits(1, 0, 0);
static const Int64 TWO = Int64._bits(2, 0, 0);
/// Constructs an [Int64] with a given bitwise representation. No
/// validation is performed.
const Int64._bits(this._l, this._m, this._h);
static Int64 parseInt(String source) => _parseRadix(source, 10, true)!;
static Int64? tryParseInt(String source) => _parseRadix(source, 10, false);
static Int64 parseRadix(String source, int radix) =>
_parseRadix(source, u.validateRadix(radix), true)!;
static Int64? tryParseRadix(String source, int radix) =>
_parseRadix(source, u.validateRadix(radix), false);
static Int64 parseHex(String source) => _parseRadix(source, 16, true)!;
static Int64? tryParseHex(String source) => _parseRadix(source, 16, false);
static Int64? _parseRadix(String s, int radix, bool throwOnError) {
var i = 0;
var negative = false;
if (s.startsWith('-')) {
negative = true;
i++;
}
if (i >= s.length) {
if (!throwOnError) return null;
throw FormatException('No digits', s, i);
}
var d0 = 0, d1 = 0, d2 = 0; // low, middle, high components.
for (; i < s.length; i++) {
final c = s.codeUnitAt(i);
final digit = u.decodeDigit(c);
if (digit < radix) {
// [radix] and [digit] are at most 6 bits, component is 22, so we can
// multiply and add within 30 bit temporary values.
d0 = d0 * radix + digit;
var carry = d0 >> _BITS;
d0 = _MASK & d0;
d1 = d1 * radix + carry;
carry = d1 >> _BITS;
d1 = _MASK & d1;
d2 = d2 * radix + carry;
d2 = _MASK2 & d2;
} else {
if (!throwOnError) return null;
throw FormatException('Not radix digit', s, i);
}
}
if (negative) return _negate(d0, d1, d2);
return Int64._masked(d0, d1, d2);
}
factory Int64([int value = 0]) {
var v0 = 0, v1 = 0, v2 = 0;
var negative = false;
if (value < 0) {
negative = true;
value = -value;
}
// Avoid using bitwise operations that in JavaScript coerce their input to
// 32 bits.
v2 = value ~/ 17592186044416; // 2^44
value -= v2 * 17592186044416;
v1 = value ~/ 4194304; // 2^22
value -= v1 * 4194304;
v0 = value;
return negative
? Int64._negate(_MASK & v0, _MASK & v1, _MASK2 & v2)
: Int64._masked(v0, v1, v2);
}
factory Int64.fromBytes(List<int> bytes) {
// 20 bits into top, 22 into middle and bottom.
var split1 = bytes[5] & 0xFF;
var high =
((bytes[7] & 0xFF) << 12) | ((bytes[6] & 0xFF) << 4) | (split1 >> 4);
var split2 = bytes[2] & 0xFF;
var middle = (split1 << 18) |
((bytes[4] & 0xFF) << 10) |
((bytes[3] & 0xFF) << 2) |
(split2 >> 6);
var low = (split2 << 16) | ((bytes[1] & 0xFF) << 8) | (bytes[0] & 0xFF);
// Top bits from above will be masked off here.
return Int64._masked(low, middle, high);
}
factory Int64.fromBytesBigEndian(List<int> bytes) {
var split1 = bytes[2] & 0xFF;
var high =
((bytes[0] & 0xFF) << 12) | ((bytes[1] & 0xFF) << 4) | (split1 >> 4);
var split2 = bytes[5] & 0xFF;
var middle = (split1 << 18) |
((bytes[3] & 0xFF) << 10) |
((bytes[4] & 0xFF) << 2) |
(split2 >> 6);
var low = (split2 << 16) | ((bytes[6] & 0xFF) << 8) | (bytes[7] & 0xFF);
// Top bits from above will be masked off here.
return Int64._masked(low, middle, high);
}
factory Int64.fromInts(int top, int bottom) {
top &= 0xffffffff;
bottom &= 0xffffffff;
final d0 = _MASK & bottom;
final d1 = ((0xfff & top) << 10) | (0x3ff & (bottom >> _BITS));
final d2 = _MASK2 & (top >> 12);
return Int64._masked(d0, d1, d2);
}
// Returns the [Int64] representation of the specified value. Throws
// [ArgumentError] for non-integer arguments.
static Int64 _promote(dynamic value) {
if (value is Int64) {
return value;
} else if (value is int) {
return Int64(value);
} else if (value is Int32) {
return value.toInt64() as Int64;
}
throw ArgumentError.value(value, 'other', 'not an int, Int32 or Int64');
}
@override
Int64 operator +(Object other) {
final o = _promote(other);
final sum0 = _l + o._l;
final sum1 = _m + o._m + (sum0 >> _BITS);
final sum2 = _h + o._h + (sum1 >> _BITS);
return Int64._masked(sum0, sum1, sum2);
}
@override
Int64 operator -(Object other) {
final o = _promote(other);
return _sub(_l, _m, _h, o._l, o._m, o._h);
}
@override
Int64 operator -() => _negate(_l, _m, _h);
@override
Int64 operator *(Object other) {
final o = _promote(other);
// Grab 13-bit chunks.
final a0 = _l & 0x1fff;
final a1 = (_l >> 13) | ((_m & 0xf) << 9);
final a2 = (_m >> 4) & 0x1fff;
final a3 = (_m >> 17) | ((_h & 0xff) << 5);
final a4 = (_h & 0xfff00) >> 8;
final b0 = o._l & 0x1fff;
final b1 = (o._l >> 13) | ((o._m & 0xf) << 9);
final b2 = (o._m >> 4) & 0x1fff;
final b3 = (o._m >> 17) | ((o._h & 0xff) << 5);
final b4 = (o._h & 0xfff00) >> 8;
// Compute partial products.
// Optimization: if b is small, avoid multiplying by parts that are 0.
final p0 = a0 * b0; // << 0
var p1 = a1 * b0; // << 13
var p2 = a2 * b0; // << 26
var p3 = a3 * b0; // << 39
var p4 = a4 * b0; // << 52
if (b1 != 0) {
p1 += a0 * b1;
p2 += a1 * b1;
p3 += a2 * b1;
p4 += a3 * b1;
}
if (b2 != 0) {
p2 += a0 * b2;
p3 += a1 * b2;
p4 += a2 * b2;
}
if (b3 != 0) {
p3 += a0 * b3;
p4 += a1 * b3;
}
if (b4 != 0) {
p4 += a0 * b4;
}
// Accumulate into 22-bit chunks:
// .........................................c10|...................c00|
// |....................|..................xxxx|xxxxxxxxxxxxxxxxxxxxxx| p0
// |....................|......................|......................|
// |....................|...................c11|......c01.............|
// |....................|....xxxxxxxxxxxxxxxxxx|xxxxxxxxx.............| p1
// |....................|......................|......................|
// |.................c22|...............c12....|......................|
// |..........xxxxxxxxxx|xxxxxxxxxxxxxxxxxx....|......................| p2
// |....................|......................|......................|
// |.................c23|..c13.................|......................|
// |xxxxxxxxxxxxxxxxxxxx|xxxxx.................|......................| p3
// |....................|......................|......................|
// |.........c24........|......................|......................|
// |xxxxxxxxxxxx........|......................|......................| p4
final c00 = p0 & 0x3fffff;
final c01 = (p1 & 0x1ff) << 13;
final c0 = c00 + c01;
final c10 = p0 >> 22;
final c11 = p1 >> 9;
final c12 = (p2 & 0x3ffff) << 4;
final c13 = (p3 & 0x1f) << 17;
var c1 = c10 + c11 + c12 + c13;
final c22 = p2 >> 18;
final c23 = p3 >> 5;
final c24 = (p4 & 0xfff) << 8;
var c2 = c22 + c23 + c24;
// Propagate high bits from c0 -> c1, c1 -> c2.
c1 += c0 >> _BITS;
c2 += c1 >> _BITS;
return Int64._masked(c0, c1, c2);
}
@override
Int64 operator %(Object other) => _divide(this, other, _RETURN_MOD);
@override
Int64 operator ~/(Object other) => _divide(this, other, _RETURN_DIV);
@override
Int64 remainder(Object other) => _divide(this, other, _RETURN_REM);
@override
Int64 operator &(Object other) {
final o = _promote(other);
final a0 = _l & o._l;
final a1 = _m & o._m;
final a2 = _h & o._h;
return Int64._masked(a0, a1, a2);
}
@override
Int64 operator |(Object other) {
final o = _promote(other);
final a0 = _l | o._l;
final a1 = _m | o._m;
final a2 = _h | o._h;
return Int64._masked(a0, a1, a2);
}
@override
Int64 operator ^(Object other) {
final o = _promote(other);
final a0 = _l ^ o._l;
final a1 = _m ^ o._m;
final a2 = _h ^ o._h;
return Int64._masked(a0, a1, a2);
}
@override
Int64 operator ~() => Int64._masked(~_l, ~_m, ~_h);
@override
Int64 operator <<(int n) {
if (n < 0) {
throw ArgumentError.value(n);
}
if (n >= 64) {
return ZERO;
}
int res0, res1, res2;
if (n < _BITS) {
res0 = _l << n;
res1 = (_m << n) | (_l >> (_BITS - n));
res2 = (_h << n) | (_m >> (_BITS - n));
} else if (n < _BITS01) {
res0 = 0;
res1 = _l << (n - _BITS);
res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n));
} else {
res0 = 0;
res1 = 0;
res2 = _l << (n - _BITS01);
}
return Int64._masked(res0, res1, res2);
}
@override
Int64 operator >>(int n) {
if (n < 0) {
throw ArgumentError.value(n);
}
if (n >= 64) {
return isNegative ? const Int64._bits(_MASK, _MASK, _MASK2) : ZERO;
}
int res0, res1, res2;
// Sign extend h(a).
var a2 = _h;
final negative = (a2 & _SIGN_BIT_MASK) != 0;
if (negative && _MASK > _MASK2) {
// Add extra one bits on the left so the sign gets shifted into the wider
// lower words.
a2 += _MASK - _MASK2;
}
if (n < _BITS) {
res2 = _shiftRight(a2, n);
if (negative) {
res2 |= _MASK2 & ~(_MASK2 >> n);
}
res1 = _shiftRight(_m, n) | (a2 << (_BITS - n));
res0 = _shiftRight(_l, n) | (_m << (_BITS - n));
} else if (n < _BITS01) {
res2 = negative ? _MASK2 : 0;
res1 = _shiftRight(a2, n - _BITS);
if (negative) {
res1 |= _MASK & ~(_MASK >> (n - _BITS));
}
res0 = _shiftRight(_m, n - _BITS) | (a2 << (_BITS01 - n));
} else {
res2 = negative ? _MASK2 : 0;
res1 = negative ? _MASK : 0;
res0 = _shiftRight(a2, n - _BITS01);
if (negative) {
res0 |= _MASK & ~(_MASK >> (n - _BITS01));
}
}
return Int64._masked(res0, res1, res2);
}
@override
Int64 shiftRightUnsigned(int n) {
if (n < 0) {
throw ArgumentError.value(n);
}
if (n >= 64) {
return ZERO;
}
int res0, res1, res2;
final a2 = _MASK2 & _h; // Ensure a2 is positive.
if (n < _BITS) {
res2 = a2 >> n;
res1 = (_m >> n) | (a2 << (_BITS - n));
res0 = (_l >> n) | (_m << (_BITS - n));
} else if (n < _BITS01) {
res2 = 0;
res1 = a2 >> (n - _BITS);
res0 = (_m >> (n - _BITS)) | (_h << (_BITS01 - n));
} else {
res2 = 0;
res1 = 0;
res0 = a2 >> (n - _BITS01);
}
return Int64._masked(res0, res1, res2);
}
@override
bool operator ==(Object other) {
Int64? o;
if (other is Int64) {
o = other;
} else if (other is int) {
if (_h == 0 && _m == 0) return _l == other;
// Since we know one of [_h] or [_m] is non-zero, if [other] fits in the
// low word then it can't be numerically equal.
if ((_MASK & other) == other) return false;
o = Int64(other);
} else if (other is Int32) {
o = other.toInt64() as Int64;
}
if (o != null) {
return _l == o._l && _m == o._m && _h == o._h;
}
return false;
}
@override
int compareTo(Object other) => _compareTo(other);
int _compareTo(Object other) {
final o = _promote(other);
final signa = _h >> (_BITS2 - 1);
final signb = o._h >> (_BITS2 - 1);
if (signa != signb) {
return signa == 0 ? 1 : -1;
}
if (_h > o._h) {
return 1;
} else if (_h < o._h) {
return -1;
}
if (_m > o._m) {
return 1;
} else if (_m < o._m) {
return -1;
}
if (_l > o._l) {
return 1;
} else if (_l < o._l) {
return -1;
}
return 0;
}
@override
bool operator <(Object other) => _compareTo(other) < 0;
@override
bool operator <=(Object other) => _compareTo(other) <= 0;
@override
bool operator >(Object other) => _compareTo(other) > 0;
@override
bool operator >=(Object other) => _compareTo(other) >= 0;
@override
bool get isEven => (_l & 0x1) == 0;
@override
bool get isMaxValue => (_h == _MASK2 >> 1) && _m == _MASK && _l == _MASK;
@override
bool get isMinValue => _h == _SIGN_BIT_MASK && _m == 0 && _l == 0;
@override
bool get isNegative => (_h & _SIGN_BIT_MASK) != 0;
@override
bool get isOdd => (_l & 0x1) == 1;
@override
bool get isZero => _h == 0 && _m == 0 && _l == 0;
@override
int get bitLength {
if (isZero) return 0;
var a0 = _l, a1 = _m, a2 = _h;
if (isNegative) {
a0 = _MASK & ~a0;
a1 = _MASK & ~a1;
a2 = _MASK2 & ~a2;
}
if (a2 != 0) return _BITS01 + a2.bitLength;
if (a1 != 0) return _BITS + a1.bitLength;
return a0.bitLength;
}
@override
int get hashCode {
// TODO(sra): Should we ensure that hashCode values match corresponding int?
// i.e. should `new Int64(x).hashCode == x.hashCode`?
final bottom = ((_m & 0x3ff) << _BITS) | _l;
final top = (_h << 12) | ((_m >> 10) & 0xfff);
return bottom ^ top;
}
@override
Int64 abs() => isNegative ? -this : this;
@override
Int64 clamp(Object lowerLimit, Object upperLimit) {
final lower = _promote(lowerLimit);
final upper = _promote(upperLimit);
if (this < lower) return lower;
if (this > upper) return upper;
return this;
}
@override
int numberOfLeadingZeros() {
var b2 = u.numberOfLeadingZeros(_h);
if (b2 == 32) {
var b1 = u.numberOfLeadingZeros(_m);
if (b1 == 32) {
return u.numberOfLeadingZeros(_l) + 32;
} else {
return b1 + _BITS2 - (32 - _BITS);
}
} else {
return b2 - (32 - _BITS2);
}
}
@override
int numberOfTrailingZeros() {
var zeros = u.numberOfTrailingZeros(_l);
if (zeros < 32) {
return zeros;
}
zeros = u.numberOfTrailingZeros(_m);
if (zeros < 32) {
return _BITS + zeros;
}
zeros = u.numberOfTrailingZeros(_h);
if (zeros < 32) {
return _BITS01 + zeros;
}
// All zeros
return 64;
}
@override
Int64 toSigned(int width) {
if (width < 1 || width > 64) throw RangeError.range(width, 1, 64);
if (width > _BITS01) {
return Int64._masked(_l, _m, _h.toSigned(width - _BITS01));
} else if (width > _BITS) {
final m = _m.toSigned(width - _BITS);
return m.isNegative
? Int64._masked(_l, m, _MASK2)
: Int64._masked(_l, m, 0); // Masking for type inferrer.
} else {
final l = _l.toSigned(width);
return l.isNegative
? Int64._masked(l, _MASK, _MASK2)
: Int64._masked(l, 0, 0); // Masking for type inferrer.
}
}
@override
Int64 toUnsigned(int width) {
if (width < 0 || width > 64) throw RangeError.range(width, 0, 64);
if (width > _BITS01) {
final h = _h.toUnsigned(width - _BITS01);
return Int64._masked(_l, _m, h);
} else if (width > _BITS) {
final m = _m.toUnsigned(width - _BITS);
return Int64._masked(_l, m, 0);
} else {
final l = _l.toUnsigned(width);
return Int64._masked(l, 0, 0);
}
}
@override
List<int> toBytes() {
var result = List<int>.filled(8, 0);
result[0] = _l & 0xff;
result[1] = (_l >> 8) & 0xff;
result[2] = ((_m << 6) & 0xfc) | ((_l >> 16) & 0x3f);
result[3] = (_m >> 2) & 0xff;
result[4] = (_m >> 10) & 0xff;
result[5] = ((_h << 4) & 0xf0) | ((_m >> 18) & 0xf);
result[6] = (_h >> 4) & 0xff;
result[7] = (_h >> 12) & 0xff;
return result;
}
@override
double toDouble() => toInt().toDouble();
@override
int toInt() {
var l = _l;
var m = _m;
var h = _h;
// In the sum we add least significant to most significant so that in
// JavaScript double arithmetic rounding occurs on only the last addition.
if ((_h & _SIGN_BIT_MASK) != 0) {
l = _MASK & ~_l;
m = _MASK & ~_m;
h = _MASK2 & ~_h;
return -((1 + l) + (4194304 * m) + (17592186044416 * h));
} else {
return l + (4194304 * m) + (17592186044416 * h);
}
}
@override
Int32 toInt32() => Int32(((_m & 0x3ff) << _BITS) | _l);
@override
Int64 toInt64() => this;
@override
String toString() => _toRadixString(10);
@override
String toHexString() {
if (isZero) return '0';
var x = this;
var hexStr = '';
while (!x.isZero) {
var digit = x._l & 0xf;
hexStr = '${_hexDigit(digit)}$hexStr';
x = x.shiftRightUnsigned(4);
}
return hexStr;
}
@pragma('dart2js:noInline')
String toStringUnsigned() => _toRadixStringUnsigned(10, _l, _m, _h, '');
@pragma('dart2js:noInline')
String toRadixStringUnsigned(int radix) =>
_toRadixStringUnsigned(u.validateRadix(radix), _l, _m, _h, '');
@override
String toRadixString(int radix) => _toRadixString(u.validateRadix(radix));
String _toRadixString(int radix) {
var d0 = _l;
var d1 = _m;
var d2 = _h;
var sign = '';
if ((d2 & _SIGN_BIT_MASK) != 0) {
sign = '-';
// Negate in-place.
d0 = 0 - d0;
var borrow = (d0 >> _BITS) & 1;
d0 &= _MASK;
d1 = 0 - d1 - borrow;
borrow = (d1 >> _BITS) & 1;
d1 &= _MASK;
d2 = 0 - d2 - borrow;
d2 &= _MASK2;
// d2, d1, d0 now are an unsigned 64 bit integer for MIN_VALUE and an
// unsigned 63 bit integer for other values.
}
return _toRadixStringUnsigned(radix, d0, d1, d2, sign);
}
static String _toRadixStringUnsigned(
int radix, int d0, int d1, int d2, String sign) {
if (d0 == 0 && d1 == 0 && d2 == 0) return '0';
// Rearrange components into five components where all but the most
// significant are 10 bits wide.
//
// d4, d3, d4, d1, d0: 24 + 10 + 10 + 10 + 10 bits
//
// The choice of 10 bits allows a remainder of 20 bits to be scaled by 10
// bits and added during division while keeping all intermediate values
// within 30 bits (unsigned small integer range for 32 bit implementations
// of Dart VM and V8).
//
// 6 6 5 4 3 2 1
// 3210987654321098765432109876543210987654321098765432109876543210
// [--------d2--------][---------d1---------][---------d0---------]
// -->
// [----------d4----------][---d3---][---d2---][---d1---][---d0---]
var d4 = (d2 << 4) | (d1 >> 18);
var d3 = (d1 >> 8) & 0x3ff;
d2 = ((d1 << 2) | (d0 >> 20)) & 0x3ff;
d1 = (d0 >> 10) & 0x3ff;
d0 = d0 & 0x3ff;
final fatRadix = _fatRadixTable[radix];
// Generate chunks of digits. In radix 10, generate 6 digits per chunk.
//
// This loop generates at most 3 chunks, so we store the chunks in locals
// rather than a list. We are trying to generate digits 20 bits at a time
// until we have only 30 bits left. 20 + 20 + 30 > 64 would imply that we
// need only two chunks, but radix values 17-19 and 33-36 generate only 15
// or 16 bits per iteration, so sometimes the third chunk is needed.
var chunk1 = '', chunk2 = '', chunk3 = '';
while (!(d4 == 0 && d3 == 0)) {
var q = d4 ~/ fatRadix;
var r = d4 - q * fatRadix;
d4 = q;
d3 += r << 10;
q = d3 ~/ fatRadix;
r = d3 - q * fatRadix;
d3 = q;
d2 += r << 10;
q = d2 ~/ fatRadix;
r = d2 - q * fatRadix;
d2 = q;
d1 += r << 10;
q = d1 ~/ fatRadix;
r = d1 - q * fatRadix;
d1 = q;
d0 += r << 10;
q = d0 ~/ fatRadix;
r = d0 - q * fatRadix;
d0 = q;
assert(chunk3 == '');
chunk3 = chunk2;
chunk2 = chunk1;
// Adding [fatRadix] Forces an extra digit which we discard to get a fixed
// width. E.g. (1000000 + 123) -> "1000123" -> "000123". An alternative
// would be to pad to the left with zeroes.
chunk1 = (fatRadix + r).toRadixString(radix).substring(1);
}
final residue = (d2 << 20) + (d1 << 10) + d0;
final leadingDigits = residue == 0 ? '' : residue.toRadixString(radix);
return '$sign$leadingDigits$chunk1$chunk2$chunk3';
}
// Table of 'fat' radix values. Each entry for index `i` is the largest power
// of `i` whose remainder fits in 20 bits.
static const _fatRadixTable = <int>[
0,
0,
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2 *
2,
3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3,
4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
6 * 6 * 6 * 6 * 6 * 6 * 6,
7 * 7 * 7 * 7 * 7 * 7 * 7,
8 * 8 * 8 * 8 * 8 * 8,
9 * 9 * 9 * 9 * 9 * 9,
10 * 10 * 10 * 10 * 10 * 10,
11 * 11 * 11 * 11 * 11,
12 * 12 * 12 * 12 * 12,
13 * 13 * 13 * 13 * 13,
14 * 14 * 14 * 14 * 14,
15 * 15 * 15 * 15 * 15,
16 * 16 * 16 * 16 * 16,
17 * 17 * 17 * 17,
18 * 18 * 18 * 18,
19 * 19 * 19 * 19,
20 * 20 * 20 * 20,
21 * 21 * 21 * 21,
22 * 22 * 22 * 22,
23 * 23 * 23 * 23,
24 * 24 * 24 * 24,
25 * 25 * 25 * 25,
26 * 26 * 26 * 26,
27 * 27 * 27 * 27,
28 * 28 * 28 * 28,
29 * 29 * 29 * 29,
30 * 30 * 30 * 30,
31 * 31 * 31 * 31,
32 * 32 * 32 * 32,
33 * 33 * 33,
34 * 34 * 34,
35 * 35 * 35,
36 * 36 * 36
];
String toDebugString() => 'Int64[_l=$_l, _m=$_m, _h=$_h]';
static Int64 _masked(int low, int medium, int high) =>
Int64._bits(_MASK & low, _MASK & medium, _MASK2 & high);
static Int64 _sub(int a0, int a1, int a2, int b0, int b1, int b2) {
final diff0 = a0 - b0;
final diff1 = a1 - b1 - ((diff0 >> _BITS) & 1);
final diff2 = a2 - b2 - ((diff1 >> _BITS) & 1);
return _masked(diff0, diff1, diff2);
}
static Int64 _negate(int b0, int b1, int b2) => _sub(0, 0, 0, b0, b1, b2);
String _hexDigit(int digit) => '0123456789ABCDEF'[digit];
// Work around dart2js bugs with negative arguments to '>>' operator.
static int _shiftRight(int x, int n) {
if (x >= 0) {
return x >> n;
} else {
var shifted = x >> n;
if (shifted >= 0x80000000) {
shifted -= 4294967296;
}
return shifted;
}
}
// Implementation of '~/', '%' and 'remainder'.
static Int64 _divide(Int64 a, dynamic other, int what) {
var b = _promote(other);
if (b.isZero) {
throw UnsupportedError('Division by zero');
}
if (a.isZero) return ZERO;
final aNeg = a.isNegative;
final bNeg = b.isNegative;
a = a.abs();
b = b.abs();
final a0 = a._l;
final a1 = a._m;
final a2 = a._h;
final b0 = b._l;
final b1 = b._m;
final b2 = b._h;
return _divideHelper(a0, a1, a2, aNeg, b0, b1, b2, bNeg, what);
}
static const _RETURN_DIV = 1;
static const _RETURN_REM = 2;
static const _RETURN_MOD = 3;
static Int64 _divideHelper(
// up to 64 bits unsigned in a2/a1/a0 and b2/b1/b0
int a0,
int a1,
int a2,
bool aNeg, // input A.
int b0,
int b1,
int b2,
bool bNeg, // input B.
int what) {
var q0 = 0, q1 = 0, q2 = 0; // result Q.
var r0 = 0, r1 = 0, r2 = 0; // result R.
if (b2 == 0 && b1 == 0 && b0 < (1 << (30 - _BITS))) {
// Small divisor can be handled by single-digit division within Smi range.
//
// Handling small divisors here helps the estimate version below by
// handling cases where the estimate is off by more than a small amount.
q2 = a2 ~/ b0;
var carry = a2 - q2 * b0;
final d1 = a1 + (carry << _BITS);
q1 = d1 ~/ b0;
carry = d1 - q1 * b0;
final d0 = a0 + (carry << _BITS);
q0 = d0 ~/ b0;
r0 = d0 - q0 * b0;
} else {
// Approximate Q = A ~/ B and R = A - Q * B using doubles.
// The floating point approximation is very close to the correct value
// when floor(A/B) fits in fewer that 53 bits.
// We use double arithmetic for intermediate values. Double arithmetic on
// non-negative values is exact under the following conditions:
//
// - The values are integer values that fit in 53 bits.
// - Dividing by powers of two (adjusts exponent only).
// - Floor (zeroes bits with fractional weight).
const K2 = 17592186044416.0; // 2^44
const K1 = 4194304.0; // 2^22
// Approximate double values for [a] and [b].
final ad = a0 + K1 * a1 + K2 * a2;
final bd = b0 + K1 * b1 + K2 * b2;
// Approximate quotient.
var qd = (ad / bd).floorToDouble();
// Extract components of [qd] using double arithmetic.
final q2d = (qd / K2).floorToDouble();
qd = qd - K2 * q2d;
final q1d = (qd / K1).floorToDouble();
final q0d = qd - K1 * q1d;
q2 = q2d.toInt();
q1 = q1d.toInt();
q0 = q0d.toInt();
assert(q0 + K1 * q1 + K2 * q2 == (ad / bd).floorToDouble());
assert(q2 == 0 || b2 == 0); // Q and B can't both be big since Q*B <= A.
// P = Q * B, using doubles to hold intermediates.
// We don't need all partial sums since Q*B <= A.
var p0d = q0d * b0;
final p0carry = (p0d / K1).floorToDouble();
p0d = p0d - p0carry * K1;
var p1d = q1d * b0 + q0d * b1 + p0carry;
final p1carry = (p1d / K1).floorToDouble();
p1d = p1d - p1carry * K1;
final p2d = q2d * b0 + q1d * b1 + q0d * b2 + p1carry;
assert(p2d <= _MASK2); // No partial sum overflow.
// R = A - P
final diff0 = a0 - p0d.toInt();
final diff1 = a1 - p1d.toInt() - ((diff0 >> _BITS) & 1);
final diff2 = a2 - p2d.toInt() - ((diff1 >> _BITS) & 1);
r0 = _MASK & diff0;
r1 = _MASK & diff1;
r2 = _MASK2 & diff2;
// while (R < 0 || R >= B)
// adjust R towards [0, B)
while (r2 >= _SIGN_BIT_MASK ||
r2 > b2 ||
(r2 == b2 && (r1 > b1 || (r1 == b1 && r0 >= b0)))) {
// Direction multiplier for adjustment.
final m = (r2 & _SIGN_BIT_MASK) == 0 ? 1 : -1;
// R = R - B or R = R + B
var d0 = r0 - m * b0;
var d1 = r1 - m * (b1 + ((d0 >> _BITS) & 1));
var d2 = r2 - m * (b2 + ((d1 >> _BITS) & 1));
r0 = _MASK & d0;
r1 = _MASK & d1;
r2 = _MASK2 & d2;
// Q = Q + 1 or Q = Q - 1
d0 = q0 + m;
d1 = q1 + m * ((d0 >> _BITS) & 1);
d2 = q2 + m * ((d1 >> _BITS) & 1);
q0 = _MASK & d0;
q1 = _MASK & d1;
q2 = _MASK2 & d2;
}
}
// 0 <= R < B
assert(Int64.ZERO <= Int64._bits(r0, r1, r2));
assert(r2 < b2 || // Handles case where B = -(MIN_VALUE)
Int64._bits(r0, r1, r2) < Int64._bits(b0, b1, b2));
assert(what == _RETURN_DIV || what == _RETURN_MOD || what == _RETURN_REM);
if (what == _RETURN_DIV) {
if (aNeg != bNeg) return _negate(q0, q1, q2);
return Int64._masked(q0, q1, q2); // Masking for type inferrer.
}
if (!aNeg) {
return Int64._masked(r0, r1, r2); // Masking for type inferrer.
}
if (what == _RETURN_MOD) {
if (r0 == 0 && r1 == 0 && r2 == 0) {
return ZERO;
} else {
return _sub(b0, b1, b2, r0, r1, r2);
}
} else {
return _negate(r0, r1, r2);
}
}
}